首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Tigray (Northern Ethiopia), soil moisture has been identified as the most limiting factor in agricultural production; on the other hand, loss of rain water through runoff as well as the induced soil loss has been determined as a critical problem in the region in the last two to three decades. To alleviate the above paradox, the government has mobilized communities and resources for the construction of physical soil and water conservation structures (stone bunds, terraces) in almost all land uses. However, yield improvement was mainly concentrated within the vicinity of the structures and runoff continued to overtop the structures, as no measures for in situ soil conservation were taken. The terwah system, consisting of traditional ploughing followed by making every 1.5–2 m contour furrows, and permanent raised beds with contour furrows at 60–70 cm interval treatments, were considered and evaluated as practices that could increase the efficiency of in situ water utilization and soil conservation. An experiment was started in Gum Selasa, which is one of the drought prone areas in Tigray, whereby runoff volume and sediment load were measured after every rain event. Permanent raised beds with contour furrows at 60–70 cm interval significantly (P < 0.05) reduced runoff volume, runoff coefficient and soil loss as compared to traditional ploughing: 255, 381 and 653 m3 ha−1 runoff was recorded from permanent bed, terwah and traditional ploughing, respectively during the whole cropping season. The above runoff induced 4.7 t ha−1 soil loss from permanent bed, 7.6 t ha−1 from terwah and 19.5 t ha−1 from traditional ploughing. Overall, contour furrows and permanent raised beds can be part of the ongoing intensification process which includes physical soil and water conservation, slope reforestation, irrigation development and agro forestry in crop lands. Moreover, the use of permanent raised beds if combined with crop mulching and crop diversification is an important component for the development of sustainable conservation agriculture practices in the region.  相似文献   

2.
Abstract. When the farmers of the Highlands of Tigray (northern Ethiopia) consider rock fragment cover in their fields to be excessive, they remove some of them. In addition, large amounts of rock fragments of all sizes are removed from fields for building stone bunds. Semi-structured interviews indicate that the farmers are often reluctant to take away the smaller rock fragments (i.e. < 5 cm across) from their fields, since they believe these benefit soil moisture conservation and protect topsoil from erosion. A field experiment was carried out on a Vertic Cambisol (average slope: 0.125 m m–1), 2 km east of Hagere Selam (subhumid climate). Rock fragments were totally, partially or not removed from the 12 runoff plots (5 m × 6 m) before the beginning of the 1999 cropping season, during which a local mixture of wheat varieties ( Triticum spp.) was sown. After harvest, erosion rates were assessed by measuring deposited sediment volume in trenches at the lower side of each subplot, and grain and straw yields were assessed. We found a significant negative relationship between rock fragment cover and soil loss by water erosion. However, the resulting positive relationship between rock fragment cover and grain and straw yield was weak. This might be explained by the fact that the plot did not suffer from drought due to soil and climatic conditions. Detailed analysis showed that cover by medium and large rock fragments (> 2 cm diameter) showed an optimum percentage cover above which crop yields decrease. A recommendation resulting from this study is to rely on the farmers' experience: smaller rock fragments should never be removed from the surface of fields during soil and water conservation works; instead rock fragment rich soil can be used to top the stone bunds.  相似文献   

3.
Vegetation strips (VS) along with conservation tillage, application of organic amendments and weed mulching improve crop yields by reducing run‐off and topsoil erosion. To investigate these issues, an experiment was conducted under rainfed conditions using grass VS for four and a half years (June 2007 to October 2011) at Dehradun, Uttarakhand, in the Indian Himalayan region. VS were incorporated in the experimental plots (Entisols) in a randomized complete block design in permanent 100 × 20 m (2000 m2) plots with a 2% slope to evaluate the effects of vegetation strips on run‐off, soil loss and crop yield. Three treatments were evaluated: (i) without VS with recommended NPK under conventional tillage, (ii) panicum as VS with recommended NPK under conventional tillage and (iii) palmarosa+ that consists of palmarosa as VS along with organic amendments (farmyard manure, vermicompost and poultry manure) and weed mulch under minimum tillage. The results show that soil loss and run‐off were significantly lower (< 0.05) in plots under palmarosa+ than without VS treatment. Mean soil loss of 3.4, 5.2 and 7.1 t/ha was recorded from palmarosa+, panicum and without VS treated plots, respectively. Mean run‐off was 234, 356 and 428 mm from plots under palmarosa+, panicum and without VS, respectively. Maize yield was lower on the plots under palmarosa+ compared with panicum, but significantly higher (< 0.05) than without a strip. The succeeding rainfed wheat yield was significantly greater in plots under palmarosa+ than in the initial years. The wheat yield equivalent was significantly higher in plots under palmarosa+ followed by panicum and without VS. Thus, vegetation strips are recommended for wider adoption to reduce run‐off and soil loss and to increase crop yield. The long‐term goal is to achieve a palmarosa+ system (palmarosa as a vegetation strip along with organic amendments, farmyard manure, vermicompost and poultry manure) and weed mulch under minimum tillage.  相似文献   

