首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary To investigate genetic regulation of blossom-end scar size in tomato (Lycopersicon esculentum Mill.), a half diallel cross including 10 parents was grown under warm fall conditions in Bradenton, Florida, and cool winter conditions in Hazeva, Israel. The parents were a random sample representing all available fresh market tomato breeding lines commercially grown under subtropical field conditions. A randomized, complete block design with three replications was used and the blossom-end scar index (BSI), a measure for scar size relative to truit size, was measured on 40 and 25 fruits per plot in Bradenton and Hazeva, respectively. Analysis of variance for BSI indicated highly significant (P=0.001) variation among parents and among F1's in both environments. In Bradenton and Hazeva both, the difference in average BSI between parents and F1's was not significant suggesting insignificant overall dominance effects. Further partitioning of variation within F1's indicated that general combining ability (GCA) effects were highly significant in both environments, whereas specific combining ability (SCA) effects were significant at P=0.001 in Bradenton, but only at P=0.05 in Hazeva. Estimated variance components for GCA and SCA effects indicated that BSI inherited mainly additively in both environments. Analysis combined over environments indicated that variation in sensitivity to environments was 5-fold higher among parents than among F1's. The genotype x environment variance component was not large enough to justify testing over more than one environment for population improvement purposes and early testing of hybrids. Evaluation of inbred lines, however, may have to be done in more than one environment, especially for Suncoast-derived material. Under temperatures in Hazeva, genotype differences were more pronounced and heritabilities higher than under high temperatures in Bradenton. The estimated overall single plot heritability was 0.63. Breeding lines with a pointed blossom-end morphology (e.g. NC 8276 and NC 140 in this study) generally had small blossom-end scars, and intercrossing of these lines or crossing with non-pointed, moderately smooth breeding lines generally resulted in smooth hybrids.  相似文献   

2.
Summary One main reason for the slow improvement of durum wheat in water-limited environments is the lack of clear understanding of the interrelationships among yield components and their compensatory changes under low and erratic moisture availability. Five cultivars, varying in many physiological attributes, were tested under different drought-stress conditions in field and greenhouse experiments. The cause-effect relationships of duration of vegetative period, duration of grain-filling period, number of spikes per m2, kernels per spike, kernel weight and grain yield per m2 were assessed. Furthermore, yield stability was evaluated. Yield reduction was largest under mid-season stress (58%), followed by terminal stress (30%) and early stress (22%). Cultivar Po was very sensitive to terminal stress.Path-coefficient analysis revealed a complex pattern of relationships among the six variables. An increase in vegetative period reduced the grain-filling period under all conditions. It increased number of kernels per spike under non-stress conditions. The direct effect of spikes per m2 on grain yield was significantly positive. However, more spikes per m2 resulted in fewer kernels per spike and a low kernel weight and, as a result, a negative relationship with grain yield under early stress. Grain-filling period had a strong influence on grain yield via kernel weight. Kernels per spike had the largest direct effect on grain yield. However, it was negatively correlated with kernel weight, especially under terminal stress. Grain yield heavily depended on kernels per spike under early stress and grain-filling period and kernels per spike under terminal stress.Variation in drought susceptibility index among cultivars was significant under early and terminal stress conditions, but not under mid-stress conditions. Yield potential and stability were not correlated for the different drought-stress conditions.Longer grain-filling period, increased number of kernels per spike and limited spike number per m2 can be used as selection criteria for sustainable yield in water-limited environments.  相似文献   

3.
Summary The relationship between the yield potential of crosses for several generations and the yield of either the parental varieties or early segregating generations was studied. It was found that if plants were grown at crop densities then a high degree of prediction of cross potential was possible independent of year or generation. Prediction was much less efficient however if either the parents or the early generations were grown as spaced plants. It is concluded that at crop densities an accurate assessment of parental yields is sufficient to determine which crosses are most likely to have a high yield potential and that if any cross proves to be low yielding in early generations it may safely be rejected without fear of losing potentially high yielding crosses. Reasons for the failure of predictions, as reported in the literature, are discussed.  相似文献   

