首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 177 毫秒
1.
A 15-year field experiment was carried out in Henan Province, China, to study the effects of different fertilization practices on yield of a wheat-maize rotation. Fertilizers tested contained N alone (N), N plus P (NP) or plus P and K (NPK), all with or without manure (M). Different long-term fertilization practices affected the yields under the rotation system of wheat and maize differently and the effects on yields was in a general trend of MNPK>MNP>MN>NPK>NP>M>N>the control. The average contribution rate of soil fertility to the highest yield was 37.9%, and the rest 62.1% came from fertilizer applications. The yield effects of the chemical fertilizers were in the order of N>P>K and were increased by application of manure.Balanced fertilization with multielement chemical fertilizers and manure can be effective in maintaining growth in agricultural production. Combined application of chemical fertilizer and organic manure also increased the content of soil organic matter.  相似文献   

2.
15N-labelled green manure was used to feed pigs.Its nitrogen recovery by pig body,feces and uring was 23.5%,23.8%and 28.8% respectively,totalling 76.1%.Feces and green manure coordinated respectively with equal amount of CO(NH2)2-N as well as urine alone were applied as basic fertilizer in microplot experiments,The 15N recovery from feces and urine was equivalent to 2.51%and 4.82%by rice grain,and 0.98% and 1.94% by straw respectively,and soil residual ^15N from them took 13.3% and 4.90% of the ^15N in green manure,After feeding pigs with green manure and returning their feces and uringe into soil,the ^15N recovery by pig body and rice grain was 30.8%,and that by pig body,and rice plant as well as soil residual took 52.7% of the 15N in feed.^15N loss was 23.9% in pig feeding and 23.4% in rice planting.When green manure was incorporated directly into soil,its 15N recovery by grain was 26.65%,that by rice plant plus soil residual was 65.2%,and the loss was 34.8%.  相似文献   

3.
中国南方大棚蔬菜地氮平衡与损失   总被引:28,自引:0,他引:28  
High rates of fertilizer nitrogen (N) are applied in greenhouse vegetable fields in southeastern China to maximize production;however,the N budgets of such intensive vegetable production remain to be explored.The goal of this study was to determine the annual N balance and loss in a greenhouse vegetable system of annual rotation of tomato,cucumber,and celery at five N (urea) application rates (0,348,522,696,and 870 kg N ha-1 year-1).Total N input to the 0-50 cm soil layer ranged from 531 to 1 053 kg ha-1,and N fertilizer was the main N source,accounting for 66%-83% of the total annual N input.In comparison,irrigation water,wet deposition,and seeds in total accounted for less than 1% of the total N input.The fertilizer N use efficiency was only 18% under the conventional application rate of 870 kg N ha-1 and decreased as the application rate increased from 522 to 870 kg N ha-1.Apparent N losses were 196-201 kg N ha-1,of which 71%-86% was lost by leaching at the application rates of 522-870 kg N ha-1.Thus,leaching was the primary N loss pathway at high N application rates and the amount of N leached was proportional to the N applied during the cucumber season.Moreover,dissolved organic N accounted for 10% of the leached N,whereas NH3 volatilization only contributed 0.1%-0.6% of the apparent N losses under the five N application rates in this greenhouse vegetable system.  相似文献   