4.
We investigated conservation and cycling of N under oat–oat and lupine–oat rotations in disturbed and undisturbed soil, when roots or roots plus aboveground residues were retained. Crop residues were labelled with 15N in Year 1, and differential soil disturbance was imposed after harvest. In Year 2, plant growth, N transfer from residue into the various sinks of the second crop (plant, soil, and residual residues), and changes in microbial activity and numbers were determined. Oat biomass was greater after lupine than after oat due to differences in supply of N from these residues. Buried residues of both crops appeared to decompose faster than when left on the soil surface. Lupine residues decomposed faster than oat residues. Oat biomass was not affected by soil disturbance if grown after lupine but decreased when oat straw was buried in the soil. More residue N was recovered from soil than from the crop. Most 15N was recovered from disturbed soil, which also had greater dehydrogenase activity and more culturable fungi. At the end of the oat–oat rotation, 20 and 5 kg N ha−1 were derived from the roots of the first crop in undisturbed or disturbed soil, respectively. Equivalent values for the lupine–oat rotation were 18 and 44 kg N ha−1. Returning aboveground residues provided an extra 52–80 kg N ha−1 for oat and 61–63 kg N ha−1 for lupine relative to treatments where they were removed. Over a year, lupine contributed 9 to 20 kg N ha−1 more to the agroecosystem than did oat.  相似文献   

5.
Abstract. Over a 10-year period, runoff and soil erosion on the plots of the Woburn Erosion Reference Experiment were concentrated in periods with sparse vegetation cover: in winter after the late planting of cereals; in spring after the planting of beets; or when soils were bare after harvest. The mean event runoff of 1.32 mm from plots cultivated up-and-downslope was significantly greater ( P <0.05) than that from plots cultivated across-slope (0.82 mm). However, mean event soil loss was not significantly different between the two cultivation directions. No significant differences were found between minimal and standard cultivations. Mean event runoff from the across-slope/minimal tillage treatment combination (0.58 mm) was significantly less ( P <0.01) than from the up-and-downslope/minimal tillage (1.41 mm), up-and-downslope/standard tillage (1.24 mm), and across-slope/standard tillage (1.07 mm) treatment combinations. Runoff from the across-slope/standard treatment combination was significantly ( P <0.05) less than from the up-and-downslope/minimal tillage treatment. The across-slope/minimal tillage treatment combination had a significantly smaller ( P <0.05) event soil loss (67 kg ha−1) than the up-and-downslope/standard tillage (278 kg ha−1) and up-and-downslope/minimal tillage (245 kg ha−1) combinations. Crop yields were significantly ( P <0.05) higher on across-slope plots in 1988, 1996 and 1997 than on up-and-downslope plots, and were also higher (but not significantly) on the across-slope plots in 7 of the 8 remaining years. Minimal cultivation decreased yield compared with standard cultivation in one year only. We recommend that across-slope cultivation combined with minimal tillage be investigated at field scale to assess its suitability for incorporation into UK farming systems.  相似文献   

