首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Pre-harvest sprouting (PHS) in wheat (Triticum aestivum L.) can be a significant problem, causing deleterious effects on grain quality. However, the adverse impacts of PHS can be reduced by introgressing genes controlling grain dormancy into white-grained bread wheat. Screening for grain dormancy typically involves germination testing of harvest-ripe grain grown in a glasshouse or field. However, the more uniform environmental conditions provided by temperature controlled glasshouses (i.e. controlled environmental conditions—CEC) may provide significant benefits for the assessment of grain dormancy. In this study, the dormancy phenotype of grain grown under CEC incorporating an extended photoperiod, was compared with 2 years of data from field grown material. Four dormant double haploid lines (derived from SW95-50213 and AUS1408) and two locally adapted non-dormant cultivars EGA Gregory and EGA Wills were compared in three replicated experiments grown under CEC (22 ± 3°C and 24 h photoperiod). The germination response of harvest-ripe grain was examined to assess the expression of grain dormancy. Two measures of germination, the predicted time to 50% germination (G 50) and a weighted germination index, both clearly differentiated dormant and non-dormant lines grown under CEC. In addition, levels of grain dormancy were similar to field-grown plants. These results demonstrated that CEC with an extended photoperiod can be used for rapid and reliable characterisation of grain dormancy in fixed lines of bread wheat.  相似文献   

2.
Dormancy of wheat grains, the property conferring sprouting resistance, is affected by environmental conditions experienced during grain development. We investigated the hypothesis that short dormancy duration in U.K. wheat grain (thus a high risk of post-maturity sprouting) is related to weather conditions, i.e. high temperatures during grain development. Four wheat varieties were grown at four sites ranging from the far south to the far north of the country in the years 1995–1997,ensuring different temperature and rainfall conditions during grain development. This paper focuses on one variety, Hornet, which has a high sprouting resistance rating. Other varieties gave similar results. Serial laboratory germination tests (seven days, 20°C) at 100°C-dayintervals were used to measure dormancy duration, which was assessed from logistic curves fitted to the data. During the experiment the mean temperatures during grain development differed by over4°C, due to the site × year effect. Significant effects (p>0.05) of site and year (i.e. weather) on dormancy were found, when definitions of dormancy duration of DA (number of days from anthesis to 50% germination in seven days at 20°C) or DP (number of days from physiological maturity at 45% grain moisture to 50% germination) were used. Dormancy was markedly shorter in the hot, dry year 1995 compared to the cooler, wetter years 1996 and 1997. A relationship, as postulated by Belderok, between accumulated temperature during the dough stage of grain filling and dormancy duration was not found. However, a relationship of dormancy duration to the mean temperature during grain development was found, with short dormancy periods occurring after high mean temperatures were experienced. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Pre-harvest sprouting of durum wheat (Triticum turgidum L. var durum) reduces commercial grade, although the actual effects on processing quality are controversial. Little is known about the genetics of the dormancy component of pre-harvest sprouting resistance in durum. We studied the segregation of dormancy in 98 recombinant inbred lines from a cross of a relatively non-dormant line, CI13102, with a moderately dormant line, Kyle. The lines and parents were grown in field tests over three years, 1996, 1997 and 1998. Spikes were collected at approximately 20% moisture and stored at −23 ∘C. Hand-threshed grain of the lines was germinated, and number of seeds germinated was counted each day. A germination resistance index was calculated to characterize dormancy. Dormancy appeared to be complexly inherited in this cross. Lines were observed that were significantly (P < 0.05) more dormant than the parents. The lines transgressive for dormancy expressed in different combinations of the three environments, indicating an environmental interaction. DNA of lines and parents was tested with simple sequence repeat primers and AFLPs that were used in quantitative trait loci (QTL) analysis of dormancy. Significant QTLs for dormancy were found, with the most notable being on chromosome 1A, where other QTLs for pre-harvest sprouting resistance have been reported in common wheat.  相似文献   