4.
In the lowland regions of Latin America, a large proportion of beans are sown at the beginning of a dry season where a guaranteed terminal (end-of-season) drought will reduce yields. This study was undertaken to identify lines within two black bean recombinant inbred line (RIL) populations with resistance to terminal drought. The two RIL populations were developed from crosses between a drought resistant line, B98311 from Michigan, with TLP 19 and VAX 5, two lines from CIAT with improved disease resistance and adaptation to growing conditions in Latin America. The RIL populations were evaluated in experiments conducted in Zamorano, Honduras and Veracruz, Mexico under drought stress and well-watered (non-stress) treatments. Yields were reduced in each experiment by drought and the fungal pathogen, Macrophomina phaseolina. Drought stress, disease pressure and low yields contributed to high coefficients of variation (CV), which made it difficult to select superior lines. Selection was based on rank of geometric mean (GM) yield calculated from the yield in the stress and non-stress treatments. One RIL, L88-63 ranked first in GM yield at both locations. Subsequent testing in Honduras and Michigan confirmed the high yield potential and broad adaptation of L88-63. Breeding beans for drought resistance in lowland tropical environments should also include breeding for resistance to M. phaseolina. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Heat tolerance for yield and its components in different wheat cultivars   总被引:1,自引:0,他引:1  
L. Shpiler  A. Blum 《Euphytica》1990,51(3):257-263
Summary Twenty one diverse, standard and experimental cultivars of common spring wheat (Triticum aestivum L.) were tested for the effect of heat stress on phenology, yield and its components by growing the materials for 2 years under full irrigation during the hot summer (offseason), and the cool winter (normal) conditions. Heat tolerance was estimated for each variable by the heat susceptibility index (S) which scales the reduction in cultivar performance from cool to hot conditions relative to the respective mean reduction over all cultivars.Genotypes differed significantly in S for yield and its components. The ranking of cultivars in S over the 2 years was consistent for yield, kernels per spike and kernel weight, but not for spike number. Of the three yield components, the greatest genotypic variation in S was expressed for kernels per spike. However, S for yield could not be simply attributed to S in a unique component across all cultivars. On the other hand, a general linear model regression of summer yield on its components revealed that the most important yield component affecting yield variation among cultivars under heat stress was kernel number per spike. Kernel number per spike was positively associated across cultivars with longer duration and greater stabilty of thermal time requirement from emergence to double ridge. It is therefore concluded that kernel number per spike under heat stress is a reasonable estimate of heat tolerance in yield of wheat and that this tolerance is operative already during the first 2 to 3 weeks of growth.  相似文献   

6.
Phenotypic and genetic relationships between yield components in maize   总被引:4,自引:0,他引:4  
Summary Physiological components of kernel development — LAG period, effective filling period duration (EFPD) and grain filling rate (GFR) — ear moisture release (U), ear size (row number and kernels per row), days from emergence to silking and number of leaves, were examinated on 45 F1 hybrids (10×10 diallel cross) in order to study their genetic relationships with yield. Combining ability analysis revealed that all trait variability derived mainly from g.c.a. effects. LAG period and EFPD were the traits most affected by genotype-environment interaction.Covariation analysis (path method) based on mean phenotypic values and on g.c.a. effects yielded similar information. It is shown that GFR and EFPD are both related to plant yield, but GFR made the most important contribution. On the contrary, a significant relationship between yield and LAG was not detected. Ear size components were also positively related to yield and had negative effects on GFR. These results indicate that, for our material, the dry matter accumulation rate is the main limiting factor of yield.Considering s.c.a. effects, kernel number per row made the most important contribution.  相似文献   

7.
Summary To satisfy farmer and consumer preferences, breeding efforts to increase yield potential in common bean must take into account the interrelated effects of growth habit, seed size, maturity, and gene pool on yield expression in segregating populations. To examine the relationships among these traits, a genetic study was conducted to determine the effect of growth habit on yield and seed size in crosses among five bean lines from diverse gene pools. Two parental bean lines had determinate, type I growth habits and large seed size typical of the Neuva Granada-Andean gene pool. Two other lines were tropical Mesoamerican types with type II growth habits and small seed size; and the fifth line, G13625, a landrace of the Jalisco gene pool from the Mexican highlands, had a type IV climbing growth habit and medium seed size. Individual F2 plants from each cross and parental lines were evaluated for growth habit and yield component traits under high input field conditions. The following season, the evaluations were repeated on random F3 plants. Of the five parental lines, only G13625 showed significant GCA effects for yield in both the F2 and F3 generations. Improved yielding ability of G13625 progeny was associated with an increased expression of climbing bean growth habit traits: guide length, climbing ability, node number on main stem, and plant height. Crosses between Andean x Mesoamerican and Andean x Jalisco genotypes, as well between growth habit type I (Andean x Andean) and between type II (Mesoamerican x Mesoamerican) had very low parent-offspring heritability values for yield. Yield heritability was only significant for crosses between Mesomerican x Jalisco gene pools. An apparent simple genetic control of growth habit modification towards semi-climbing and climbing types is proposed as the major reason for increased yields in these crosses. No genetic linkage between genes controlling growth habit and seed size was detected which might restrict the development of high yielding large-seeded type II lines.  相似文献   

