首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本研究探讨了有机栽培与常规栽培体系下水稻土微生物量及脲酶、酸性磷酸酶和过氧化氢酶的动态变化过程,以及有机栽培体系不同肥料调控措施对上述指标的影响.结果表明:与常规栽培水稻体系相比,有机栽培水稻有利于土壤微生物的生长和繁衍;水稻生长不同时期有机栽培方式的土壤微生物生物量碳、脲酶、酸性磷酸酶和过氧化氢酶活性均高于常规栽培体系.就水稻全生育期而言,土壤微生物生物量碳高于常规栽培7.3%~9.1%;脲酶、酸性磷酸酶和过氧化氢酶活性分别高于常规栽培7.3%~14.5%、5.2%~6.5%和12.5%~29.2%;有机水稻栽培体系下配施生态肥,在有机肥施用量减半时,土壤微生物生物量碳含量及土壤脲酶、酸性磷酸酶和过氧化氢酶活性较单施有机肥平均分别提高1.6%、6.8%、1.3%和14.8%,在水稻生长前期和中期该增加作用尤为显著.  相似文献   

2.
The implementation of environmentally friendly agricultural policies has increased the need to compare agricultural aspects of conventional (CON) and organic farming (ORG) systems. The objective of the present work was to compare the effects of an organic and conventional long-term experiment on bacterial and fungal biomass and activity, as well as soil CO2 emission and readily available nitrogen forms in a soil cultivated with Helianthus annuus L. The microbial biomass was more active and abundant in ORG as well as soil CO2 emission. Despite being less abundant, fungi were more active than bacteria in both ORG and CON experiments. 16S rRNA gene sequencing showed that the ORG treatment had a significantly greater bacterial richness than CON. Cyanobacteria, Actinobacteria and Proteobacteria were the most abundant phyla contributing more than others to the differences between the two systems. Moreover, the soil NH 4 + and NO 2 content was not significantly different between ORG and CON, while NO 3 was less in ORG. ORG sunflower yield was significantly less compared with CON. While much remains to be discovered about the effects of these agricultural practices on soil chemical properties and microbial diversity, our findings may contribute to this type of investigation.  相似文献   

3.
Managing soil fertility in organic farming systems   总被引:9,自引:0,他引:9  
Abstract. Complex relationships exist between different components of the organic farm and the quantity and quality of the end products depend on the functioning of the whole system. As such, it is very difficult to isolate soil fertility from production and environmental aspects of the system. Crop rotation is the central tool that integrates the maintenance and development of soil fertility with different aspects of crop and livestock production in organic systems. Nutrient supply to crops depends on the use of legumes to add nitrogen to the system and limited inputs of supplementary nutrients, added in acceptable forms. Manures and crop residues are carefully managed to recycle nutrients around the farm. Management of soil organic matter, primarily through the use of short-term leys, helps ensure good soil structure and biological activity, important for nutrient supply, health and productivity of both crops and livestock. Carefully planned diverse rotations help reduce the incidence of pests and diseases and allow for cultural methods of weed control. As a result of the complex interactions between different system components, fertility management in organic farming relies on a long-term integrated approach rather than the more short-term very targeted solutions common in conventional agriculture.  相似文献   

4.
There are few reliable data sets to inspire confidence in policymakers that soil organic carbon (SOC) can be measured on farms. We worked with farmers in the Tamar Valley region of southwest England to select sampling sites under similar conditions (soil type, aspect and slope) and management types. Topsoils (2–15 cm) were sampled in autumn 2015, and percentage soil organic matter (%SOM) was determined by loss on ignition and used to calculate %SOC. We also used the stability of macroaggregates in cold water (WSA) (‘soil slaking’) as a measure of ‘soil health’ and investigated its relationship with SOC in the clay‐rich soils. %SOM was significantly different between management types in the order woodland (11.1%) = permanent pasture (9.5%) > ley‐arable rotation (7.7%) = arable (7.3%). This related directly to SOC stocks that were larger in fields under permanent pasture and woodland compared with those under arable or ley‐arable rotation whether corrected for clay content (F = 8.500, p < .0001) or not (F = 8.516, p < .0001). WSA scores were strongly correlated with SOC content whether corrected for clay content (SOCadj R2 = .571, p < .0001) or not (SOCunadj R2 = 0.490, p = .002). Time since tillage controlled SOC stocks and WSA scores, accounting for 75.5% and 51.3% of the total variation, respectively. We conclude that (1) SOC can be reliably measured in farmed soils using accepted protocols and related to land management and (2) WSA scores can be rapidly measured in clay soils and related to SOC stocks and soil management.  相似文献   