4.
滇重楼种子休眠机理研究   总被引:16,自引:1,他引:15  
探讨滇重楼种子休眠机理,为打破种子休眠促进滇重楼实生育苗提供理论基础。采用重量法、胚率测定、ELISA等方法对种子吸水特性、萌发抑制物及种胚休眠与发育的内源机理进行了研究。结果表明,滇重楼种子休眠属于形态学-生理学休眠类型。滇重楼种胚发育不完全、种子中存在萌发抑制物质是种子休眠的主要原因。种子不存在吸水障碍,与休眠无关。内源激素ABA和GA3在滇重楼种子休眠与萌发过程中起着重要作用,ABA是引起休眠的关键因素,ABA含量的降低是滇重楼种胚发育的始动因子,GA3有助于种子的生理后熟。萌发抑制物的存在可能抑制了种胚发育,而与生理学后熟过程无关。在自然条件下,滇重楼生境中较长的低温时期可能是滇重楼种子具有较长时间休眠的外界原因。  相似文献   

5.
Because preharvest sprouting decreases quantity and quality of wheat grain, researchers need effective protocols to assess response to preharvest sprouting conditions. The aim of this study was to determine which temperature gives the greatest difference in seed germination and expression of seed dormancy in 10 spring wheat genotypes. The genotypes were grown in the field near Swift Current, Saskatchewan in 2000 in a randomized complete block with four replicates. Seed samples were harvested at approximately 25% moisture content (wet weight basis) and dried to 12% moisture content with minimal after-ripening. Germination was under controlled environment at temperatures of 10, 15, 20 and 30 °C in darkness. A weighted germination index (WGI) was calculated. The analysis of WGI, for each temperature, showed highly significant (p ≤ 0.01) genotype effects on germination. Most genotypes decreased in WGI (increased dormancy) as temperature was increased from 10 to 30 °C. The greatest differences in seed germination tended to be at 15 °C and 20 °C. The level of seed dormancy depended on the genotype and germination temperature. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Preharvest sprouting is common in cereals, which lack grain dormancy when maturing grain is exposed to rainfall or high moisture conditions. Environmental conditions such as drought and high temperature during grain filling have a large effect on the expression of sprouting tolerance. A dormant (DM 2001) and non-dormant (Cunderdin) hard white spring wheat were exposed to drought or irrigated conditions and either low or high temperature during grain filling. Dormancy and embryo sensitivity to ABA were analysed throughout grain filling. The conclusions from this investigation were as follows; firstly DM 2001 was more dormant than Cunderdin, with a four-fold lower germination index (GI) at maturity. Secondly during grain ripening drought increased dormancy and overrides any increase in dormancy with low temperature. Finally embryo sensitivity can be induced in a non-dormant genotype to the extent where the non-dormant genotype in a hot dry environment can have the same phenotype as a dormant genotype grown in a cool wet environment. In summary drought during grain filling increases dormancy suggesting breeders need to avoid drought when screening for sprouting tolerance in order to maximise the chances of identifying genetic differences in grain dormancy and avoid any maturity by drought interactions.  相似文献   