6.
Land use in a 208 ha representative catchment in the Tigray Highlands, Dogu'a Tembien district in Northern Ethiopia was studied in relation to soil geography. Typical soils are Vertisols, Vertic Cambisols, Cumulic Regosols, Calcaric Regosols and Phaeozems. Patterns of land use vary greatly within the catchment and results from χ2‐tests showed strong associations (p < 0·001) between soil type and land use and crop production system. There is a strong association between cropland and colluvium high in basaltic content because the most fertile soils, such as Vertisols and Vertic Cambisols, have developed on this material. Preference is for autochthonous soils on in situ parent material, irrespective of the rock type, to be put under rangeland. Land use by smallholders in Dogu'a Tembien appears to be the result primarily of the interaction between environmental and social factors. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Nitrogen (N) surpluses from fertilizer application can cause major environmental harm including pollution of surface water, groundwater, and air. To assess such negative externalities, N balances are a complex but useful tool to predict surpluses and to measure effects of nutrient optimization strategies in agriculture. The Yaqui Valley in north‐western Mexico is representative for thousands of square kilometres of intensive, irrigated wheat production under arid conditions worldwide and has been targeted for conservation agriculture in recent years. For these cropping systems, detailed N balances are scarce and often incomplete. To help fill this knowledge gap, data from a long‐term experiment were collected in 2013/14 on a Vertisol to examine the impact of three tillage‐straw management practices (CTB: conventionally tilled beds; PB‐straw: permanent raised beds with residue retention; PB‐burn: permanent raised beds with residue burning) on N dynamics. Tillage had significant effects on soil NO3‐N, NH4‐N, and total N contents across the cropping period. Soil total N content was at all sampling depths lowest in CTB. Soil NO3‐N in the 0–90 cm profile was highest in PB‐burn over the cropping period and ranged from 77 kg ha?1 in the bed before pre‐planting fertilizer application up to 269 kg ha?1 in the furrow after the second fertilizer application. Annual simple N balances were +59 kg N ha?1 in CTB, +39 kg N ha–1 in PB‐straw, and +46 kg N ha?1 in PB‐burn. Residual mineral soil N was significantly affected by tillage‐straw management and lowest for PB‐straw (+205 kg N ha?1) and highest for CTB, and for PB‐burn (+283 kg N ha?1 each) in the 0–90 cm soil profile. Soil NO3‐N moved out of the effective wheat root zone, as indicated by the high residual NO3‐N content at 30–90 cm depth, which is an important pathway of N leaching. Quantifiable N losses through leaching and volatilization averaged 100 kg N ha?1. Our findings suggest that there is potential for substantial reductions in N inputs in all tillage‐straw systems to decrease N losses and to reduce mineral residual soil N, but care should be taken to avoid reducing grain protein content, which in PB straw was already below the quality standard. A knowledge transfer of the European “Nmin” concept is advisable in this region to regulate N fertilizer over‐application.  相似文献   

8.
保护性耕作对土壤物理特性及玉米产量的影响   总被引:25,自引:13,他引:25  
保护性耕作措施是干旱区农田提高作物产量的新型耕作技术。为了探讨其区域适应性,在2004~2007年期间,以毛乌素沙地南缘的靖边县北部风沙区农田为研究对象,选用了免耕、秸秆覆盖、覆膜和传统翻耕(CK)4种措施,采用完全随机试验设计进行了田间定位试验研究。结果表明,秸秆覆盖和免耕地的地温在春播初期略比传统翻耕低0.1℃,但随后迅速回升,覆膜在玉米生长期都高于其他措施。耕作措施对播种前土壤容重没有显著影响,而对收获后土壤容重影响显著,与传统翻耕相比,免耕降低了表层土壤容重1.65%,但次层20~40 cm容重增加了1.8%。3种保护性耕作措施均增加了土壤含水量,顺序依次为秸秆覆盖>覆膜>免耕>翻耕,且在作物需水关键期免耕和秸秆覆盖下的土壤含水量相对稳定,保证作物需水,提高水分利用率,分别为8%、22.0%和13.3%。使作物分别增产4.44%、13.14%和19.26%。因此,保护性耕作在风沙区有利于改善农田土壤物理条件,提高作物产量,适于在风沙区推广。  相似文献   

9.
保护性耕作对土壤水分和小麦产量的影响   总被引:4,自引:5,他引:4  
采用3种稻田保护性耕作栽培模式与传统栽培模式的定位试验,对成都平原稻田小麦季的土壤水分及产量进行了研究。结果表明:小麦全生育期,免耕覆盖处理的土壤含水率明显地高于翻耕覆盖处理,而翻耕不覆盖处理最差;小麦分蘖高峰期,覆盖处理的土壤含水率比不覆盖处理高17.7%~75.9%,免耕覆盖处理的土壤含水率比翻耕覆盖处理高12.7%~41.0%;免耕覆盖处理的小麦最高茎蘖数又比翻耕覆盖处理增加23.8%~72.3%,均极显著优于翻耕处理;覆盖处理的小麦产量比不覆盖处理增产6.3%~19.5%,免耕覆盖处理比翻耕覆盖处理增产3.2%~8.0%。稻田保护性耕作有利于提高成都平原区小麦产量。  相似文献   