4.
Agronomic practices affect soil phosphorus(P) availability, P uptake by plants, and subsequently the efficiency of P use. A field experiment was carried out to investigate the effects of various agronomic practices(straw incorporation, paddy water management, nitrogen(N) fertilizer dose, manure application,and biochar addition) on soil P availability(e.g., soil total P(STP), soil available P(SAP), soil microbial biomass P(SMBP), and rice P uptake as well as P use efficiency(PUE)) over four cropping seasons in a rice-rice cropping system, in subtropical central China. Compared to the non-straw treatment(control,using full dose of chemical N fertilizer), straw incorporation increased SAP and SMBP by 9.3%–18.5% and 15.5%–35.4%, respectively;substituting half the chemical N fertilizer dose with pig manure and the biochar application increased STP, SAP, and SMBP by 10.5%–48.3%, 30.2%–236.0%, and 19.8%–72.4%,respectively, mainly owing to increased soil P and organic carbon inputs;adding a half dose of N and no N input(reduced N treatments) increased STP and SAP by 2.6%–7.5% and 19.8%–33.7%, respectively, due to decreased soil P outputs. Thus, soil P availability was greatly affected by soil P input and use. The continuous flooding water regime without straw addition significantly decreased SMBP by 11.4% compared to corresponding treatments under a mid-season drainage water regime. Total P uptake by rice grains and straws at the harvest stage increased under straw incorporation and under pig manure application, but decreased under the reduced N treatments and under biochar application at a rate of 48 t ha-1, compared to the control. Rice P uptake was significantly positively correlated with rice biomass, and both were positively correlated with N fertilizer application rates, SAP, SMBP, and STP. Phosphorus use efficiency generally increased under straw incorporation but decreased under the reduced N treatments and under the manure application(with excessive P input), compared to the control. These results showed that straw incorporation can be used to increase soil P availability and PUE while decreasing the use of chemical P fertilizers. When substituting chemical fertilizers with pig manure, excess P inputs should be avoided in order to reduce P accumulation in the soil as well as the environmental risks from non-point source pollution.  相似文献   

5.
上海郊区蔬菜田氮素流失的研   总被引:12,自引:0,他引:12  
Nitrogen (N) leaching in vegetable fields from December 2002 to May 2003 with equal dressings of total N for a sequential rotation of Chinese flat cabbage (Brassica chinensis L. var. rosularis) and lettuce (Lactuca sativa L.) in a suburban major vegetable production base of Shanghai were examined using the lysimeter method to provide a scientific basis for rational utilization of nitrogen fertilizers so as to prevent nitrogen pollution of water resources. Results showed that leached N consisted mainly of nitrate N, which accounted for up to more than 90% of the total N loss and could contribute to groundwater pollution. Data also showed that by partly substituting chemical N (30%) in a basal dressing with equivalent N of refined organic fertilizer in the Chinese flat cabbage field, 64.5% of the leached nitrate N was reduced, while in the lettuce (Lactuca sativa L.) field, substituting 1/2 of the chemical N in a basal dressing and 1/3 of the chemical N in a top dressing with equivalent N of refined organic fertilizers reduced 46.6% of the leached nitrate N. In the twoyear sequential rotation system of Chinese flat cabbage and lettuce, nitrate-N leaching in the treatment with the highest amount of chemical fertilizer was up to 46.55 kg ha^-1, while treatment plots with the highest amount of organic fertilizer had only 17.58 kg ha^-1. Thus, partly substituting refined organic fertilizer for chemical nitrogen in the first two seasons has a great advantage of reducing nitrate-N leaching.  相似文献   

6.
Bio-organic fertilizers enriched with plant growth-promoting microbes(PGPMs)have been widely used in crop fields to promote plant growth and maintain soil microbiome functions.However,their potential effects on N2O emissions are of increasing concern.In this study,an in situ measurement experiment was conducted to investigate the effect of organic fertilizer containing Trichoderma guizhouense(a plant growth-promoting fungus)on soil N2O emissions from a greenhouse vegetable field.The following four treatments were used:no fertilizer(control),chemical fertilizer(NPK),organic fertilizer derived from cattle manure(O),and organic fertilizer containing T.guizhouense(O+T,referring to bio-organic fertilizer).The abundances of soil N cycling-related functional genes(amoA)from ammonium-oxidizing bacteria(AOB)and archaea(AOA),as well as nirS,nirK,and nosZ,were simultaneously determined using quantitative PCR(qPCR).Compared to the NPK plot,seasonal total N2O emissions decreased by 11.7%and 18.7%in the O and O+T plots,respectively,which was attributed to lower NH4+-N content and AOB amoA abundance in the O and O+T plots.The nosZ abundance was significantly greater in the O+T plot,whilst the AOB amoA abundance was significantly lower in the O+T plot than in the O plot.Relative to the organic fertilizer,bio-organic fertilizer application tended to decrease N2O emissions by 7.9%and enhanced vegetable yield,resulting in a significant decrease in yield-scaled N2O emissions.Overall,the results of this study suggested that,compared to organic and chemical fertilizers,bio-organic fertilizers containing PGPMs could benefit crop yield and mitigate N2O emissions in vegetable fields.  相似文献   