7.
Preharvest sprouting reduces grain quality and lowers grade. Characterization of preharvest sprouting resistance is important in selection in breeding for transgressive segregation and understanding the genetics of the trait for identifying QTL. Methods of measuring dormancy and other factors contributing to preharvest sprouting resistance are varied. The objective of this study was to demonstrate the requirement of multiple methods of measurement over multiple durations of germination to maximize understanding of transgressive segregation and QTL for preharvest sprouting resistance within a segregating durum wheat population grown in multiple environments. Ninety-eight durum wheat (Triticum turgidum L. var. durum) recombinant inbred lines (RIL) from a cross of a minimally dormant line, Sentry, by a moderately dormant line, Kyle, and controls were grown in replicated field tests in 1996, 1997 and 1998 and in a growth chamber trial in 1998. Preharvest sprouting was measured from intact spikes as sprouting index or from hand threshed grain as germination index (GI), germination resistance (GR), and percent germination (PG). The threshed grain measures were evaluated using counts at 7, 14 and 21 days intervals from the start of germination. Correlations performed on the measure type and duration using lines within the RIL population showed some discontinuity across environments, type of measure and duration of measure, with counts at extended intervals for PG producing the lowest correlations. The number of transgressive segregant lines varied with environment, duration and type of measure. Different QTL were identified by different types of measures and duration of counts. GI calculated for 7, 14 and 21 days germination count intervals and GR calculated for 21 days identified a highly significant QTL on chromosome1A (QPhsd.spa.-1A.1). GR calculated for 7 days identified a highly significant QTL on 2A (QPhsd.spa.-2A.1) in two different environments, and GI calculated for 21 days and PG at 7 days identified the same highly significant QTL on chromosome 7B (QPhsd.spa.-7B.1). The results indicated that multiple measures and durations of measure intervals must be applied to results collected across different environments to maximize the identification of QTL and transgressive segregants of the population segregating for preharvest sprouting resistance.  相似文献   

8.
White-grained wheat cultivars have long been recognized to be less resistant to preharvest sprouting (PHS) than the red-grained ones. Previously two QTLs for grain dormancy, QPhs.ocs-3A.1 (QPhs-3AS) and QPhs.ocs-4A.1 (QPhs-4AL) were identified in a highly dormant Japanese red wheat, Zenkoujikomugi (Zen). Aiming at improvement of PHS tolerance in white-grained wheat, the introgression effect of these two QTLs in a white-grained population consisting of 40 recombinant inbred lines (RILs) developed from a cross between Zen and white-grained Spica was examined here. Random 20 RILs with red grains were also developed from the same cross and used as a control population. The RILs were grown in the field and in the glasshouse to evaluate the grain dormancy by germination test. Several SSR markers closely linked to the QPhs-3AS and QPhs-4AL were used to estimate the alleles at the QTLs. Dormancy variation in the RILs was significantly associated with the differences for grain color and the alleles at QPhs-3AS over several years. Although allelic variation was detected in a SSR marker closely linked to QPhs-4AL there was no difference in germination data between the Zen-allele and the Spica-allele groups. As expected, the red-grained RILs with the Zen allele at QPhs-3AS were the most dormant. Some white-grained RILs with the Zen allele at QPhs-3AS showed higher dormancy compared to the red-grained RILs with the alternative allele. These results demonstrated that introgression of the QPhs-3AS gene could contribute to the increased grain dormancy in white-grained wheat.  相似文献   

9.
Grain dormancy provides protection against pre-harvest sprouting (PHS) in cereals. Composite interval mapping and association analyses were performed to identify quantitative trait loci (QTL) contributing grain dormancy in a doubled haploid (DH) barley population (ND24260?×?Flagship) consisting of 321 lines genotyped with DArT markers. Harvest-ripe grain collected from three field experiments was germinated over a 7-day period to determine a weighted germination index for each line. DH lines displaying moderate to high levels of grain dormancy were identified; however, both parental lines were non-dormant and displayed rapid germination within the first two?days of testing. Genetic analysis identified two QTL on chromosome 5H that were expressed consistently in each of the three environments. One QTL (donated by Flagship) was located close to the centromeric region of chromosome 5H (qSDFlag), accounting for up to 15% of the phenotypic variation. A second QTL with a larger effect (from ND24260) was detected on chromosome 5HL (qSDND), accounting for up to 35% of the phenotypic variation. qSDFlag and qSDND displayed an epistatic interaction and DH lines that had the highest levels of grain dormancy carried both genes. We demonstrate that qSDND in the ND24260?×?Flagship DH population is positioned proximal and independent to the well-characterised SD2 region that is associated with both high levels of dormancy and inferior malt quality. This indicates that it should be possible to develop cultivars that combine acceptable malting quality and adequate levels of grain dormancy for protection against PHS by utilizing these alternate QTL.  相似文献   

