首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用大蒜茎叶为原料,经异丙醇、氢氧化钠和草酸处理,制备出改性吸附剂并用于吸附Pb(Ⅱ)。考察了溶液初始pH、吸附平衡时间、溶液初始浓度、固液比等因素对金属离子吸附平衡的影响。结果表明,改性剂草酸最佳浓度为0.9 mol/L,最佳的制备温度是80℃。改性后大蒜茎叶吸附剂对Pb~(2+)的吸附最佳条件是pH 6,在120 min内建立了反应平衡,对Pb~(2+)的最大吸附量是122.25 mg/g,与未改性的大蒜茎叶相比,吸附量增加了56%。  相似文献   

2.
以木质纤维素(LC)为原料,利用巯基乙酸改性LC得到巯基木质纤维素(SLC),通过溶液插层复合法再与蒙脱土(MT)反应制备得到了巯基改性的木质纤维素/蒙脱土纳米复合吸附材料(SLM)。研究了SLM对水体中Pb(Ⅱ)的吸附过程,探讨各吸附因素对SLM吸附效果的影响。分析了吸附动力学和吸附等温特性,并采用FTIR和SEM/EDS表征对吸附机理进行研究。结果表明,SLM对Pb(Ⅱ)有良好的去除效果,SLM对Pb(Ⅱ)离子的最佳吸附条件为SLM用量0. 050 0 g,Pb(Ⅱ)起始浓度3. 52 g/L,pH4. 75,温度45℃,时间120 min,最大平衡吸附量173. 81 mg/g。SLM对Pb(Ⅱ)的吸附行为符合准二级动力学方程和Langmuir等温模型。FTIR和SEM/EDS分析显示,Pb(Ⅱ)和SLM表面的活性官能团进行了单分子层的化学吸附。  相似文献   

3.
对柚子皮吸附去除水中Pb(Ⅱ)的模拟试验研究结果表明,pH、吸附时间、柚皮粉用量和Pb(Ⅱ)初始浓度、温度等因素对柚皮粉吸附水中Pb(Ⅱ)有显著影响.适宜的吸附条件为:pH 5.3~6.0,吸附时间1.5 h,柚皮粉用量8 g/L,Pb(Ⅱ)初始浓度50 mg/L,温度30℃.在该条件下,Pb(Ⅱ)的去除率可达到90%以上.柚皮粉对水中Pb(Ⅱ)的吸附符合动力学二级反应,等温吸附规律可用Freundlich、Langmuir和Temkin模式较好地描述.  相似文献   

4.
以南疆农业废弃物棉花秸秆为原料,采用限氧控温裂解法制备不同温度(200、400和600℃)下的棉花秸秆生物质炭(CSBC200、CSBC400和CSBC600),研究棉花秸秆生物质炭对重金属Pb(Ⅱ)的吸附性能及影响因素,探讨pH、温度、初始浓度和吸附剂投加量对棉花秸秆生物炭吸附Pb(Ⅱ)的影响。研究结果表明:随着热解温度的升高生物炭的pH、比表面积及芳香性增强;不同热解温度制备的棉花秸秆生物炭对Pb(Ⅱ)的快速吸附过程发生在2 h内,吸附在10 h以后逐渐达到平衡状态,准二级动力学吸附模型能较好地描述棉花秸秆生物炭对Pb(Ⅱ)的动力学吸附过程;不同热解温度制备的棉花秸秆生物炭对Pb(Ⅱ)的吸附能力不同CSBC600 CSBC400 CSBC200,且CSBC600远高于其他;CSBC400和CSBC600的吸附过程更符合Freundlich模型,吸附体系既有物理吸附又有化学吸附;棉花秸秆生物炭对Pb(Ⅱ)的吸附最佳pH为5. 00,其饱和吸附量随着体系温度的升高而增加,吸附是自发进行的吸热过程,溶液体系温度升高更有利于吸附的进行。  相似文献   