5.
To quantify functionally important differences in soil organic matter (SOM) that result from use of different farming practices, soils from 9 long-term trials comparing manure+legume-based organic, legume-based organic, and conventional farming systems were collected and particulate organic matter (POM) was fractionated to reflect its position within the soil matrix. The free, light POM (FPOM; <1.6 g cm−3) not occluded within aggregates and occluded POM (OPOM; <2.0 g cm−3) were compared to an undifferentiated POM fraction (coarse fraction, CF; >53 μm) obtained by wet sieving. Fraction C, N, and hydrolyzable N (quantified using the Illinois test (IL-N)) were determined. Organic farming systems had greater quantities of C and N in the OPOM and CF and, greater IL-N contents in all POM fractions considered. The OPOM's C:N ratio (16-19) and was least in the manure+legume-based organic, intermediate in the legume-based organic, and greatest in the conventional systems (P<0.10). Trends in OPOM C:N and IL-N abundance suggested occluded POM was most decomposed, and possibly a greater N reservoir, in the manured soils. The FPOM quality reflected the residues added to each system and its removal improved resolution of quality-based differences in POM associated with long-term management. Subdivision of POM revealed differences in its quality that were not evident using the undifferentiated CF. Quantification of hydrolysable N (IL-N) in POM did not enhance our understanding of management's affect on SOM quality. This multi-site comparison showed organic management simultaneously increased the size of the labile N reservoir and the amount of POM protected within aggregates; and that, occluded POM is more decomposed in manure+legume- than in legume-based organic systems. The characteristics of POM reveal how organic practices improve SOM and suggest the nutrient and substrate decay dynamics of organic systems may differ as a result of the N fertilization strategies they employ.  相似文献   

6.
现代农业系统在明显提高产量、保证粮食安全的同时,也对人类健康和地球的可持续性产生了影响。在持续不断的严重环境破坏和自然资源毁坏的背景下,建立可持续的农业生产方式至关重要。生态农业和有机农业是减少生态可持续性和生产力及社会可持续之间权衡关系的重要方法。这两种农业方法都属生态集约化范畴,均具有减少环境污染的巨大潜力;然而,生态农业和有机农业常导致产量降低。虽然产量降低带来的损失可以通过改变人们的饮食习惯来弥补(如减少食物浪费、减少食用精饲料喂养的肉类),但是,由于全球的发展趋势与之相反,因此本文探讨了通过科学研究寻求新的解决方案前景来提高低投入农业系统作物产量的可能性。为权衡生产力与可持续发展的关系,使生态农业和有机农业有助于粮食安全,我们对未来研究提出5点建议:1)农场和田地的景观设计与复合种植模式、2)数字化技术的应用、3)以农田低投入为目标的作物育种、4)农业废弃物的高质量循环利用和5)非化学作物保护。  相似文献   

7.
Since the beginning of the last century, many studies have reported evidence describing the effects of organic inputs on soil aggregate stability. In 1965, Monnier proposed a conceptual model that considers different patterns of temporal effects on aggregate stability depending on the nature of the organic inputs: easily decomposable products have an intense and transient effect on aggregate stability while more recalcitrant products have a lower but longer term effect. We confronted this conceptual model with a literature review of experimental data from laboratory and field experiments. This literature analysis validated the conceptual model proposed by Monnier and pointed out gaps in our current knowledge concerning the relationships between aggregate stability and organic inputs. Noticeably, the experimental dataset confirmed the biological and temporal effects of organic inputs on aggregate stability as proposed in the model. Monnier's model also related the evolution of aggregate stability to different microbial decomposing agents, but this relationship was not made clear in this literature analysis. No direct or universal relationship was found between the aggregative factors induced by organic input decomposition (binding molecules or decomposers of biomass) and temporal aggregate stability dynamics. This suggests the existence of even more complex relationships. The model can be improved by considering (i) the direct abiotic effect of some organic products immediately after the inputs, (ii) the initial biochemical characteristics of the organic products and (iii) the effects of organic products on the various mechanisms of aggregate breakdown. For now, no trend is evident in the effect of the rate of organic inputs or the effect of the soil characteristics (essentially carbon and clay contents) on aggregate stability.  相似文献   