8.
Two experiments were conducted in the Rift Valley, Ethiopia (8°N and 39°E) to determine associations between eight plant traits and seed yield, and to obtain estimates of narrow sense heritability for the traits. Experiment I evaluated seven dry edible bean cultivars/lines at two locations to simulate different soil moisture stress, including, Debre Zeit(non-stress) and Dera (moderate-stress). Experiment II evaluated 25 cultivars/lines in three environments including, Melkassa early planted (non-stress), Melkassa late planted (high-stress), and Dera (moderate-stress). A randomized-complete-block design with three replicates was used in both experiments. Plant traits evaluated were seed yield, pods plant-1, seeds pod-1, 100 seed weight, root dry weight, hypocotyl diameter, plant biomass, plant height and days to flowering. Plant traits that were significantly associated with seed yield were included in a stepwise-regression model to determine which trait or combination of traits provided the best model to estimate seed yield in each environment. An analysis of variance was conducted to test main effects and interactions between plant traits and environments. Significant variation among lines occurred for seed yield and all plant traits in both experiments. Strong positive correlations were observed between plant biomass and seed yield in all environments. Seed yield and pods plant-1 were also highly associated in four of the five environments. Stepwise regression models indicated that the combination of pods plant-1 and plant biomass consistently contributed to seed yield prediction, while other traits did not. Because both plant biomass and pods plant-1 had moderate to high narrow sense heritability estimates and low GE interactions, they should be useful as indirect selection criteria to improve and stabilize seed yield in a breeding program. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Yields of large-seeded Andean (A) common bean (Phaseolus vulgaris L.) cultivars of Chile and Nueva Granada races are 40 to 60% lower compared to their Middle American (M) counterparts of small-seeded Mesoamerica and medium-seeded Durango races. Our objective was to use the concept of congruity backcrossing between Andean x Middle American inter-gene pool [AM 11833 = A 483 (A)///// A 686 (M) //// PVA 800A(A)/// ‘Carioca’ (M)// Carioca (M)/ G 19833 (A)] and between races within Andean gene pool [i.e., intra-gene pool Andean, AA 11834 = A483 (A)//// ‘Cardinal’(A) /// ‘Blanco Español’(A) // BlancoEspañol (A) / ‘Taylor’ (A)] to compare selection for seed yield improvement of large-seeded Andean beans. Seven hundred sixty seven F2-derived F3 (F2:3) families were produced for each population. Visual appraisal for total plant performance, combined with seed yield from non-replicated plots was used for selection of 551 families in F2:3, 182 families in F2:4, and 91 families in F2:5 in each population. Eight hundred twenty three F5:6 lines were developed from the 91 F2:5 families in each population. Visual selection, combined with seed yield in non-replicated plots was again used to select 294 lines in F5:6 in each population. Similarly, 44 highest yielding F5:7 lines were selected in AM 11833 and 39 F5:7 lines in AA 11834. Thus, single plant selections were made in the F2 and F5, and plants within each plot were harvested in bulk in F3, F4, F6, and F7. Thirty nine F5:8 lines from AA 11834 and 44 lines from AM 11833, parents, and checks were evaluated at Popayán and Quilichao, Colombia in 1998 and 1999. Selected lines in both populations, on average, out-yielded the mean of their large-seeded Andean parents. Mean yield of the lines selected from AM 11833 was 50% higher than AA 11834 lines. Twelve F5:8 lines out-yielded the highest yielding Andean parents G 19833 and A 483 in AM 11833, whereas only one line yielded significantly higher (p < 0.05) than the highest yielding parent A 483 in AA 11834. However, none of selected lines out-yielded small-seeded Middle American parents used in AM 11833 (A 686 and ‘Carioca’). The mean 100 seed-weight of AA 11834 was 36 g compared to 28 G for AM 11833 F5:8 lines. Selected lines had similar days to maturity as parents in AM 11833, and matured 3 d later in AA11834. Correlation coefficients between yield and 100 seed-weight were negative in both populations. Yield and days to maturity were positively correlated in AA 11834.  相似文献   