5.
以龙眼(Dimocarpus longan Lour.)壳为原料,硝酸为改性剂,制备硝酸改性龙眼壳活性炭(LCN),并吸附水溶液中的Pb(Ⅱ),研究了pH、吸附温度、Pb(Ⅱ)质量浓度、吸附时间对Pb(Ⅱ)吸附量的影响。结果表明,硝酸改性能显著提高龙眼壳活性炭对Pb(Ⅱ)的吸附能力,当溶液pH 5、吸附温度298K、Pb(Ⅱ)质量浓度100mg/L、吸附时间40min时,LCN对Pb(Ⅱ)的吸附量为192.72mg/g。准二级动力学模型更符合LCN对Pb(Ⅱ)的吸附过程。与Freundlich等温吸附方程相比,Langmuir等温吸附方程更符合LCN对Pb(Ⅱ)的吸附行为,说明LCN对Pb(Ⅱ)的吸附是以单分子层吸附为主。  相似文献   

6.
以木屑为原料、磷酸为活化剂、硼酸为催化剂制备生物活性炭,并对所制备的木屑活性炭进行吸附重金属离子Pb2+和Cu2+的研究。结果表明,生产活性炭的最佳工艺条件为磷屑比1∶1、硼酸添加量3%、活化温度400℃、活化时间60 min,此时亚甲基蓝吸附值为227.6 mg/g。吸附试验结果表明,接触时间为90 min时即可达到吸附平衡。吸附动力学数据能很好地与准二级动力学模型拟合(R20.999)。而与Langmuir模型相比,等温吸附过程与Friendlich模型拟合得更好,木屑活性炭对Pb2+和Cu2+的理论最大吸附量分别为9 497、14 225 mg/kg。  相似文献   

7.
利用Na OH浸泡预处理、Na Cl O溶液氧化改性板蓝根药渣对含铅废水的处理进行了研究。考察了吸附剂投加量、初始Pb2+浓度、p H、吸附时间及温度对改性板蓝根药渣吸附Pb2+的影响。结果表明,对50 m L50 mg/L的含铅废水,在投入0.15 g改性板蓝根时,吸附率达到最大(92.1%),吸附容量达到最高(15.25mg/g)。随着Pb2+初始浓度的增大,吸附容量逐渐增大,初始浓度增加到50 mg/L时达到平衡。p H对Pb2+的去除有重要影响,最佳p H是6,去除率达到92.7%。当吸附时间为3 h时,吸附过程达到平衡。改性板蓝根药渣对铅的吸附率在30℃时最高,为92.3%。Langmuir模型对改性板蓝根药渣吸附铅离子有更好的拟合效果,表明板蓝根药渣对Pb2+的吸附属于单层吸附,最大吸附量可达15.8 mg/g。吸附过程可以用准二级动力学模型描述。  相似文献   

8.
【目的】制备铁矿渣磁性纳米颗粒,研究其对Pb(Ⅱ)和Cd(Ⅱ)的吸附性能,促进富含铁的工业固体废弃物的资源化利用。【方法】以铁矿尾矿渣为原料,通过化学方法制备改性磁铁纳米颗粒3NH_2-SiO_2@Fe_3O_4,对其进行表征,以批处理法探讨了不同pH、Cd(Ⅱ)和Pb(Ⅱ)平衡质量浓度和吸附时间下3NH_2-SiO_2@Fe_3O_4对水体中Cd(Ⅱ)和Pb(Ⅱ)的吸附潜力,并用X射线光电子能谱分析技术对吸附Pb(Ⅱ)和Cd(Ⅱ)前后3NH_2-SiO_2@Fe_3O_4的结构进行分析。【结果】成功制备出了化学稳定性良好、粒径为73~160nm的磁性颗粒3NH_2-SiO_2@Fe_3O_4,磁化强度23.1emu/g,颗粒表面富含-NH_2官能团。随体系pH以及Pb(Ⅱ)和Cd(Ⅱ)平衡质量浓度的升高,3NH_2-SiO_2@Fe_3O_4对Pb(Ⅱ)和Cd(Ⅱ)的吸附量总体呈先迅速增加之后趋于平衡。在0~60min时,随着吸附时间的延长,3NH_2-SiO_2@Fe_3O_4对Pb(Ⅱ)和Cd(Ⅱ)吸附量迅速增加,120min后达到吸附平衡,准二级动力学模型能较好地拟合这一过程。Langmuir吸附等温模型能较好地拟合3NH_2-SiO_2@Fe_3O_4对Pb(Ⅱ)和Cd(Ⅱ)的吸附过程,3NH_2-SiO_2@Fe_3O_4对Pb(Ⅱ)和Cd(Ⅱ)的最大吸附量分别为158.86和88.93 mg/g。3NH_2-SiO_2@Fe_3O_4对Pb(Ⅱ)和Cd(Ⅱ)的吸附机制为不饱和配合吸附。【结论】以铁矿渣等含铁的工业固体废弃物为原料,成功制备出了对Pb(Ⅱ)和Cd(Ⅱ)具有较好吸附能力的磁性纳米颗粒3NH_2-SiO_2@Fe_3O_4。  相似文献   