8.
Conventional agricultural practices that use excessive chemical fertilizers and pesticides come at a great price with respect to soil health, a key component to achieve agricultural sustainability. Organic farming could serve as an alternative agricultural system and solve the problems associated with the usage of agro‐chemicals by sustainable use of soil resources. A study was carried out to evaluate the impact of organic vs . conventional cultivations of basmati rice on soil health during Kharif (rainy) season of 2011 at Kaithal district of Haryana, India, under farmers' participatory mode. Long‐term application of organic residues in certified organic farms was found to improve physical, chemical, and biological indicators of soil health. Greater organic matter buildup as indicated by higher soil organic carbon content in organic fields was critical to increase soil aggregate stability by increasing water holding capacity and reducing bulk density. Proper supplementation of nutrients (both major and micro nutrients) through organic residue addition favored biologically available nutrients in organic systems. Further, the prevalence of organic substrates stimulated soil microorganisms to produce enzymes responsible for the conversion of unavailable nutrients to plant available forms. Most importantly, a closer look at the relationship between physicochemical and biological indicators of soil health evidenced the significance of organic matter to enzyme activities suggesting enhanced nutrient cycling in systems receiving organic amendments. Enzyme activities were very sensitive to short‐term (one growing season) effects of organic vs . conventional nutrient management. Soil chemical indicators (organic matter and nutrient contents) were also changed in the short‐term, but the response was secondary to the biochemical indicators. Taken together, this study indicates that organic farming practices foster biotic and abiotic interactions in the soil which may facilitate in moving towards a sustainable food future.  相似文献   

9.
We studied microbiological processes in organic P transformations in soils cultivated with conventional and biological farming systems during the 13th and 14th year of different cropping systems. The treatments included control, biodynamic, bioorganic, and conventional plots and a mineral fertilization treatment. Different P fractions were investigated using a sequential fractionation method. Labile organic P, extracted by 0.5 M NaHCO3, was not affected by the farming systems. However, residual organic P remaining in the soil at the end of the sequential fractionation procedure showed that the biodynamic treatment, in particular, led to a modification of the composition of organic P. Labile organic P, organic P extractable in 0.1 M NaOH, and total residual P all showed temporal fluctuations. As total residual P consists of more than 70% organic P, it can be assumed that residual organic P contributed to these variations. This result indicates that chemically resistant organic P participates in short-term accumulation and mineralization processes. All biological soil parameters tested in this study showed significant temporal fluctuations, mainly attributed to differences in climatic conditions between years, but possibly also related to the growth cycle of the crop. The higher values of the biological soil parameters in the biodynamic and bioorganic treatments were explained by the greater importance of manure and the different plant protection strategies. The level of phosphatase activity and mineralization of organic C indicated a higher turnover of organic substrates, and thus of organic P, in the biodynamic and bioorganic treatments. Biological parameters were shown to be critical for assessing the significance of organic P in the soil P turnover.  相似文献   

10.
11.
The aim of this study was to evaluate the interaction between yield levels of nonleguminous crops and soil organic matter (SOM) under the specific conditions of organic and conventional farming, respectively, and to identify implications for SOM management in arable farming considering the farming system (organic vs. conventional). For that purpose, correlations between yield levels of nonlegume crops and actual SOM level (Corg, Nt, Chwe, Nhwe) as well as SOM‐level development were examined including primary data from selected treatments of seven long‐term field experiments in Germany and Switzerland. Yield levels of nonlegume crops were positively correlated with SOM levels, but the correlation was significant only under conditions of organic farming, and not with conventional farming treatments. While absolute SOM levels had a positive impact on yield levels of nonlegumes, the yield levels of nonlegumes and SOM‐level development over time correlated negatively. Due to an increased demand of N from SOM mineralization, higher yield levels of nonlegumes obviously indicate an increased demand for OM supply to maintain SOM levels. Since this observation is highly significant for farming without mineral‐N fertilization but not for farming with such fertilization, we conclude that the demand of SOM‐level maintenance or enhancement and thus adequate SOM management is highly relevant for crop production in organic farming both from an agronomical and ecological point of view. Under conventional management, the agronomic relevance of SOM with regard to nutrient supply is much lower than under organic management. However, it has to be considered that we excluded other possible benefits of SOM in our survey that may be highly relevant for conventional farming as well.  相似文献   