10.
The agricultural use of water is higher than 85% in the western USA, resulting in an increasing water deficit in the region; this situation is commonly encountered throughout the world where irrigated and irrigation-assisted production systems are operational. The objective of this study was to examine differences among dry bean (Phaseolus vulgaris L.) landraces and cultivars in terms of water use efficiency (WUE), subsequently identifying those with a high water use efficiency. Six medium-seeded (25–40 g 100 seed wt−1) landraces and cultivars of pinto and red market classes were evaluated in intermittent drought-stressed (DS) and non-stressed (NS) environments at Kimberly, Idaho, USA in 2003 and 2004. Each market class comprised one each of a landrace and old and new cultivars. Mean evapotranspiration (ET) in the NS environment was 384 mm in 2003 and 432 mm in 2004; the respective ET values in the DS environment were 309 and 268 mm. Mean seed yield was higher in the DS (2678 kg ha−1) and NS (3779 kg ha−1) environments in 2004 than in 2003 (688 and 1800 kg ha−1, respectively). Under severe drought stress in 2003, WUE in the pinto bean ranged from 1.5 for the Common Pinto landrace to 4.4 kg ha−1 mm−1 water for cv. Othello. The Common Red Mexican landrace had the highest WUE (3.7), followed by cvs. NW 63 (2.8) and UI 259 (1.4) in the red market class. Under favorable milder climatic conditions in 2004, the mean WUE value was 10 kg ha−1 mm−1 water in the DS environment and 8.7 kg ha−1 mm−1 water in the NS environment. We conclude that dry bean landraces and cultivars with high WUE should be used to reduce dependence on irrigation water and to develop drought-resistant cultivars to maximize yield and WUE.  相似文献   

11.
Winter wheat (Triticum aestivum L.) is seeded in the autumn and harvested the following summer, and therefore, must survive multiple episodes of subfreezing temperatures throughout the winter months. Cellular membrane stability following exposure to subfreezing temperatures contributes to the ability to survive these episodes. This study investigated the inheritance of the ability to tolerate subfreezing temperatures with a seven‐parent diallel cross analysis of cellular membrane integrity as measured by electrolyte leakage after exposure to ?10 or ?14 °C. Significant differences in membrane stability were found among the parent lines. The inheritance of the freezing tolerance as measured by electrolyte leakage was complex and characterized by significant additive, dominant and cytoplasmic effects. General combining ability, indicative of additive genetic effects, were significant at both test temperatures, but accounted for 25.5% of the variance at the ?10° C test temperature, and only 4% of the variance at the ?14 °C test temperature. Specific combining ability, indicative of genetic dominance effects, were significant at both test temperatures, but accounted for only 14.6% of the variance at the ?10 °C test temperature, and 38% of the variance at the ?14 °C test temperature. Reciprocal (cytoplasmic) effects were significant and accounted for about 20% of the variance at both test temperatures. Cytoplasmic effects contributing to greater membrane stability were especially apparent in the cultivar Tiber when crossed to Masami, Lewjain, or Hatton. These results suggest that efforts to improve freezing tolerance are complicated by differing gene action at different test temperatures and also may benefit from identifying specific combinations of nuclear and cytoplasm sources that are most conducive to membrane stability following freezing.  相似文献   