7.
Intensive management of planted forests may result in soil degradation and decline in timber yield with successive rotations.Biochars may be beneficial for plant production,nutrient uptake and greenhouse gas mitigation.Biochar properties vary widely and are known to be highly dependent on feedstocks,but their effects on planted forest ecosystem are elusive.This study investigated the effects of chicken manure biochar,sawdust biochar and their feedstocks on 2-year-old Pinus elliottii growth,fertilizer N use efficiency (NUE),soil N2O and CH4 emissions,and C storage in an acidic forest soil in a subtropical area of China for one year.The soil was mixed with materials in a total of 8 treatments:non-amended control (CK);sawdust at 2.16 kg m-2 (SD);chicken manure at 1.26 kg m-2 (CM);sawdust biochar at 2.4 kg m-2 (SDB);chicken manure biochar at 2.4 kg m-2 (CMB);15N-fertilizer alone (10.23 atom% 15N) (NF);sawdust biochar at 2.4 kg m-2 plus 15N-fertilizer (SDBN) and chicken manure biochar at 2.4 kg m-2 plus 15N-fertilizer (CMBN).Results showed that the CMB treatment increased P.elliottii net primary production (aboveground biomass plus litterfall) and annual net C fixation (ANCF) by about 180% and 157%,respectively,while the the SDB treatment had little effect on P.elliottii growth.The 15N stable isotope labelling technique revealed that fertilizer NUE was 22.7% in CK,25.5% in the NF treatment,and 37.0% in the CMB treatment.Chicken manure biochar significantly increased soil pH,total N,total P,total K,available P and available K.Only 2% of the N in chicken manure biochar was available to the tree.The soil N2O emission and CH4 uptake showed no significant differences among the treatments.The apparent C losses from the SD and CM treatments were 35% and 61%,respectively;while those from the CMB and SDB treatments were negligible.These demonstrated that it is crucial to consider biochar properties while evaluating their effects on plant growth and C sequestration.  相似文献   

8.
中国东部精细农业中N肥施用的最新动态和建议   总被引:21,自引:0,他引:21  
The Taihu Region in eastern China is one of China‘s most intensive agricultural regions and also one of the economic ally most developed areas. High nitrogen balance surpluses in the summer rice-winter wheat double-cropping systems are leading to large-scMe non-point source pollution of aquifers. In an interdisciplinary approach, four-year (1995-1998) field trials were carried out in two representative areas (Jurong County and Wuxi City) of the Taihu Region. Five farmers‘ field sites were chosen in each of the 2 locations, with each site divided into “standard“ (farmers‘ practice) and “reduced“ (by 30%-40%) N fertilization. For both fertilization intensities, N balance surpluses and monetary returns from grain sales minus fertilizer expenditures were calculated in an economic assessment. Based on the field trials, the mineral N fertilizer application rates reduced by about 10% for rice and 20%-30% for wheat were recommended in 1999. Since 1999, the research focused on the trends in N fertilizer application rates and changes in grain and agricultural commodities prices. Summer rice N fertilizer use, in Wuxi City as of 2001, dropped by roughly 25%, while for winter wheat it decreased by 10%-20%, compared to the 1995-1998 period. This has been achieved not only by grain policy and price changes, but also by an increased environmental awareness from government officials. Nitrogen balance surpluses in Anzhen Town (of Wuxi City) have consequently diminished by 50%-75% in rice and by up to 40% in wheat, with reductions being achieved without concomitant decreases in physical grain yields or returns from sales minus fertilizer costs.  相似文献   

