首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Protecting equids against equine herpesvirus-1 (EHV-1) infection remains an elusive goal. Repeated infection with EHV-1 leads to protective immunity against clinical respiratory disease, and a study was conducted to measure the regulatory cytokine response (IFN-gamma and IL-4) in repeatedly infected immune ponies compared to non-immune ponies. Two groups of four ponies were established. Group 1 ponies had previously been infected on two occasions, and most recently 7 months before this study. Group 2 ponies had no history no vaccination or challenge infection prior to this study. Both groups were subjected to an intranasal challenge infection with EHV-1, and blood samples were collected pre-infection, and at 7 and 21 days post-infection for preparation of PBMCs. At each time point, the in vitro responses of PBMCs to stimulation with EHV-1 were measured, including IFN-gamma and IL-4 mRNA production, and lymphoproliferation. Group 1 ponies showed no signs of clinical disease or viral shedding after challenge infection. Group 2 ponies experienced a biphasic pyrexia, mucopurulent nasal discharge, and nasal shedding of virus after infection. Group 1 ponies had an immune response characterized both before and subsequent to challenge infection by an IFN-gamma response to EHV-1 in the absence of an IL-4 response, and demonstrated increased EHV-1-specific lymphoproliferation post-infection. Group 2 ponies had limited cytokine or lymphoproliferative responses to EHV-1 pre-challenge, and demonstrated increases in both IFN-gamma and IL-4 responses post-challenge, but without any lymphoproliferative response. Protective immunity to EHV-1 infection was therefore characterized by a polarized IFN-gamma dependent immunoregulatory cytokine response.  相似文献   

2.
Equine herpesvirus-1 (EHV-1) is the cause of serious disease with high economic impact on the horse industry, as outbreaks of EHV-1 disease occur every year despite the frequent use of vaccines. Cytotoxic T-lymphocytes (CTLs) are important for protection from primary and reactivating latent EHV-1 infection. DNA vaccination is a powerful technique for stimulating CTLs, and the aim of this study was to assess antibody and cellular immune responses and protection resulting from DNA vaccination of ponies with combinations of EHV-1 genes. Fifteen ponies were divided into three groups of five ponies each. Two vaccination groups were DNA vaccinated on four different occasions with combinations of plasmids encoding the gB, gC, and gD glycoproteins or plasmids encoding the immediate early (IE) and early proteins (UL5) of EHV-1, using the PowderJect XR research device. Total dose of DNA/plasmid/vaccination were 25 microg. A third group comprised unvaccinated control ponies. All ponies were challenge infected with EHV-1 6 weeks after the last vaccination, and protection from clinical disease, viral shedding, and viremia was determined. Virus neutralizing antibodies and isotype specific antibody responses against whole EHV-1 did not increase in either vaccination group in response to vaccination. However, glycoprotein gene vaccinated ponies showed gD and gC specific antibody responses. Vaccination did not affect EHV-1 specific lymphoproliferative or CTL responses. Following challenge infection with EHV-1, ponies in all three groups showed clinical signs of disease. EHV-1 specific CTLs, proliferative responses, and antibody responses increased significantly in all three groups following challenge infection. In summary, particle-mediated EHV-1 DNA vaccination induced limited immune responses and protection. Future vaccination strategies must focus on generating stronger CTL responses.  相似文献   