9.
利用驯化获得的铁锰氧化混合细菌制备生物铁锰氧化物(BFMO),采用比表面积测定仪(BET)、扫描电镜(SEM-EDS)和傅里叶红外变换光谱(FT-IR)对所生成的BFMO进行表征,通过考察投加量和pH值对Mn(Ⅱ)吸附性能的影响,探究了BFMO对Mn(Ⅱ)的吸附机理。结果表明:BFMO具有较大的比表面积(79.22 m~2/g),孔体积为0.15 cm~3/g,表面含有许多含氧官能团,有利于Mn(Ⅱ)的吸附。SEM-EDS进一步表明生物铁锰氧化物中既含有铁锰氧化物,也有微生物菌体生成的细胞类物质。BFMO对Mn(Ⅱ)的去除效果较好,在pH值为7.0、投加量为2 g/L、固液比为1 g∶500 mL时,吸附量为16.43 mg/g,吸附过程符合准二级动力学模型和Freundlich吸附等温模型,说明吸附过程主要由化学反应控制,属于多层吸附。  相似文献   

10.
为了解决工业废水铅Pb(Ⅱ)污染问题,以海藻酸钠和大豆蛋白为原料,制备了具有多孔结构的大豆蛋白基多孔凝胶球,并用于对模拟废水Pb(Ⅱ)的去除研究。利用扫描电子显微镜(SEM)、比表面积及孔隙分析仪、Zeta电位仪和X射线光电子能谱(XPS)对多孔凝胶球的形貌、多孔结构、表面电荷和元素组成进行了表征,并探讨了溶液pH、吸附时间、吸附剂用量、铅离子初始浓度等因素对大豆蛋白基多孔凝胶球吸附Pb(Ⅱ)的吸附容量和脱除效率的影响。结果表明,在pH>2.9的条件下,大豆蛋白基多孔凝胶球表面带负电,能够通过凝胶球内部的多孔通道上的吸附位点有效地吸附带正电的Pb(Ⅱ)离子,最高脱除效率可达99%,能循环使用。通过对吸附数据进行3种动力学模型(准一级动力学、准二级动力学和颗粒内扩散模型)和两种等温模型(Langmuir和Freundlich模型)的拟合分析,发现吸附过程符合准二级动力学模型,且遵循Langmuir单分子层吸附机制,最大吸附容量为264.01 mg·g-1。表明,大豆蛋白基多孔凝胶球能对模拟废水中的Pb(Ⅱ)进行高效吸附。  相似文献   