9.
氮肥用量对太湖水稻田间氨挥发和氮素利用率的影响   总被引:28,自引:0,他引:28  
Ammonia volatilization losses, nitrogen utilization efficiency, and rice yields in response to urea application to a rice field were investigated in Wangzhuang Town, Changshu City, Jiangsu Province, China. The N fertilizer treatments, applied in triplicate, were 0 (control), 100, 200, 300, or 350 kg N ha^-1. After urea was applied to the surface water, a continuous airflow enclosure method was used to measure ammonia volatilization in the paddy field. Total N losses through ammonia volatilization generally increased with the N application rate, and the two higher N application rates (300 and 350 kg N ha^-1) showed a higher ratio of N lost through ammonia volatilization to applied N. Total ammonia loss by ammonia volatilization during the entire rice growth stage ranged from 9.0% to 16.7% of the applied N. Increasing the application rate generally decreased the ratio of N in the seed to N in the plant. For all N treatments, the nitrogen fertilizer utilization efficiency ranged from 30.9% to 45.9%. Surplus N with the highest N rate resulted in lodging of rice plants, a decreased rate of nitrogen fertilizer utilization, and reduced rice yields. Calculated from this experiment, the most economical N fertilizer application rate was 227 kg ha^-1 for the type of paddy soil in the Taihu Lake region. However, recommending an appropriate N fertilizer application rate such that the plant growth is enhanced and ammonia loss is reduced could improve the N utilization efficiency of rice.  相似文献   

10.
Global nitrogen (N) budgets for intensive agricultural systems were compiled for a 0.5 by 0.5 degree resolution. These budgets include N inputs (N fertilizer, animal manure, biological N fixation and atmospheric N deposition) and outputs (N removal from the field in harvested crops and grass and grass consumption by grazing animals, ammonia volatilization, denitrification and leaching). Data for the historical years 1970 and 1995 and a projection for 2030 were used to study changes in the recovery of N and the different loss terms for intensive agricultural systems. The results indicated that the overall system N recovery and fertilizer use efficiency slowly increased in the industrialized countries between 1970 and 1995, the values for developing countries have decreased in the same period. For the coming three decades our results indicated a rapid increase in both the industrialized and developing countries. High values of > 80% for fertilizer use efficiency may be related to surface N balance deficits, implying a depletion of soil N and loss of soil fertility. The projected intensification in most developing countries would cause a gradual shift from deficits to surpluses in the coming decades. The projected fast growth of crop and livestock production, and intensification and associated increase in fertilizer inputs would cause a major increase in the surface N balance surplus in the coming three decades. This implied increasing losses of N compounds to air (ammonia, nitrous oxide and nitric oxide), and groundwater and surface water (nitrate).  相似文献   

11.
在日光温室条件下,研究了不同氮素供应水平对白萝卜(Raphanus sativus L.)氮素利用和土壤硝态氮累积动态,并对土壤-作物体系的氮素表观平衡进行了评估。结果表明,随氮肥用量的增加,白萝卜产量和干物质累积量均没有显著升高,但根块内富集的硝酸盐含量显著增加。增施氮肥对白萝卜维生素C(Vc),可溶性糖和可溶性蛋白含量没有显著影响;随施氮量增加白萝卜根块氮素吸收量显著增加,当季氮肥利用率降低;当氮肥用量低于推荐施氮量(有机肥+200kg urea—N·hm^-2)时,整个白萝卜生长期,根层(0~60cm)土壤硝态氮均处于耗竭状态。当施氮量高于推荐施氮量时,根层硝态氮下降幅度减小,并在播种30d以后呈上升趋势;土壤一作物体系中播前无机氮(Nmin)和氮肥投入是主要输入项,输出项中以土壤无机氮残留和作物吸收为主。随施氮量的增加,氮素表观平衡值和土壤残留Nmin明显增加。系统氮素盈余量随施氮量的增加而增加。结合当地地力条件,在有机肥和磷钾肥配施的基础上,秋冬季白萝卜施氮量应控制在200kg·hm^-2以内。  相似文献   