3.
Equine herpesvirus-1 (EHV-1) infection is common in young horses throughout the world, resulting in respiratory disease, epidemic abortion, sporadic myelitis, or latent infections. To improve on conventional diagnostic tests for EHV-1, a real-time polymerase chain reaction (PCR) technique was developed, using primers and probes specific for the EHV-1 gB gene. Amplification efficiencies of 100% +/- 5% were obtained for DNA isolated from a plasmid, infected peripheral blood mononuclear cells (PBMCs), and nasal secretions from infected ponies. The dynamic range of the assay was 8 log10 dilutions, and the lower limit of detection was 6 DNA copies. Fifteen ponies, seronegative for EHV-1, were experimentally infected with EHV-1, and nasal samples were used to quantify shedding of virus by both virus isolation and real-time PCR analysis. Virus isolation identified nasal shedding of EHV-1 in 12/15 ponies on a total of 25 days; real-time PCR detected viral shedding in 15/15 ponies on 75 days. Viremia was quantified using PBMC DNA, subsequent to challenge infection in 3 additional ponies. Viremia was identified in 1/3 ponies on a single day by virus isolation; real-time PCR detected viremia in 3/3 ponies on 17 days. When real-time PCR was used to analyze PBMC DNA from 11 latently infected ponies (documented by nested PCR), EHV-1 was not detected. We conclude that real-time PCR is a sensitive and quantitative test for EHV-1 nasal shedding and viremia and provides a valuable tool for EHV-1 surveillance, diagnosis of clinical disease, and investigation of vaccine efficacy.  相似文献   

4.
Two groups each of six sibling ponies were exposed to sequential infections with equid herpesvirus 1 or 4 (EHV-1 or EHV-4) at four or five month intervals. Two exposures to EHV-4 did not significantly reduce virus shedding or pyrexia when the ponies were subsequently exposed to EHV-1. However, two sequential infections with EHV-1 completely protected against challenge with EHV-4. Virus neutralising antibody in each group did not increase until 21 days after primary exposure and was subtype specific. However, complement fixing antibody rose within seven days after inoculation with EHV-1, and 14 days after inoculation with EHV-4, and while the latter was subtype specific the former was directed against both EHV-1 and EHV-4. Interpretation of these findings in relation to vaccination is discussed.  相似文献   

5.
The immunoglobulin G (IgG) subclass response was investigated in horses with or without pyrexia after natural infection with equine herpesvirus type 1 (EHV-1) in the field. All horses were kept at the training centers of the Japan Racing Association and were immunized with an inactivated EHV-1 vaccine before EHV-1 infection. An IgG subclass response dominated by IgGa and IgGb was induced in horses without pyrexia after EHV-1 infection. In contrast, horses that developed pyrexia showed increased IgGc and IgG (T) subclass production in addition to IgGa and IgGb. Although inactivated EHV-1 vaccines are considered to induce a mainly Th-2-biased response, these results indicated that the responses in horses inoculated with inactivated EHV-1 vaccine were not uniform, and that horses with a Th-1-biased response were likely to be protected from pyrexia.  相似文献   

6.
In this study, experimental canarypox virus (ALVAC) and plasmid DNA recombinant vaccines expressing the gB, gC and gD glycoproteins of EHV-1 were assessed for their ability to protect conventional ponies against a respiratory challenge with EHV-1. In addition, potential means of enhancing serological responses in horses to ALVAC and DNA vaccination were explored. These included co-administration of the antigen with conventional adjuvants, complexation with DMRIE-DOPE and co-expression of the antigen along with equine GM-CSF. Groups of EHV primed ponies were vaccinated twice intra-muscularly with one dose of the appropriate test vaccine at an interval of 5 weeks. Two to 3 weeks after the second vaccination, ponies were infected intra-nasally with the virulent Ab4 strain of EHV-1 after which they were observed clinically and sampled for virological investigations. The results demonstrated that DNA and ALVAC vaccination markedly reduced virus excretion after challenge in terms of duration and magnitude, but failed to protect against cell-associated viremia. Noteworthy was the almost complete absence of virus excretion in the group of ponies vaccinated with ALVAC-EHV in the presence of Carbopol adjuvant or DNA plasmid formulated with aluminium phosphate. The administration of the DNA vaccine in the presence of GM-CSF and formulated in DMRIE-DOPE and of the ALVAC vaccine in the presence of Carbopol adjuvant significantly improved virus neutralising antibody responses to EHV-1. These findings indicate that DNA and ALVAC vaccination is a promising approach for the immunological control of EHV-1 infection, but that more research is needed to identify the immunodominant protective antigens of EHV-1 and their interaction with the equine immune system.  相似文献   