12.
用激光衍射法评价有机物和和碳酸盐对土壤团聚的作用   总被引:5,自引:0,他引:5  
>Aggregation in many soils in semi-arid land is affected by their high carbonate contents.The presence of lithogenic and/or primary carbonates can also inffuence the role of soil organic matter(SOM) in aggregation.The role of carbonates and SOM in aggregation was evaluated by comparing the grain-size distribution in two carbonate-rich soils(15% and 30% carbonates) under conventional tillage after different disaggregating treatments.We also compared the effect of no-tillage and conventional tillage on the role of these two aggregating agents in the soil with 30% of carbonates.Soil samples were treated as four different ways:shaking with water(control),adding hydrochloric acid(HCl) to remove carbonates,adding hydrogen peroxide(H2O2) to remove organic matter,and consecutive removal of carbonates and organic matter(HCl + H2O2),and then analyzed by laser diffraction grain-sizing.The results showed that different contributions of carbonates and SOM to aggregate formation and stability depended not only on their natural proportion,but also on the soil type,as expressed by the major role of carbonates in aggregation in the 15% carbonate-rich soil,with a greater SOC-to-SIC(soil organic C to soil inorganic C) ratio than the 30% carbonate-rich soil.The increased organic matter stocks under no-tillage could moderate the role of carbonates in aggregation in a given soil,which meant that no-tillage could affect the organic and the inorganic C cycles in the soil.In conclusion,the relative role of carbonates and SOM in aggregation could alter the aggregates hierarchy in carbonate-rich soils.  相似文献   

13.
Soil samples at 0--10 cm in depth were collected periodically at paired fields in Corvallis, Oregon, USA to compare differences in soil microbial and faunal populations between organic and conventional agroecosystems Results showed that the organic soil ecosystem had a significantly higher (P < 0.05) average number or biomass of soil bacteria; densities of flagellates, amoebae of protozoa; some nematodes, such as microbivorous and predaceous nematodes and plant-parasitic nematodes; as well as Collembola. Greater numbers of Rhabditida (such as Rhabditis spp.), were present in the organic soil ecosystem while Panagrolaimus spp. Were predominant in the conventional soil ecosystem. The omnivores and predators of Acarina in the Mesostigmata (such as Digamasellidae and Laelapid), and Prostigmata (such as Alicorhaiidae and Rhagidiidae), were also more abundant in the organic soil ecosystem. However, fungivorous Prostigmata (such as Terpnacaridae and Nanorchestidae) and Astigmata (such as Acarida) were significantly higher (P < 0.05) in the conventional soil ecosystem, which supported the finding that total fungal biomass was greater in the conventional soil ecosystem. Seansonal variations of the population depended mostly on soil moisture condition and food web relationship. The population declined from May to October for both agroecosystems. However, higher diversities and densities of soil biota survived occurred in the organic soil ecosystem in the dry season.  相似文献   

14.
冷浸稻田是长江流域重要的低产稻田类型之一,近年来抛荒严重,而抛荒对冷浸稻田土壤团聚体的影响并不清楚。本研究以连年种植的冷浸稻田(CWC)、抛荒3年的冷浸稻田(CWA3)和抛荒6年的冷浸稻田(CWA6)为对象,分析抛荒后冷浸稻田土壤团聚体特征以及有机碳稳定性,以期为准确评估抛荒对长期淹水土壤的结构和有机碳的影响提供数据支持。结果表明,不论是0~25 cm土层还是25~50 cm土层,冷浸稻田土壤53μm粒级团聚体占总团聚体比例均超过40%;0~25 cm土层土壤250μm团聚体比例超过35%;53~250μm粒级团聚体比例低于20%。抛荒使0~25 cm土层53μm粒级团聚体占总团聚体比例显著增加,53~250μm粒级比例显著降低。在0~25 cm土层,抛荒使有机碳活性指数Ⅰ(LIc-Ⅰ)在53μm粒级和250μm粒级上升高,有机碳活性指数Ⅱ(LIc-Ⅱ)在53~250μm和250μm粒级上降低;而有机碳难降解指数(RIc)在53μm和53~250μm粒级上降低。土壤总有机碳随抛荒时间延长而增加。  相似文献   