10.
The association between high malting quality and pre-harvest sprouting (PHS) susceptibility is a key challenge when developing new malting barley varieties. A new malting barley variety Baudin has successfully combined high malting quality and PHS tolerance. A doubled haploid population was developed for mapping PHS tolerance and seed dormancy from a cross of Baudin?×?AC Metcalfe using 233 molecular markers. Three QTLs were mapped for seed dormancy based on the standard germination test at 24, 48 and 72?h. One major QTL was mapped to the long arm of chromosome 5H controlling seed dormancy and PHS tolerance from Baudin. Two other minor QTLs were identified from Baudin on chromosomes 3 and 7H. QTL/QTL interaction was detected for seed dormancy between chromosomes 3 and 5H. The PHS tolerance allele of the 5H QTL from Baudin contributes to higher malt yield without significant impact on diastatic power, beta-glucan content and wort viscosity. QTL from Baudin provide new sources to integrate PHS tolerance and high malting quality.  相似文献   

11.
The possibility of breeding white-grained wheats tolerant to pre-harvest sprouting under Japanese humid weather conditions is discussed. New genetic dormancy sources, such as, AUS1408, 8019R1 and RyuuMai7, were evaluated for seed dormancy in different weather conditions. Some white-grained dormant wheats showed a strong dormancy similar to that of red-grained dormant wheats in a greenhouse trial, in the field their dormancy expression was much less than the red wheats. Three populations involving crosses with these new sources for winter wheat breeding were examined under repeated selection for seed dormancy. Some dormant white-grained lines, as judged under glasshouse conditions, were developed. Again the level of dormancy in these lines was not sufficient compared to red dormant varieties in field trial. In order to develop truly superior dormant white-grained materials, one population involving crosses with two dormant varieties, AUS1408 and 8019R1, was examined under repeated selection. From these materials we succeeded in breeding lines that had not only a good dormancy but also showed adaptation to Japanese weather conditions, including earliness, scab resistance and good seed appearance. However again the dormancy of these lines in field trial was not sufficient compared to that of red wheats and there was not a clear difference for seed dormancy between breeding lines and their parents. We conclude therefore that more work involving the use of new genetic sources or new breeding techniques, will be necessary for breeding advanced lines that maintain a sufficient tolerance to PHS in humid Japanese weather condition. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
白皮小麦收获前穗发芽及品种抗性机制探讨   总被引:24,自引:1,他引:23  
蒋国梁  肖世和 《作物学报》1998,24(6):793-798
对48个白皮小麦种质及2个红皮小麦种质连续3年测定结果,品种间收获前穗发芽率,籽粒发芽率及收获后种子休眠特性差异显著。穗发芽敏感性因年份和种子发育时期而异,开花后35-40天较敏感,品种间差异大。休眠期长短与穗发芽率间呈极显著负相关。收获后的种子α-淀粉酶活性,降落值,与穗发芽率间分别呈极显著正相关和极显著负相关。  相似文献   

13.
Summary Resistance to preharvest sprouting has been observed in several white wheat (Triticum aestivum L.) genotypes, but the mode of resistance has not been determined. Studies were conducted to characterize the strong preharvest sprouting resistance in Clark's Cream genotype to facilitate breeding for the trait. Clark's Cream and five other hard red and white wheat genotypes were grown in the glasshouse and field and effects of simulated rain, embryo maturity, inhibitors in floral parts and GA, endogenous inhibitors, and ABA and GA combinations on sprouting were measured. The six genotypes differed significantly in sprouting after simulated rain, -amylase activity, and response to GA and ABA. Embryo maturity and inhibition levels in floral parts and caryopses were nearly similar for all genotypes. Clark's Cream appeared to differ most in high embryo sensitivity, which was fairly nonspecific for ABA, GA, and endogenous inhibitor, and in low -amylase production during sprouting. Breeding procedures that lead to the preharvest sprouting resistance of Clark's Cream are discussed.  相似文献   