7.
Equine herpesvirus-1 (EHV-1) causes respiratory disease, neonatal death, abortion and neurologic disease. The main purpose of this study was to identify viral antigen in respiratory tract samples by immunoperoxidase staining. Six pony foals were selected on the basis of demonstrating seronegativity to EHV-1 by virus neutralization and housed in isolation. They were infected experimentally by administering EHV-1 nebulized ultrasonically through a face mask. Successful infection was clinically apparent as each of the foals had febrile responses, nasal discharge, and enlarged submandibular lymph nodes. Sporadic coughing was also heard. EHV-1 was isolated from nasopharyngeal swabs of 4/6 ponies and seroconversion was demonstrated in all foals. Bronchoscopic examination of the large airways revealed hyperemia. The incidence of recovery of Actinobacillus suis from nasopharyngeal swabs increased initially, with recovery of Streptococcus zooepidemicus isolates predominating at 3 wk post-infection. Cytology brushes were used to sequentially sample the respiratory tract of the infected ponies at the nasopharynx, mid-trachea and the mainstem bronchus. Bronchoalveolar lavage provided lung cells. Immunocytochemistry techniques were applied to both types of samples to locate EHV-1 antigen. Indirect immunoperoxidase staining of samples utilizing monoclonal antibodies specific for EHV-1 demonstrated viral antigen associated with cellular debris, primarily in the nasopharyngeal samples on days 3-9 post-infection.  相似文献   

8.
The immune response in horses following experimental infection with equine herpesvirus type 1 (EHV-1) was assessed by measuring cytotoxicity for EHV-1-infected target cells. A technique was developed, using [125I]5-iodo-2'-deoxyuridine ([125I]IUDR)-labeled equine fetal kidney cells infected with EHV-1 as the target cells. It was shown that peripheral blood leukocytes from a recovered horse were capable of lysing target cells, as measured by the loss of radio-active label. Following the experimental infection of specific-pathogen-free ponies with EHV-1, cytotoxicity was obtained with fresh autologous serum, peripheral blood leukocytes in autologous serum, and washed peripheral blood leukocytes. Cytotoxicity of the serum and peripheral blood leukocytes was detected as early as one day after infection. It is suggested that cytotoxic antibodies or cells could play an important part in restricting virus spread after infection of the horse with EHV-1.  相似文献   

9.
A commercial bovine IFN-gamma-specific monoclonal antibody was used to measure antigen-specific IFN-gamma production by equine lymphocytes. Paired PBMC samples were collected from six ponies prior to and 10 days after challenge infection with equine herpesvirus-1 (EHV-1). Each sample was stimulated in vitro with EHV-1, virus-free medium, or PMA and ionomycin, and labelled with monoclonal antibodies specific for various equine lymphocyte subset markers. Following fixation, intracellular IFN-gamma was detected using a FITC-conjugated bovine IFN-gamma-specific monoclonal antibody. In vitro restimulation of PBMC with EHV-1 induced IFN-gamma production by a significantly higher percentage of total (CD5(+)) T lymphocytes, and CD4(+) and CD8(+) T lymphocyte subsets among post-EHV-1 infection PBMC samples compared to pre-infection samples. This response was associated with an increase in virus-specific CTL activity, a critical immune effector for the control of EHV-1 infection and disease. No significant increase in IFN-gamma production by B lymphocytes was observed. These data demonstrate that EHV-1 challenge infection of ponies results in increased production of IFN-gamma by virus-specific T lymphocytes, and that this response can be quantitated using flow cytometry.  相似文献   

10.
We have shown previously that equine herpesvirus 1 (EHV-1) glycoprotein D (gD) DNA elicited protective immune responses against EHV-1 challenge in murine respiratory and abortion models of EHV-1 disease. In this study, 20 horses, all with pre-existing antibody to EHV-4 and two with pre-existing antibody to EHV-1, were inoculated intramuscularly with three doses each of 50, 200 or 500microg EHV-1 gD DNA or with 500microg vector DNA. In 8 of 15 horses, inoculation with EHV-1 gD DNA led to elevated gD-specific antibody and nine horses exhibited increased virus neutralising (VN) antibody titres compared to those present when first inoculated. A lack of increase in gC-specific antibody during the 66 weeks of the experiment showed that the increase in gD-specific antibodies was not due to a natural infection with either EHV-1 or EHV-4. The increase in EHV-1 gD-specific antibodies was predominantly an IgGa and IgGb antibody response, similar to the isotype profile reported following natural EHV-1 infection.  相似文献   