10.
Conservation agriculture (CA) is thought to reduce weed pressure from the third year of adoption, when recommended practices are followed. Weed growth and crop yield were assessed during the third and fourth year of maize–cowpea–sorghum rotation, second and third year of maize–cowpea rotation and first and second year of maize monocropping on a clay loam soil at Matopos Research Station (annual rainfall, 573 mm) following recommended CA management practices. Each experiment had a split‐plot randomized complete block design with mouldboard plough (CONV), minimum tillage (MT) with ripper tine and planting basins as main‐plot factor and maize residue mulch rate (0, 2 and 4 t/ha) as a subplot factor, with threefold replication. All subplots were surface mulched and weeded by hoe at the same time. We hypothesized that under MT weed growth would be considerable with maize monocropping but from year 3 of CA, weed growth would decrease and crop yield increase relative to values from unmulched CONV. Minimum tillage increased weed growth in 2nd year of maize monocropping. Under the maize–cowpea rotation, the considerable weed growth in planting basins was likely due to the large intrarow spacing and poor light competiveness of the cowpea variety. Mulch contributed to weed growth being suppressed by up to 36% under CA in the maize–cowpea–sorghum rotation relative to unmulched CONV. When planted on the same date, crop yield did not differ between CA and unmulched CONV. Maize–cowpea–sorghum rotation grain yield (3143 kg/ha) was double that under monocropping , probably due to improvements in soil physical and chemical conditions.  相似文献   

11.
Northeast China, the important grain-producing region in China, is under threat from soil degradation because of long-term conventional tillage (CT). The adoption of conservation tillage is anticipated to restore soil fertility, maintain crop yields and enhance sustainability. However, the integrated effects of conservation tillage practice on crop yields and soil organic carbon (SOC) remain unclear. In this meta-analysis of peer-reviewed studies conducted in the Northeast China region, we assess crop yields and SOC values under no-till, ridge tillage and subsoiling tillage practices. The results indicate that in areas with mean annual temperatures (MAT) below 3°C, crop yields were significantly (p < .05) higher under ridge tillage (0.8%) and subsoiling tillage (13.1%) compared with CT, whereas yields reduced under no-till (−3.7%). Ridge tillage generally had a similar effect on crop yield as no-till, without the negative impact in colder regions. We also report that no-till practice increased SOC concentrations by 24.1%, 43.9% and 17.4% in areas of higher temperature (MAT > 6°C), low mean annual precipitation (MAP) (<500 mm) and continuous cropping conditions, respectively. Ridge tillage and subsoiling tillage also had positive effects on SOC concentrations (to a lesser degree than no-till), indicating that conservation tillage can enhance SOC in Northeast China. Overall, the implementation of different conservation tillage measures in Northeast China was found to enhance crop yields and sequester carbon. We recommend that ridge tillage is used in colder areas and that subsoiling tillage is used in rotation with other tillage measures to maintain crop yields.  相似文献   

12.
Abstract. A 15-year field experiment investigated crop residue management practices, with crop residue removal, burning and incorporation as the main treatments and nitrogen levels as subtreatments. The effects of crop residue management practices on rice and wheat yield were measured for 11 years. Surface soil samples were taken to study nitrogen and phosphorus immobilization/adsorption and their release under laboratory conditions. The field experiment indicated that residue burning and residue removal resulted in greater grain yields of rice (5.57 and 5.53 t/ha, respectively) and wheat (4.12 and 4.02 t/ha, respectively) than residue incorporation (4.51 t/ha rice and 3.72 t/ha wheat). Laboratory experiments indicated that by the addition of crop residues nitrogen and phosphorus were converted to unavailable forms through immobilization and adsorption, respectively.
Crop residue management practices were discontinued after 13 years and wheat and maize crops were grown in sequence. There were significantly greater yields of wheat (3.57 t/ha in 1992–93 and 3.6 t/ha in 1993–94) and of maize (2.1 t/ha in 1993) in plots where the residues had previously been incorporated than where the residues were previously either removed or burned. This is attributed to release of nitrogen and phosphorus from the incorporated residues.  相似文献   