14.
Secondary seed dormancy in oilseed rape is a phenomenon that allows seeds to survive in the soil for many years without germination. Following soil cultivation, dormant seeds may germinate in subsequent years, and they are the main reason for the occurrence of volunteer oilseed rape plants in successive crops. Inheritance of secondary dormancy may be related to seed longevity (SL) in the soil. Genetic reduction in secondary dormancy and SL could provide a mean to reduce the frequency of volunteer plants and especially the dispersal of transgenic oilseed rape. The aim of the present study was to analyse secondary dormancy, germination rate and SL of 28 black‐seeded winter oilseed rape cultivars using in vitro laboratory tests. The material was tested in field experiments at six different locations in Germany in 2008/2009. Significant effects of the genotype and the location on all traits were found. Heritability was high for secondary dormancy (0.97) and moderate for germination rate (0.70) and SL (0.71). Results indicate that a selection for low secondary dormancy would be effective.  相似文献   

15.
Influence of Varying N-Fertilization Rates on α-Amylase Activity, Primary Dormancy and Resistance to Pre-Harvest Sprouting in Wheat ( Triticum aestivum L.), Rye ( Secale cereale L.) and Triticale (X Triticosecale Wittmack)
Pre-harvest sprouting, induced by unfavourable ecological conditions, can affect the grain growers success considerably. Positive correlations are reported between resistance to pre-harvest sprouting and primary dormancy. Genotypes with a short dormancy period have a high pre-harvest sprouting risk. In the case of a premature germination of caryopses in the head of grain a hydrolysis of intact starch granules caused by the endoenzyme α-amylase takes place in the endosperm.
Negative correlations between falling number and protein content are reported, however, it is unknown, if a varying N-application influences pre-harvest sprouting rates, dormancy periods and amylase activity. For this reason, both greenhouse and field trials were conducted with different N-fertilization rates and (additional in the greenhouse) a rain simulation treatment.
High amounts of α-amylase a few days post anthesis are opposed to small enzyme activities in mature kernels. Stratificating temperatures and germination inducing precipitations at the same time are inducing pre-harvest sprouting and a high α-amylase activity especially in rye and triticale. It seems as if N-deficiency reduces the possibility of pre-harvest sprouting, on the other hand high N-rates increase the enzymes' activity and promote germination processes in the kernel. Effects of N-fertilization on dormancy are not known.
In the discussion of reasons for an increase of α-amylase activity in sprouted grain caryopses, changes in the relation of the phytohormones gibberellic acid (promoter of enzyme activities) and abscisine acid are mainly presumed.  相似文献   

16.
A set of 75 recombinant inbred lines (RILs) of the ITMI mapping population was grown under field conditions in Gatersleben. The lines were evaluated for the domestication traits pre-harvest sprouting and dormancy (germinability). Main QTLs could be localized for pre-harvest sprouting on chromosome 4AL and dormancy on chromosome 3AL. In addition, 85 Triticum aestivum cv. “Chinese Spring”-Aegilops tauschii introgression lines grown under greenhouse conditions were researched. No QTL could be found for pre-harvest sprouting but a major QTL could be detected for dormancy on chromosome 6DL.  相似文献   

17.
陈光尧  王国槐  罗峰  聂明建 《作物学报》2007,33(8):1324-1328
以甘蓝型油菜品系832、780、1-1、1-13、8-6为材料,进行了田间带壳种子发芽调查、室内模拟降雨带壳种子发芽试验、种子发芽试验、不同浓度ABA处理的种子发芽试验,并利用HPLC测定了鲜果壳和种子的吲哚乙酸(IAA)、细胞分裂素(CK)和脱落酸(ABA)的含量。结果表明,各供试甘蓝型油菜品系带壳种子发芽率存在极显著差异,而不带壳种子的发芽率在第5 天以后没有显著差异。油菜成熟角果的果壳ABA含量与带壳种子发芽存在显著负相关(r=-0.8941),带壳种子发芽主要受果壳所含ABA的抑制;外源ABA能明显抑制种子发芽。  相似文献   