11.
The aim of this study was to investigate the role of immediate early gene (gene63) in the pathogenesis of equine herpesvirus 1 (EHV-1) acute and latent infections in equine and murine models. EHV-1 gene63 mutant virus (g63mut) along with EHV-1 (Ab4) was used for intracerebral and intranasal infection of 3 and 17-day-old mice. Both viruses were recovered at the same frequency from tissues after infection. Two Welsh ponies were infected via the intranasal route with each of the viruses. Acute infection was monitored by virus isolation from nasal swabs and peripheral blood leukocytes. Six weeks post infection, peripheral blood leukocytes were taken from ponies and in vitro reactivation was positive for both viruses. At autopsy, both viruses were isolated by co-cultivation from bronchial and submandibular lymph nodes. These findings indicate that the mutation of EHV-1 gene63 does not play a role in the establishment and reactivation from latency.  相似文献   

12.
The specificity of selected immune responses to equine herpesvirus type 1 (EHV-1) and type 4 (EHV-4) was examined in 3 colostrum-deprived specific-pathogen-free foals. Single foals were vaccinated with inactivated EHV-1, inactivated EHV-4, or control cell lysate plus adjuvant followed by successive intranasal challenge exposures with EHV-1 and EHV-4 or with EHV-4 and EHV-1. Vaccination with inactivated virus preparations elicited cellular immune responses and antibody which were augmented by subsequent challenge exposures. Cellular immune responses, as measured by in vitro lymphocyte blastogenesis, were cross-reactive after foals were given either EHV-1 or EHV-4. Serum virus-neutralizing antibody responses were type-specific for foals given EHV-1, but were cross-reactive after EHV-4 administrations. It was concluded that diseases caused by EHV-1 and EHV-4 may be more effectively controlled with a bivalent vaccine containing both EHV-1 and EHV-4 than with the presently used monovalent vaccines based on EHV-1 alone.  相似文献   

13.
REASONS FOR PERFORMING STUDY: Neurological disease in horses caused by infection with certain 'paralytic' strains of equine herpesvirus-1 (EHV-1) is a potentially devastating condition the pathogenesis of which is poorly understood. Preliminary observations in both experimentally induced and naturally occurring cases of the central nervous system disease have revealed a more robust cell-associated viraemia in horses infected with paralytic isolates of EHV-1, relative to horses infected with abortigenic isolates. To investigate further this pathogenesis-relevant question, the present study was performed using a greater number of horses and a more precise method for quantification of EHV-1 DNA present in viraemic leucocytes. OBJECTIVE: To compare the magnitude and duration of leucocyte-associated viraemia in seronegative, age-matched foals following infection with paralytic vs. abortigenic isolates of EHV-1. METHODS: Peripheral blood mononuclear cells (PBMC) were collected from 20 weanling foals at 2, 4, 7, 9, 11, 14 and 21 days after intranasal inoculation with either paralytic or abortigenic isolates of EHV-1. The amount of EHV-1 DNA present in each PBMC sample was measured by real-time quantitative PCR. RESULTS: Foals inoculated with paralytic strains of EHV-1 developed both a greater magnitude and longer duration of PBMC-associated viraemia than foals inoculated with abortigenic strains of the virus. CONCLUSIONS: Both the higher magnitude and longer duration of cell-associated viraemia contribute to the risk for development of neurological signs in horses infected with paralytic strains of EHV-1. POTENTIAL RELEVANCE: Our results provide empirically derived, scientific data that contributes to a better understanding of the pathogenetic basis for the differing abilities of paralytic and abortigenic strains of EHV-1 to cause post infection central nervous system disease in the horse. The findings identify the importance of minimising the quantitative burden of viraemic leucocytes that follows exposure to the virus, by the use of effective therapeutic antiviral drugs and efficacious prophylactic vaccines that stimulate cytotoxic immune responses against EHV-1 infected cells.  相似文献   