11.
通过研究四种改性生物质炭吸附重金属离子Pb(Ⅱ)和阳离子型染料亚甲基蓝的动力学效应、等温吸附效应、溶液初始pH效应和共吸附效应,探讨微波辅助加热在生物质炭氧化改性中的作用。结果表明,改性稻壳基生物质炭能够有效吸附Pb(Ⅱ)和亚甲基蓝,吸附容量显著高于初始生物质炭。Langmuir方程和Freundlich方程能很好地拟合改性稻壳基生物质炭吸附Pb(Ⅱ)和亚甲基蓝的等温数据(R20.90)。改性生物质炭吸附Pb(Ⅱ)和亚甲基蓝的动力学研究显示,改性稻壳基生物质炭对Pb(Ⅱ)和亚甲基蓝的吸附主要发生在前2 h内,吸附过程符合伪二级动力学模型。随着溶液中pH的增大,Pb(Ⅱ)的去除率迅速增加,并在pH6时达到最大,亚甲基蓝的去除率在实验pH范围内也随pH缓慢上升,在pH为8~9时达到最大并逐渐趋于平衡。Pb(Ⅱ)和亚甲基蓝的共吸附效应表明,随着摩尔比值[MB/Pb(Ⅱ)]的增大,亚甲基蓝抑制了改性稻壳基生物质炭对Pb(Ⅱ)的吸附。微波加热硝酸氧化改性显著提高600℃热裂解生物质炭对Pb(Ⅱ)的吸附性能和300℃热裂解生物质炭对亚甲基蓝的吸附性能。  相似文献   

12.
提取以羊粪为原料发酵腐熟的有机肥腐殖酸,研究投加量、溶液pH值对其吸附Pb2+的影响,同时运用准一级、准二级和Elovich吸附动力学模型对数据进行拟合,通过Langmuir和Freundlich方程对等温吸附过程进行拟合.结果表明:有机肥腐殖酸对Pb2+的饱和吸附时间为30 min,最佳的投加量为0.3 g,pH值为6,吸附率达93.39%,理论最大吸附量为36.232 mg/g.准二级动力学吸附方程能够更好地描述有机肥腐殖酸对Pb2+的吸附过程,Langmuir模型能更加准确地反映吸附过程;同时,随着温度的升高有机肥腐殖酸对Pb2+的吸附量也随之增加,说明吸附过程以物理吸附为主.  相似文献   

13.
本文研究了理化因素对变形假单胞菌(Pseudomonas plecoglossicida)C-18吸附Cd(Ⅱ)的影响,并通过正交实验确定了最佳吸附条件。结果表明:在吸附剂浓度1.2 g/L、Cd(Ⅱ)初始浓度100 mg/L、pH7.0、温度30℃、转速200 r/min的条件下,吸附12 h,菌株C-18对Cd(Ⅱ)的吸附率和吸附量分别达到88.8%和74 mg/g。在金属离子Zn(Ⅱ)、Pb(Ⅱ)、Cu(Ⅱ)、Ag(Ⅰ)共存的条件下,菌株C-18对Cd(Ⅱ)的吸附效果明显受到影响,4种金属离子对菌株C-18吸附Cd(Ⅱ)的影响顺序为Cu(Ⅱ)Zn(Ⅱ)Pb(Ⅱ)Ag(Ⅰ)。  相似文献   

14.
通过溶液插层复合法以木质纤维素和蒙脱土为原料,成功的制备了新型木质纤维素基纳米复合吸附材料(LCMT)。研究了LCMT去除水体中Mn~(2+)时的吸附剂用量、Mn~(2+)初始浓度、pH值、温度和时间对吸附效果的影响。结果表明,在0.84 g/L的Mn~(2+)水溶液中,温度为70℃,溶液pH值3.80,时间为40 min,吸附剂LCMT用量为0.100 0 g时,LCMT可达到最大吸附量55.23 mg/g。吸附动力学曲线可用准二级动力学速率方程进行拟合,Langmuir等温线可以很好的拟合吸附平衡数据。FTIR和SEM/EDS分析结果表明,LCMT表面富含有大量的活性功能基团,LCMT对Mn~(2+)的吸附过程主要是单分子层的表面化学吸附。  相似文献   

15.
通过改变投加量、pH、Cu(Ⅱ)浓度、吸附时长和温度等因素,研究灵芝菌糠对水中重金属Cu(Ⅱ)的吸附性能。结果表明,灵芝菌糠对水中重金属Cu(Ⅱ)具有较好的吸附性能,具有用于实际处理含Cu(Ⅱ)废水的应用前景。灵芝菌糠对Cu(Ⅱ)吸附的最佳条件是投加量30 g/L、pH=6、吸附时长90 min、温度35℃。吸附过程较符合Langmuir等温吸附模型。  相似文献   