13.
基于2009-2011年田间试验, 研究了黄土旱塬区不同秸秆覆盖措施下冬小麦农田土壤呼吸和小麦产量变化, 计算了生产每千克籽粒产量下土壤CO2的释放量, 并以此比较了处理间的经济 环境效益值。试验包括4个处理: 无覆盖对照(CK)、全年9 000 kg·hm-2秸秆覆盖(M9000)、全年4 500 kg·hm-2秸秆覆盖(M4500)和夏闲期秸秆覆盖(SF)。结果表明: 冬小麦生育期内土壤CO2累积释放量在处理间无显著差异, 但第1年生育期为14.92~17.43 t(CO2)·hm-2, 显著高于第2年[12.95~13.69 t(CO2)·hm -2](P<0.05), 处理和年份的交互作用不显著。与CK(产量5.03 t·hm-2)相比, 秸秆覆盖降低了作物产量, 其中M9000 (4.71 t·hm-2)与CK差异显著。经济 环境效益值计算结果显示, 冬小麦生育期内生产每千克籽粒释放2.96~3.16 kg CO2, 处理间无显著差异。从各处理平均值看, 小麦产量以及经济 环境效益值均存在显著的年际差异, 降水偏少的第1年度作物产量(4.60~4.98 t·hm-2)显著低于降水相对丰富的第2年度(4.50~5.47 t·hm-2), 但经济 环境效益值(3.03~3.69 kg·kg 1、2.45~2.88 kg·kg-1)结果相反。处理和年份对作物产量和经济 环境效益值具有显著的交互影响, 在缺水年份秸秆覆盖能够提高作物产量, M9000处理具有最优的经济 环境效益; 而在丰水年份, 秸秆覆盖导致产量显著下降, CK具有更好的经济 环境效益。  相似文献   

14.
In extensive farmer‐led trials practicing conservation farming (CF) in three regions of Zambia (Mongu: sandy soils; Kaoma: sandy or loamy sand soils; Mkushi: sandy loam or loamy soils), we studied the effects of biochar made of maize cobs (0, 2, and 6 t ha?1 corresponding to 0, 0.8, and 2.5% per basin) at different fertilizer rates of NPK and urea on crop yield of maize (Zea mays) and groundnuts (Arachis hypogaea). Conservation farming in this case combines minimum tillage (how basins), crop rotation and residue retention. For the first time, the effect of biochar on in situ soil nutrient supply rates [determined by buried Plant Root Simulator (PRS?) exchange resins] was studied, as well as the effects of biochar on elemental composition of maize. Effects of 0–10% (w:w) biochar addition on soil physical and soil chemical properties were determined in the laboratory. At all sites there was a consistent positive response in crop yield upon the addition of biochar. However, due to a great variability between farms there were no significant differences in absolute yields between the treatments. In the sandy soils at Mongu, relative yields (i.e., percentage yield with biochar relative to the same fertilizer rate without biochar) of maize grains and maize stover were significantly increased at recommended fertilizer rates (232 ± 60%) and at half the recommended rate (128 ± 6%), respectively. In addition, biochar significantly increased concentrations of K and P in maize stover. In situ soil nutrient supply rates as measured by PRS?‐probes were highly spatially variable with no consistent effects of the different treatments in the three regions. By contrast, the fraction of plant available water (Vol.‐%) significantly increased upon the addition of biochar in all three soils. The increase caused by 10% biochar addition was of factor 2.5 in Mongu (from 4.5% to 11.2%) and 1.2 in both Kaoma (from 14.7% to 18.2%) and Mkushi (from 18.2% to 22.7%). Cation exchange capacity, pH, and exchangeable K significantly increased upon the addition of 10% (w:w) biochar in all three regions with a subsequent increase in base saturation and decrease of available Al3+. Our findings suggest that the addition of biochar in combination with CF might have a positive impact on crop growth and that this positive effect is mainly caused by increases in plant‐available water and decreased available Al.  相似文献   