14.
Equine herpesvirus-1 (EHV-1) is an alphaherpesvirus which infects horses, causing respiratory and neurological disease and abortion in pregnant mares. Latency is established in trigeminal ganglia and lymphocytes. Immunity to EHV-1 lasts between 3 and 6 months. Current vaccines, many of which contain inactivated virus, have reduced the incidence of abortion storms in pregnant mares but individual animals, which may be of high commercial value, remain susceptible to infection. The development of effective vaccines which stimulate both humoral and cellular immune responses remains a priority. Utilising data generated following experimental and field infections of the target species, this review describes the immunopathogenesis of EHV-1 and the interaction between the horse's immune system and this virus, both in vivo and in vitro, and identifies immune responses, highlighting those which have been associated with protective immunity. It then goes on to recount a brief history of vaccination, outlines factors likely to influence the outcome of vaccine administration and describes the immune response stimulated by a selection of commercial and experimental vaccines. Finally, based on the available data, a rational strategy designed to stimulate protective immune responses by vaccination is outlined.  相似文献   

15.
A group of three horses was experimentally infected with equine herpesvirus type 1 (EHV-1) and showed clinical signs characterised by a biphasic febrile response, leucopenia and cell associated viraemia accompanied by virus shedding from the nasopharynx. A second exposure to the virus 18 days later resulted in the isolation of virus from the nasopharynx of one horse. This and a further group of three EHV-1 seropositive horses were subsequently infected with equine herpesvirus type 4 (EHV-4) 147 days after the initial EHV-1 infection and virus was shed from the nasopharynx in the absence of clinical disease. Following the first EHV-1 infection, virus specific immunoglobulin M (IgM) was present by day 5 and remained high until the second exposure at day 18 at which point levels decreased. In contrast, EHV-1 specific IgG, detected at day 6 peaked at day 18, after which time levels remained high. Virus neutralising antibodies and antibodies able to mediate antibody-dependent cellular cytotoxicity were present by day 10. The immune response to EHV-1 is discussed with reference to the disease.  相似文献   

16.
REASONS FOR PERFORMING STUDY: Currently, there is no recommended immunoprophylaxis against febrile respiratory diseases due to equine herpesvirus-1 (EHV-1) and -4 (EHV-4) in horses below age 5-6 months. This is because of interference by maternally-derived antibody (MDA) of vaccines. OBJECTIVE: Unweaned equine foals are an important reservoir of EHV-1 transmission; therefore, we experimentally assessed the efficacy of a live EHV-1 vaccine in foals age 1.4-3.5 months with MDA. METHODS: Following vaccination and challenge, parameters assessed were virus shedding in nasal mucus, leucocyte-associated viraemia, circulating virus neutralising antibody activity and clinical reactions. RESULTS: Controlled challenge showed that a single intranasal dose of the vaccine afforded partial but significant protection against febrile respiratory disease, virus shedding and viraemia due to EHV-1 infection, despite virus-neutralising MDA. CONCLUSIONS AND POTENTIAL RELEVANCE: The prospective vaccine would be a significant step forward in reducing the incidence of the disease caused by EHV-1 infection.  相似文献   