15.
为了深入分析有机农业在资源利用方面相比于常规农业的优势及特点,本研究在综合分析已有评价指标体系的基础上,结合水稻种植的农业生产过程分析和有机农业特点,建立了适用于有机、常规水稻种植的农业资源利用效率评价指标体系,并以湖北省水稻种植为例,开展了不同年限有机种植与常规种植农业资源利用的评价调查。指标体系以气候资源、水资源、土地资源、生物资源、人工投入和资源可持续性作为评价要素,共包含18个评价指标。评价结果显示,有机种植由于较低的生物产量导致其在气候资源和土地资源上的得分普遍低于常规种植。但在水资源、生物资源、人工投入和资源可持续性评价要素上,有机种植得分明显高于常规种植。总体来看,小于3 a的有机水稻种植样本资源利用评价得分为0.867,与常规种植得分相当(0.857);但随着有机种植年限的增加,其评价得分逐渐提高(3~6 a有机种植样本评价得分为0.927),当有机种植6 a时评价得分为0.976,比常规种植得分提高14%。研究表明,有机农业在资源利用效率方面优于常规农业,但这种差异在有机种植前期并不明显,随着种植年限的不断延长有机模式在资源利用方面的优势逐步显现。  相似文献   

16.
Diversification of production is a concern for farmers in many regions of the world, raising a renewed interest in crop-animal rotations. However little information is available on whether the introduction of grazing animals in a no-till system could be a sustainable practice. The present long-term study was carried out in the semiarid region of Argentina, on an Entic Haplustoll (A, AC, C and Ck profile). The experimental plots were established in August 1993, with two treatments, no-till (NT) and conventional tillage (CT). Stubble was regularly used for grazing until 2002, when plots were divided into grazed (G) and non-grazed (NG) sub-treatments. Soil samples were taken at 0–0.10 and 0.10–0.20 m depth at the beginning of the experiment (1993) and during 2007, with the following determinations: clay + silt contents, bulk density (BD), total carbon (C), total nitrogen (N), available P, C contents of aggregate fractions of 2000–100 (POC), 100–50 (IOC) and <50 (FOC) μm diameter, aggregate size distribution and mean weight diameter change. NT showed a strong effect on all analyzed soil attributes: it had higher total carbon stocks (NT 16.6 Mg ha−1 vs. CT 13.2 Mg ha−1) and higher amounts in all C fractions, even in FOC (11.3 Mg ha−1 vs. 9.2 Mg ha−1). For BD, we found no difference between NT and CT at the surface and an even lower value for NT at 0.10–0.20 m depth. Under NT no depletion of available P occurred, while CT lost about 23 kg ha−1. Grazing had a negative effect on BD when averaging BD data across tillage systems, while there was no effect on aggregate stability, and a positive one on the proportion of >8 mm aggregates (23.3% vs. 11.7% for CT G and CT NG, respectively). C stratification showed a differential effect of grazing: NT G had the highest index (1.31) and CT G the lowest one (0.98). Our results indicated that the introduction of grazing animals in NT crop systems would not be detrimental to soil conditions and quality, at least in semiarid conditions of Argentina.  相似文献   

17.
有机污染型灌溉水对土壤团聚体的影响   总被引:4,自引:0,他引:4  
为了评估灌溉水中有机污染物对农田土壤物理状态的影响,本研究以长期采用有机污染型水体灌溉的陕西交口灌区农田土壤为研究对象,以气候条件、土壤条件以及耕作制度基本一致,长期采用未污染的地下水灌溉的农田土壤为对照,分别用干筛和湿筛法测定了土壤团聚体和微团聚体组成等,分析了优势团聚体的变化情况。结果表明:长期采用有机污染水灌溉明显降低土壤中大于10 mm大团聚体和小于0.25 mm微团聚体的含量,显著增加了直径为1~5 mm范围内"(质量)优势团聚体"的含量;水稳性团聚体与土壤有机质含量呈显著正相关,而与机械组成的相关系数未达到显著水平;有机污染型水体灌溉可以显著改善微团聚体的特性,增大了土壤团聚度,降低其分散系数,从而改善了土壤结构状况。综合试验结果证明,灌溉水中的有机污染物质有助于显著地改善土壤结构状况和特性。  相似文献   