15.
Conservation agriculture(CA)-based best-bet crop management practices may increase crop and water productivity, while conserving and sustaining natural resources. We evaluated the performance of rainy season maize during 2014 under an ongoing long-term trial(established in 2008) with three tillage practices, i.e., permanent bed(PB), zero tillage(ZT), and conventional tillage(CT) as main plots, and four intensified maize-based cropping systems, i.e., maize-wheat-mungbean, maize-chickpea-Sesbania(MCS), maizemustard-mungbean, and maize-maize-Sesbania) as subplot treatments. In the seventh rainy season of the experiment, maize growth parameters, yield attributes, yield, and water-and energy-use efficiency were highest at fixed plots under ZT. Maize growth parameters were significantly(P 0.05) superior under ZT and PB compared with CT. Maize yield attributes, including cobs per m~2(7.8), cob length(0.183 m), grain rows per cob(13.8), and grains per row(35.6), were significantly higher under ZT than CT; however, no significant effect of cropping systems was found on maize growth and yield attributes. Zero tillage exhibited the highest maize productivity(4 589 kg ha~(-1)). However, among the cropping systems, MCS exhibited the highest maize productivity(4 582 kg ha~(-1)). In maize, water use was reduced by 80.2–120.9 mm ha-1under ZT and PB compared with CT, which ultimately enhanced the economic water-use efficiency by 42.0% and 36.6%, respectively. The ZT and PB showed a 3.5%–31.8% increase in soil organic carbon(SOC) at different soil depths(0–0.45 m), and a 32.3%–39.9% increase in energy productivity compared with CT. Overall, our results showed that CA-based ZT and PB practices coupled with diversified maize-based cropping systems effectively enhanced maize yield and SOC,as well as water-and energy-use efficiency, in northwestern India.  相似文献   

16.
Soil crust formed after rainfall has a strong influence on soil erosion, water use, and crop growth on sloping farmland. To study the effect of soil crust on sloping farmland on runoff amount and erosion sediment yield, the soil crust on sloping farmland has been studied in this paper for plantings of corn, soybeans, millet, and winter wheat. Using an outdoor rainfall simulator, the influence of soil crust on runoff rate and sediment yield on sloping farmland covered by crops has been observed. The results revealed that soil crust thickness was increased after rainfall and soil crust coverage showed little change after rainfall. Soil crust had a significant impact on runoff and sediment yield on sloping farmland. Slopes with soil crust showed higher runoff rate and less soil loss than slopes without soil crust. On slopes planted with four crops (corn, soybeans, millet, and winter wheat), runoff rates on slopes with soil crust were respectively 20%, 25%, 25%, and 21% higher than on slopes without soil crust; sediment yield on slopes with soil crust was respectively 15%, 14%, 14%, and 8% lower than on slopes without soil crust. Crops enlarged the runoff difference between the two kinds of slope and decreased the sediment yield difference between them. Crop growth enhanced these differences in runoff and sediment yield between slopes with and without soil crust.  相似文献   

17.
Between the cultivated fields in the highlands of Tigray, one finds, besides the recently introduced stone bunds, many lynchets, with a height ranging from 0·3–3 m. Grasses occupy the riser and a more or less large strip on the shoulder. Traditionally, farmers established an untilled strip of about 2 m wide at the lower plot limit. This grass strip reduced runoff velocity, allowed for water to infiltrate and trapped sediment. Year after year, these lynchets, locally called dagat, continued to grow. In this study, the dagat technique is characterized and its evolution and reasons for partial destruction are outlined. Stereoscopic aerial photo analysis shows for the study area near Hagere Selam (13 °39′N, 39 °10′E, 2650 m a.s.l.) that 20·7 per cent of the major dagats (more than 1 metre high) have disappeared between 1974 and 1994. These lynchets, however, remain an important linear element in the landscape (22·7 m ha−1, i.e. their density on cultivated fields is much higher). Of the smaller lynchets, a great proportion has been levelled in order to increase plot surfaces and spread fertile soil over the field. Famines and impoverishment caused the farmers to increase short‐term agricultural production in this way. Since the 1980s, the farmers built stone bunds on most of the cultivated land. Their average length equals 56·1 m ha−1 in the study area. The establishment of stone bunds results in the development of small terraces. Especially during recent years, there is a tendency to integrate the traditional knowledge of dagat with the building of stone bunds. A quantitative assessment of the effectiveness of both techniques must be made. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
The reclamation potential of applying combined brackish ice and flue-gas desulfurization (FGD) gypsum to a coastal saline soil was evaluated in a raised bed agroecosystem. Experimental plots in the raised bed were exposed to the following six treatments: 0, 4,000, and 8,000 m3ha?1 brackish ice mulch with and without FGD-gypsum. Although FGD-gypsum incorporation still increased the electrical conductivity of a saturated soil paste extract (ECe) in the 0–20 cm soil layer after brackish ice melted in the second year (April 2013), they had not increased soil ECe at harvest especially in the second year. FGD-gypsum incorporation reduced soil pH not only after brackish ice melted in the second year but also at harvest in the first and second years. At harvest in the second year, FGD-gypsum incorporation significantly decreased soil Na adsorption ration (SAR) of the 0–20 cm layer with different volumes of brackish ice compared with the treatments without FGD-gypsum. The incorporation of FGD-gypsum increased the root dry weight per plant compared with the treatment without FGD-gypsum after harvest in the first year. The incorporation of FGD-gypsum increased organic matter in the 0–20 cm soil layer in the raised bed after harvest only in the first year. The application of brackish ice increased the emergence rate of maize in spring. Soil pH in all treatments tended to increase as time increased in the 0–20 and 20–40 cm soil layers in the raised bed. The results of the present study suggest that brackish ice and FGD-gypsum application further improve soil properties and crop growth, which might accelerate the reclamation process of the coastal saline land.  相似文献   