17.
Infection with equine herpesvirus-1 (EHV-1) causes respiratory disease, late term abortions and equine herpesvirus myeloencephalitis (EHM) and remains an important problem in horses worldwide. Despite increasing outbreaks of EHM in recent years, our understanding of EHM pathogenesis is still limited except for the knowledge that a cell-associated viremia in peripheral blood mononuclear cells (PBMCs) is a critical link between primary respiratory EHV-1 infection and secondary complications such as late-term abortion or EHM. To address this question our objective was to identify which PBMC subpopulation(s) are infected during viremia and may therefore play a role in transmitting the virus to the vascular endothelium of the spinal cord or pregnant uterus. PBMCs from 3 groups of animals were collected between days 4 and 9 following experimental infection with EHV-1 strain Findlay/OH03 or strain Ab4. PBMCs were labeled with primary antibodies selective for CD4+ or CD8+ T lymphocytes, B-lymphocytes, or monocytes and positively selected using magnetic bead separation. Cell numbers and EHV-1 genome numbers in each subpopulation were then determined using quantitative PCR for β-actin and the EHV-1 glycoprotein B, respectively. Viral genomic DNA was found in all PBMC subpopulations; the CD8+ lymphocytes were most frequently positive for viral DNA, followed by B-lymphocytes. These differences were statistically significant in horses infected with the EHV-1 strain Findlay/OH03, and ponies with Ab4. These results differ from what has been reported in in vitro studies, and indicate that different PBMC subpopulations may play different roles in EHV-1 viremia.  相似文献   

18.
Bovine respiratory syncytial virus (BRSV) is a respiratory pathogen of cattle that causes severe disease in calves alone and as one of several viruses and bacteria that cause bovine respiratory disease complex. Like human RSV this virus modulates the immune response to avoid stimulation of a vibrant CD8+ T cytotoxic cell response and instead promotes a Th2 response. The Th2 skew sometimes results in the production of IgE antibodies and depresses production of the Th1 cytokine interferon γ. Innate immune cells have a pivotal role in guiding the adaptive response to BRSV, with selective secretion of cytokines by pulmonary dendritic cells. Here we review some of the pertinent observations on immune responses to BRSV infection and vaccination and illustrate how experimental infection models have been used to elucidate the immunopathogenesis of BRSV infection. Recent experiments using intranasal vaccination and/or immune modulation with DNA based adjuvants show promise for effective vaccination by the stimulation of Th1 T cell responses.  相似文献   

19.
The duration of immunity as measured by virological, serological and clinical responses following infection with influenza A/equine/Newmarket/79 (H3N8) was assessed in repeated challenge experiments in which ponies were infected by exposure to aerosols of infectious virus. Previous infection stimulated complete clinical protection which persisted for at least 32 weeks as demonstrated by the absence of febrile responses and coughing in two groups of ponies infected 16 weeks or 32 weeks after the first infection. Partial clinical protection persisted for over a year as demonstrated by the absence of coughing and a reduction in the number of febrile responses in a group of ponies infected 62 weeks after their first infection. These results contrasted with those observed in immunologically naive control ponies which developed pyrexia, dyspnoea and nasal discharge and coughing. The kinetics of virus specific antibody production in primary and secondary infections with equine influenza were studied by the single radial haemolysis test and a radioisotopic antiglobulin binding assay which measured virus specific IgGab antibody isotype. Antibody to the haemagglutinin, as measured by the single radial haemolysis test, declined rapidly after primary infection whereas the IgGab responses to whole virus antigens persisted for longer. The single radial haemolysis test was therefore particularly useful for the detection of antibody responses in multiple infections or exposures to influenza antigens. The radioisotopic antiglobulin binding assay was more sensitive for identifying infections which had occurred more than six months previously, as evidenced by anamnestic IgGab responses in ponies with low levels of antibody before rechallenge.  相似文献   

20.
The potential of DNA-mediated immunisation to protect against equine herpesvirus 1 (EHV-1) disease was assessed in a murine model of EHV-1 respiratory infection. Intramuscular injection with DNA encoding the EHV-1 envelope glycoprotein D (gD) in a mammalian expression vector induced a specific antibody response detectable by two weeks and maintained through 23 weeks post injection. Immune responses were proportional to the dose of DNA and a second injection markedly enhanced the antibody response. EHV-1 gD DNA-injected mice developed neutralising antibodies, and a predominance of IgG2a antibodies after the DNA injection was consistent with the generation of a type 1 helper T-cell (Th1) response. Following intranasal challenge with EHV-1, mice immunised with 50 microg of EHV-1 gD DNA were able to clear virus more rapidly from lung tissue and showed reduced lung pathology in comparison with control mice. The data indicate that DNA-mediated immunisation may be a useful strategy for vaccination against EHV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号