18.
耕作方式对耕层土壤结构性能及有机碳含量的影响   总被引:23,自引:2,他引:23  
为了寻求能够提高土壤结构稳定性的耕作模式,在陇中黄土高原半干旱区连续7年的定位试验研究基础上,采用常规分析方法(湿筛法、重铬酸钾容量法、环刀法),研究了不同耕作方式对耕层土壤结构性能及有机碳含量的影响.结果表明:与传统耕作(T)相比,免耕无覆盖(NT)、传统耕作+秸秆还田(TS)和免耕+秸秆覆盖(NTS)3种保护性耕作方式均能不同程度地增加耕层土壤的有机碳和不同粒径水稳性团聚体的含量,其中免耕+秸秆覆盖(NTS)处理效果最佳.在0~10 cm土层中,NTS处理的土壤容重低、孔隙度大,土壤结构得到了较大改善.不同耕作方式下0~5 cm、5~10 cm和10~30 cm土层粒径1~0.5 mm水稳性团聚体的含量最高,粒径>0.25 mm水稳性团聚体含量与有机碳含量和孔隙度呈显著正相关,与容重呈显著负相关.  相似文献   

19.
Organic farming is rapidly expanding worldwide. Plant growth in organic systems greatly depends on the functions performed by soil microbes, particularly in nutrient supply. However, the linkages between soil microbes and nutrient availability in organically managed soils are not well understood. We conducted a long-term field experiment to examine microbial biomass and activity, and nutrient availability under four management regimes with different organic inputs. The experiment was initiated in 1997 by employing different practices of organic farming in a coastal sandy soil in Clinton, NC, USA. Organic practices were designed by applying organic substrates with different C and N availability, either in the presence or absence of wheat-straw mulch. The organic substrates used included composted cotton gin trash (CGT), animal manure (AM) and rye/vetch green manure (RV). A commercial synthetic fertilizer (SF) was used as a conventional control. Results obtained in both 2001 and 2002 showed that microbial biomass and microbial activity were generally higher in organically than conventionally managed soils with CGT being most effective. The CGT additions increased soil microbial biomass C and activity by 103-151% and 88-170% over a period of two years, respectively, leading to a 182-285% increase in potentially mineralizable N, compared to the SF control. Straw mulching further enhanced microbial biomass, activity, and potential N availability by 42, 64, and 30%, respectively, relative to non-mulched soils, likely via improving C and water availability for soil microbes. The findings that microbial properties and N availability for plants differed under different organic input regimes suggest the need for effective residue managements in organic tomato farming systems.  相似文献   

20.
There is growing interest in the applications of soil enzymes as early indicators of soil quality change under contrasting agricultural management practices. However, despite there being an abundant literature on this subject, most comparative assessments have been based on a limited number of experimental farms and, therefore, conclusions are not as robust as desired. In this study, we compare 18 pairs of organic and neighbouring conventional olive orchards in southern Spain. These sites were selected to allow the definition of the relative contributions of site-landscape features, soil type, and time since organic accreditation and tillage intensity, on the soil quality. Soils were analysed for physico-chemical properties, the activities of dehydrogenase, β-glucosidase, arylsulphatase, acid and alkaline phosphatase, and potential nitrification. The geometric mean of the assayed enzymes (GMea) was validated with an independently performed Principal Component Analysis (PCA), and used as a combined soil quality index. The effects of tillage intensity and time since organic accreditation on the improvement of soil quality were also evaluated within the subset of organic farms. Overall for the 18 sites, contrasted management practices did not differ in their impact on basic soil physico-chemical properties, except for loss of on ignition and available inorganic N which were higher and lower in organic farms, respectively. Organic management resulted in significantly higher soil enzyme activities. However, differences were not significant in some of the paired comparisons when considered individually. This highlights the need for extensive comparative assessment, as in this study, to draw clear conclusions concerning the changes to soil quality under sustainable management practices. The GMea was significantly correlated with the first axis of the PCA and shown to be appropriate for condensing the set of soil enzyme values to a sole numerical value. Soil quality changes in organic versus conventional farms, as measured by the GMea, ranged from −23% to 97%, and was highly dependent on time since organic accreditation (r = 0.88; P < 0.01). On the other hand, tillage intensity clearly tended to delay any progress in soil quality in the organic farms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号