16.
采用木质纤维素与蒙脱土经插层复合反应,成功的合成了一种新型吸附剂木质纤维素/蒙脱土纳米复合材料(LNC/MMT),研究了其对水中Cd(Ⅱ)的吸附行为以及影响吸附效果的重要因素,利用X射线衍射(XRD)和扫描电镜(SEM)分析方法对纳米复合材料的结构进行表征,通过动力学、热力学模型拟合探讨其吸附机理。结果表明,木质纤维素/蒙脱土纳米复合材料对水中Cd(Ⅱ)具有很好的吸附效果,在Cd(Ⅱ)溶液初始浓度0.005 mol/L、p H值5.6、吸附温度55℃、吸附时间80 min时,吸附容量达到最大值118.45 mg/g。吸附动力学可以用准二级动力学方程描述;等温吸附模型符合Langmuir方程,木质纤维素/蒙脱土吸附Cd(Ⅱ)主要是单分子层化学吸附。  相似文献   

17.
以碱木质素、谷氨酸钠及甲醛为原料,依据Mannich反应制备谷氨酸-木质素吸附剂(GA-L).采用FT-IR和凯氏定氮表征其化学结构,并分析了吸附时间、吸附剂用量、pH值及反应温度对Pb2+吸附性能的影响.研究结果表明,谷氨酸已接枝到木质素上,产物氮质量分数为2.62%;GA-L在3h达到饱和状态,最佳吸附剂用量为0.2g/L;对酸性介质中的Pb2+具有良好的吸附性能,吸附容量随初始重金属离子质量浓度和温度的增加而增大;引入的胺基和羧基明显提高了木质素的络合能力,GA-L对Pb2+的吸附容量可达87.28mg/g,与未改性木质素(35.07mg/g)相比提高了148.87%.25℃时初始Pb2+质量浓度在20~200mg/L范围内,吸附规律符合Langmuir平衡模型,吸附机理以单分子层化学吸附为主.  相似文献   

18.
[目的]制备铅离子印迹和非印迹磁性材料,研究两种材料对Pb(Ⅱ)的吸附去除行为,考察两种材料对Pb(Ⅱ)的吸附选择性,探索其脱附和循环利用性.[方法]采用透射电镜、红外光谱、X射线衍射光谱和能量色散谱等方法对两种材料的形貌和结构进行表征;采用静态吸附法,以原子吸收为检测手段,探讨了pH值、反应时间及Pb(Ⅱ)初始浓度等因素对Pb(Ⅱ)吸附能力的影响;采用Langmuir等温吸附模型和Ho准二级动力学方程对其进行热力学和动力学模拟研究;以Cd(Ⅱ)为竞争离子,研究两种材料对Pb(Ⅱ)吸附选择性;以硝酸为脱附试剂,考察其脱附和循环利用性.[结果]1)与Fe3O4 10 nm的粒径相比,铅离子印迹磁性材料粒径增至80~90 nm;两种材料红外光谱图中557 cm-1处出现强吸收峰,证实Fe-O键存在,2 940 cm-1和1 084 cm-1处的吸收峰证实C-H和Si-O键存在;X射线衍射光谱图显示,它们都具有Fe3O4晶型及SiO2壳层;能量色散谱结果显示,它们主要构成元素为C、O、Si、S和Fe,说明Fe3O4磁核已被SiO2包覆,且巯基已成功键合至两种材料的表面.2)在低酸度时Pb(Ⅱ)基本不被两种材料吸附;当pH值从3增至7时,吸附率不断增大并达到最大,且非印迹材料对Pb(Ⅱ)的吸附率低于印迹材料对Pb(Ⅱ)的吸附率.3)铅印迹磁性材料对Pb(Ⅱ)的吸附量随时间的增加而升高,最后达到平衡吸附.4)随着溶液中Pb(Ⅱ)初始浓度的增加,铅印迹磁性材料对Pb(Ⅱ)的吸附量先是急剧上升,然后达到饱和吸附.5)铅印迹磁性材料对Pb(Ⅱ)的吸附动力学和热力学分别符合准二级吸附模型和Langmuir等温吸附模型.6)铅印迹磁性材料对Pb(Ⅱ)/Cd(Ⅱ)选择吸附系数K为29.75,对Pb(Ⅱ)/Cd(Ⅱ)的相对选择系数是非印迹磁性材料的5.86倍,说明该材料对Pb(Ⅱ)具有良好的吸附选择性.7)研究了HNO3对保留在铅印迹磁性材料上Pb(Ⅱ)的脱附影响,结果显示0.5 mol·L-1 HNO3可定量脱附Pb(Ⅱ),且材料可重复使用5次而脱附率无变化.[结论]在pH 7、反应时间为60 min及Pb(Ⅱ)初始质量浓度为10 mg·L-1时铅印迹磁性材料对Pb(Ⅱ)的最大吸附容量可达38 mg·g-1,可有效去除水中Pb(Ⅱ);该材料对Pb(Ⅱ)具有一定的选择性且具有很好的再生性.  相似文献   