18.
Summary Seed dormancy in wheat (Triticum aestivum L. em Thell) is important for minimizing pre-harvest sprouting. To facilitate breeding cultivars that tolerate pre-harvest sprouting conditions, we assessed mode and magnitude of variation of seed dormancy among genotypes and investigated involvement of endogenous water-soluble inhibitor(s) in seed germination. Embryo bio-assays established that water-soluble inhibitor was ubiquitous among the wheat cultivars studied and did not diminish in quantity during after-ripening. Germination response of embryos was decreased by endogenous inhibitor, but the effect markedly declined as embryos aged at room temperature. Variation in dormancy among cultivars was primarily caused by differential response of their embryos to endogenous inhibitor. Gibberellic acid counteracted the initial inhibitory effect of endogenous inhibitor on germination but not the subsequent inhibitory effect on seedling growth. We concluded that pre-harvest sprouting resistance involves multiple factors, particularly embryo receptivity to endogenous inhibitor, and that variation in inhibitor quantity is not solely responsible for genotypic differences in susceptibility to pre-harvest sprouting. The possibility of additional approaches to breeding for pre-harvest sprouting resistance is indicated.Contribution no. 81-389-j, Department of Agronomy, Kansas State University, Manhattan, KS 66506, U.S.A.  相似文献   

19.
Pre-harvest sprouting of wheat grain can cause economic losses especially in cultivars with low levels of seed dormancy. The aim of this study was to determine genotype differences in embryo sensitivity to germination in response to exogenous (+/–) cis-trans ABA treatments at different concentrations. Six white and four red seed-colored bread wheat genotypes that differed in dormancy were grown in a field near Swift Current, Saskatchewan in 2000 as a randomized complete block design with four replicates. The seed samples from this experiment were germinated in a controlled environment at 20 °C without light. The exogenous ABA treatments were 0 μM – whole seed (control), 0 μM-embryos, 25 μM – embryos and 50 μM – embryos. The ABA experiment was a factorial design with four randomized complete blocks with four ABA treatments in all combinations with the ten genotypes. A weighted (by day) germination index (WGI) was calculated for each genotype in each ABA treatment. Genotypes differed in response to ABA. The genotypes, ABA concentration and genotype by ABA concentration interaction effects were significant (p ≤ 0.05). Excised embryos showed significantly decreased dormancy in most of the experimental genotypes. The addition of exogenous ABA enhanced embryo dormancy of most genotypes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
P. Hucl 《Plant Breeding》1995,114(3):199-204
The development of sprouting-resistant spring-wheat ( Triticum aestivum L.) cultivars is a major breeding objective in many wheat-producing regions. Sprouting resistance is thought to be associated with delayed maturity. The primary objective of this study was to measure the reciprocal effects of selection for sprouting resistance and maturity. Two experiments were conducted over a 3–4-year period in Saskatoon, Canada. In the first experiment, two populations of hard red spring wheat were subjected to divergent selection (k = 10%) for maturity. In the second experiment, six populations derived from crosses between two sprouting-resistant, late-maturing, white-grained cultivars ('AUS1293' and 'AUS1408') and three early maturing, red–grained cultivars ('Park', 'PT516' and 'Roblin'), were subjected to divergent selection (k = 10%) for sprouting resistance. Selection for earliness reduced sprouting resistance in one population but had no effect in the second. For both populations, earlier maturity was associated with higher test weight but lower grain yield. In the second experiment, selection for increased sprouting resistance was effective, with realized heritabilities averaging 0.74. Increased sprouting resistance was associated with a slight delay (1–2.5 days) in time to spike emergence in four out of six populations, but had little effect on time to maturity in most populations. There was a trend towards redder grain in the sprouting-resistant selections. The recovery of sprouting-resistant, early maturing segregants was relatively low, averaging less than 10% over the six populations. In conclusion, selection for increased sprouting resistance can result in delayed maturity, but the magnitude of that delay will vary among populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号