12.
Sweetpotato virus disease (SPVD) is due to the dual infection and synergistic interaction of Sweetpotato feathery mottle potyvirus (SPFMV) and Sweetpotato chlorotic stunt crinivirus(SPCSV), and causes up to 98% yield loss in sweetpotato in East Africa. This study was conducted to determine the inheritance of resistance to SPVD in sweetpotato and to estimate the nature of genetic variance. Ten parental clones varying in reaction to SPVD were crossed in a half diallel mating design to generate 45 full-sib families. The families were graft-inoculated with SPCSV and SPFMV to induce SPVD and evaluated for resistance in a randomized complete block design at two sites in Namulonge, Uganda during 1998–2000. In serological assays for SPFMV and SPCSV,resistance to symptom development and recovery from initial systemic SPVD symptoms, characterised resistant genotypes. Genetic component analysis showed significant effects for both general combining ability (GCA) and specific combining ability (SCA) for resistance to SPVD. GCA to SCA variance component ratios were large (0.51–0.87), hence GCA effects were more important than SCA effects. Resistant parents exhibited high GCA indicating that additive gene effects were predominant in the inheritance of resistance to SPVD and recovery. Narrow-sense heritability (31–41%) and broad-sense heritability (73–98%) were moderate to high, indicating that rapid genetic gains for SPVD resistance could be accomplished by mass selection breeding techniques. Two genotypes, New Kawogo and Sowola, had high negative GCA effects and had several families in specific crosses,which exhibited rapid recovery from SPVD,and are promising parents for enhancement of SPVD resistance and recovery. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
M. I. E. Arabi 《Euphytica》2005,145(1-2):161-170
Barley breeders in Syria attempting to develop barley (Hordeum vulgare L.) cultivars resistant to barley leaf stripe (BLS) disease caused by Pyrenophora graminea Ito & Kuribayashi [anamorph Drechslera graminea (Rabenh. Ex. Schlech. Shoem.)]. Information on the combining ability for BLS resistance in Syria is not available. This study was conducted to evaluate, in 10 genetically diverse barley parents, general combining ability (GCA) and specific combining ability (SCA) effects towards the determination of the genetic basis of disease resistance and to estimate genetic variability for yield components and its modification by BLS. Ten parental genotypes varying in their reactions to BLS were crossed in a half-diallel mating design to generate 45 full-sib families. The families and the parents were inoculated with P. graminea and evaluated for resistance in replicated field tests (three inoculated and three non-inoculated plots). The parents chosen showed wide variations for resistance to BLS. Genetic component analysis showed significant effects for both GCA and SCA for resistance to BLS, suggesting that additive as well as non-additive genetic mechanisms were involved in the expression of resistance in these parents. GCA effects were more important than SCA effects. Resistant parents exhibited high negative GCA indicating that additive gene effects were more predominant, and suggesting their prime suitability for use in barley breeding programs to improve resistance to BLS. Narrow-sense heritability was 58% and broad-sense heritability was 99% indicating that selection for BLS resistance should be effective in these crosses. A high genetic variability for the agronomic traits studied was observed. Yield components decreased significantly in inoculated plants and more pronounced in diseased plants. Significant GCA was observed for all traits. Values for GCA were, in some cases, significantly modified by BLS. This indicates that attention must be paid to the danger of drawing conclusion in quantitative genetics studies dealing with both diseased and healthy plants. Two genotypes, Banteng and Igri, had high negative GCA effects and are promising parents for enhancement of BLS resistance.  相似文献   

14.
R. G. Goldy 《Euphytica》1988,39(1):39-42
Summary Six Vitis rotundifolia Michx. (muscadine) grape genotypes were measured to determine variation and simple correlations between flower and fruit number/cluster, fruit cluster and individual fruit weight, fruit set and total vine yield. Significant variation was found for each trait, except fruit cluster weight. Range in mean values across selections for each trait were: 72 to 202 flowers/cluster; 16 to 26 fruit/cluster; 88.1 to 112.2 g/fruit cluster; 3.4 to 7.2 g/fruit; 11.3 to 23.4% fruit set; and 21.0 to 71.0 kg/vine for yield. Simple correlation values ranged from r=0.05 for flower number to cluster number to r=0.69 for fruit number to cluster weight. No trait was highly correlated to total yield. Therefore, to increase yield in muscadines it appears best to select for total yield and not for components contributing to yield.Paper No. 10968 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7601.  相似文献   

15.
The objective of this study was to evaluate the genetic progress after four cycles of recurrent selection in common bean. The base segregating population was obtained from 10 parents, and derived the S0:1 and S0:2 families that were evaluated. The S0:3 families with higher grain yield and grain color, like the standard carioca were selected, and were intercrossed to generate the population of the following cycle. This process was repeated for four cycles. The best families were evaluated in each cycle by many generations and locations, and the five best lines of each cycle were identified. The 20 lines thus obtained were evaluated in two growing seasons, sown in July and November 2002. The grain yield (kg/ha) and grain type (scale of scores) were evaluated. Genetic progress was confirmed for both traits. The mean annual gain with selection for the grain type was 10.5% and 5.7% for grain yield, with no evidence of variability reduction in the population. These results show that recurrent selection is a good alternative for improving common bean quantitative traits.  相似文献   