19.
选用柠檬酸对油菜秸秆进行化学修饰,制备了一种新型吸附剂,研究了该吸附剂对水溶液中Pb2+的吸附行为,并对吸附的最佳条件(吸附剂投加量、Pb2+溶液浓度、pH值、吸附时间、温度)进行了探讨在吸附剂投加量为1.2g/L,Pb2+溶液浓度为200mg/L、pH值为5.3、吸附时间为4h的条件下,柠檬酸修饰油菜秸秆对Pb2+的吸附效率可达98%;温度对于修饰后秸秆对去除Pb2+无明显影响。吸附动力学研究表明,该吸附行为符合准二级动力学方程;吸附等温模型拟合结果显示,以单分子层吸附的Lang-miur模型能更好地描  相似文献   

20.
为筛选钝化效果优良且持久的商品有机肥,通过化学分析、吸附/解吸分析、热重分析(TG-DTG)和傅里叶红外(FTIR)分析等方法,对不同腐解阶段(0、6、12个月)的羊粪(Sheep manure,SM)和海藻(Seaweed,SW)商品有机肥的基本性质进行分析,并深入研究了有机肥对水溶液体系中Pb(Ⅱ)的吸附机理。结果表明:与羊粪有机肥相比,海藻有机肥的有机碳含量和pH值较高,阳离子交换量、氧碳比和盐基饱和度较低;随着腐解过程的进行,海藻有机肥的氧碳比和阳离子交换量显著增加,官能团含量减少,而羊粪有机肥官能团含量增多,两种有机肥易分解的化合物(如纤维素、半纤维素、脂肪族物质等)随着腐解的进行而减少。未腐解时羊粪有机肥的Pb(Ⅱ)最大吸附量(qm)为198.7 mg·g~(-1),随着腐解过程的进行,羊粪有机肥qm降低,在腐解12个月时降低至61.6mg·g~(-1),而海藻有机肥qm从118.7 mg·g~(-1)开始逐渐增加,最终达到147.1 mg·g~(-1)。准二级动力学能更好地描述海藻、羊粪有机肥对Pb(Ⅱ)的动力学吸附过程。海藻有机肥和羊粪有机肥对Pb(Ⅱ)的吸附是以化学吸附为主的单层吸附,符合Langmuir模型。有机肥对Pb(Ⅱ)的化学吸附主要是以离子交换吸附(41.4%~47.1%)和氢键吸附(36.5%~47.3%)为主。相关分析发现,有机肥吸附Pb(Ⅱ)的qm与阳离子交换量、盐基饱和度以及氧碳比具有相关性,提高有机肥表面可交换活性位点以及含氧官能团数量可以增强有机肥的Pb(Ⅱ)吸附能力。研究表明,海藻有机肥对Pb(Ⅱ)的吸附容量高且持久性好,适合作为农田Pb(Ⅱ)污染稳定修复商品有机肥。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号