19.
Abstract. A number of mathematical models to predict soil water evaporation are available in the literature which generally require complex input data. In the present study, a simple parametric model has been developed by coupling existing and newly developed equations to assess soil water evaporation and drainage under field conditions in relation to potential evaporation rate, soil texture, time and depth of tillage and crop residue management. The model has moderate input data requirements and predicts well the effects of tillage and crop residue management practices on soil water loss (evaporation+drainage) with multi-drying and -wetting cycles prevailing under natural conditions. The root mean squares of deviations between observed and predicted cumulative water loss at different periods of study were 0.82, 2.04, 2.31 and 1.74  cm for untreated, residue-mulch, tillage and residue-incorporated treatments, respectively. Simulation analysis on cumulative evaporation and evaporation rate has shown that the evaporation reduction with different combinations of tillage and crop residue followed the order of residue-undercut>residue-mulch>residue-incorporated>tillage. Thus, the magnitude of beneficial effects of crop residues and tillage on soil water evaporation reduction are associated with amount of residues, mode of residue management (mulched or incorporated in the soil) and time and depth of tillage.  相似文献   

20.
AMF和间作对作物产量和坡耕地土壤径流氮磷流失的影响   总被引:1,自引:3,他引:1  
坡耕地氮、磷流失是导致河湖污染的主要因子。该文在坡耕地开展田间小区试验,定量研究了丛枝菌根真菌(AMF)与玉米大豆间作系统对径流氮、磷流失的协同削减贡献,可为滇池流域农业面源污染控制提供科学理论依据。结果表明,与单作玉米-抑菌处理相比,间作玉米-未抑菌处理显著提高了玉米的生物量;与单作-抑菌处理相比,玉米大豆间作-未抑菌处理均显著增加了植株茎叶、籽粒磷吸收量及茎叶、根系氮吸收量。与单作玉米-抑菌处理相比,间作玉米-未抑菌处理的土壤全磷、全氮的削减量分别为0.25、0.11 g/kg,径流总磷、总氮浓度的削减量分别为0.13、12.94 mg/L;与单作大豆-抑菌处理相比,间作大豆-未抑菌处理的土壤全磷、全氮的削减量分别为0.07、0.11g/kg,径流总磷、总氮浓度的削减量分别为0.27、24.80mg/L。与单作大豆-抑菌处理相比,玉米大豆间作-未抑菌处理的总磷、总氮流失量分别减少了0.51、19.93 kg/hm~2。经相关分析可知,径流颗粒态磷浓度与植株各部分磷吸收量均呈负相关,且与土壤全磷、速效磷含量也呈负相关性;径流各形态氮浓度与植株各部分氮吸收量、菌丝密度和球囊霉素均呈负相关。可见,丛枝菌根真菌协同玉米大豆间作模式能够通过促进植株对氮、磷养分的吸收而减少土壤氮、磷的残留,进而阻控了氮磷随径流迁移的损失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号