16.
Summary Near-isogenic tall (no dwarfing gene), semidwarf (Rht1 or Rht2) and dwarf (Rht1 + Rht2 or Rht3) spring wheat lines were evaluated for yield and yield components under irrigated and rainfed conditions. Under irrigated conditions, the dwarf and the semidwarf lines exhibited a significant yield advantage over the tall lines. Under rainfed conditions, the semidwarf lines outyielded the tall as well as the dwarf lines. Percent yield reduction in response to drought stress was highest with the dwarfs and lowest with the tall lines. Dry matter production of the tall lines and that of the semidwarf lines did not differ significantly and both produced significantly more dry matter than the dwarf lines under irrigated as well as rainfed conditions. Plant height and kernel weight decreased with increasing degree of dwarfness while number of kernels per spikelet, harvest index and days to heading increased under both moisture regimes. The dwarfing genes did not have any significant influence on number of tillers/m2 and spikelets per spike in either moisture regime.  相似文献   

17.
Summary Ten homozygous winter wheat genotypes representing different levels of resistance to Fusarium head blight were crossed in all possible combinations excluding reciprocals. Parents, F1 and F2 were inoculated with one pathogenic strain of Fusarium culmorum. Data for head blight, observed 21 days after first inoculation (OBS-2), and for the area under the disease progress curve, based on observations 14, 21 and 28 days after first inoculation (AUDPC), were analyzed. The contrast between parents and F1 crosses indicated dommance effects of the resistance genes. Diallel analysis according to Griffing's Method 4, Model 1 showed significant general combining ability (GCA) effects for both F1 and F2; specific combining ability effects were not significant. With the exception of one genotype for which general performance for Fusarium resistance was not in agreement with its GCA, the resistance to F. culmorum was uniformly transmitted to all offspring, and the parents can be described in terms of GCA. It is suggested that in the progenies with one of the awned lines as parent, one resistance gene was linked with the gene coding for presence of awns, located on chromosome 4B. A single observation date, taken at the right time, was as effective in assessing resistance as the AUDPC.  相似文献   

18.
L. E. Marsh  D. W. Davis 《Euphytica》1985,34(2):431-439
Summary The effect of short term high temperature exposure on the performance of five Phaseolus species and of long term (continuous) exposure on the performance of P. vulgaris was studied at three growth stages. Phaseolus species subjected to 26.7, 32.2 or 37.3°C for two days showed small differences in the number of pods produced and in visual leaf damage, but large differences in leaf heat killing time, as measured by conductivity. P. coccineus had the shortest heat killing time (20–60 minutes) and P. acutifolius and P. lunatus the longest times (180 and 153 minutes), respectively. The P. vulgaris genotypes were intermediate in killing times to P. acutifolius and P. coccineus. Species response was not consistent with temperature within developmental stage. On average, the number of pods decreased as temperature increased from 32.2 to 37.3°C. Heat killing time and leaf damage also increased with temperature. CO2 exchange rates of plants grown at prolonged high temperatures (30–40°C/20–30°C, day/night) decreased with the age of the plant. Shoot lenght was decreased as high temperature. P. vulgaris genotypes differed on the basis of either short term exposure or of continuous exposure. These results suggest that there may be useful germplasm in Phaseolus for improving heat tolerance.Scientific Journal Series Paper Number 13,8000 of the Minnesota Agricultural Experiment Station, USA.  相似文献   

19.
Summary The utilization of American and European bean cultivars as host differentials for distinction of races of Colletotrichum lindemuthianum has been discussed. The new race occurring at Ebnet. Germany, since 1973 is named kappa. It broke down resistance derived from the Are gene originating from Cornell 49–242. Resistance to this kappa race appeared to be present in some European and Asiatic bean cultivars as well as in some American bean accessions.  相似文献   

20.
Summary Cultivars tolerant to low temperature during the germination and emergence stages and carriers of the grain quality standards demanded by consumers are needed to increase the success of irrigated common bean in Southern Minas Gerais State. To study the genetic mechanisms controlling these traits and assess the possibility of generating the desirable materials, a diallel cross involving ten cultivars including introductions and pure lines from the breeding program of ESAL was carried out. Speed of germination of the F2 generation from the crosses was assessed under laboratory conditions at 12°C. The diallel analysis was carried out using Griffing's method IV (1956) and predictions of the cross potential were made by the methodology developed by Jinks & Pooni (1986). The results indicated that the parents differed in germination speed at low temperatures with Small White, A-488 and Rio Vermelho being the most tolerant and Carioca, ESAL 591 the most sensitive. No effect of the reciprocal crosses was observed either for germination percentage or germination speed. The parents A-488, Small White and Rio Vermelho showed the greatest general combining ability. Additive genetic effects predominated for both traits. Our results suggest that cold tolerance can be bred successfully into commercially acceptable cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号