12.
在天然降雨条件下, 通过田间小区试验, 研究了7种不同施肥模式(不施肥, 化肥基施, 化肥基追肥各半, 化肥和双氰胺基施, 化肥和双氰胺基追肥各半, 化肥和有机肥各半, 有机肥)对小白菜植株株高、株重、产量、氮磷钾累积量、肥料利用率及菜地硝态氮、氨态氮及水溶性总磷随地表径流流失的影响.结果表明, 与不施肥对照处理相比, 化肥和有机肥各半、化肥和双氰胺基追肥各半2种施肥模式不仅能改善小白菜生长农艺性状, 可分别提高产量154.44%和172.18%, 增加植株氮、磷、钾累积量183.20%和327.21%、310.49%和247.67%、205.95%和189.39%, 蔬菜种植期间菜地土壤硝氨态氮总量、水溶性总磷随地表径流的流失量还能分别减少63.10%和56.53%、39.97%和48.44%, 从而明显减少了菜地土壤造成的农业面源污染, 因此, 该2种施肥模式值得在今后蔬菜生产上加以推广应用;而化肥基施的施肥模式明显促进了菜地土壤硝态氮、氨态氮和水溶性磷随地表径流的流失, 故此种施肥模式在蔬菜生产上应加以避免.  相似文献   

13.
不同施肥模式对设施菜田土壤微生物量碳、氮的影响   总被引:9,自引:4,他引:5  
【目的】 本文利用天津日光温室蔬菜不同施肥模式定位试验,研究了不同施肥模式对设施菜田土壤微生物量碳、氮含量的影响,为设施蔬菜高效施肥和菜田土壤可持续利用提供依据。 【方法】 调查在第 9 茬蔬菜 (秋冬茬芹菜) 和第 10 茬蔬菜 (春茬番茄) 进行。定位试验设 8 个处理,分别为:1) 不施氮;2) 全部施用化肥氮 (4/4CN);3) 3/4 化肥氮 + 1/4 猪粪氮 (3/4CN + 1/4PN);4) 2/4 化肥氮 + 2/4 猪粪氮 (2/4CN + 2/4PN);5) 1/4 化肥氮 + 3/4 猪粪氮( 1/4CN + 3/4PN);6) 2/4 化肥氮 + 1/4 猪粪氮 + 1/4 秸秆氮 (2/4CN + 1/4PN + 1/4SN);7) 2/4 化肥氮 + 2/4 秸秆氮 (2/4CN + 2/4SN);8) 农民习惯施肥 (CF),除不施氮肥和农民习惯施肥外,其余处理为等氮磷钾处理。在不同生育时期,采 0—20 cm 土壤样品,测定土壤微生物量碳、氮含量,并分析其与蔬菜产量之间的关系。 【结果】 两茬蔬菜不同施肥模式土壤微生物量碳、氮含量总体上均随生育期的推进呈先增后降的趋势。芹菜季较高土壤微生物量碳含量出现在定植后 90 d,土壤微生物量氮较高含量出现在定植后 60 d;番茄季分别出现在定植后 20~80 d 和 60 d。芹菜季 5 个有机无机肥料配施模式土壤微生物量碳、氮含量分别在 185.0~514.6 和 34.3~79.1 mg/kg 之间,较化肥(4/4CN)模式平均分别增加 15.1%~81.7% 和 24.5%~100.0%,其中以配施秸秆模式土壤微生物量碳、氮含量相对较高,平均分别增加 62.0%~81.7% 和 81.1%~100.0%;番茄季 5 个有机无机肥料配施模式土壤微生物量碳、氮含量分别在 120.7~338.0 和 25.5~68.8 mg/kg 之间,较 4/4CN 模式平均分别增加 16.9%~86.9% 和 12.2%~109.3%,又以配施秸秆模式土壤微生物量碳、氮含量最高,平均分别增加 61.4%~86.9% 和 78.2%~109.3%。两季蔬菜不同生育期土壤微生物量碳、氮含量与当季蔬菜产量和定位试验开始以来蔬菜总产量之间均呈极显著正相关关系。 【结论】 同等养分投入量下,有机无机肥料配合施用提高土壤微生物量碳、氮的效果显著好于单施化肥,又以化肥配施秸秆效果更佳;土壤微生物量碳、氮含量与设施蔬菜产量之间呈极显著正相关关系。证明有机无机肥配施,特别是配施一定量的秸秆可有效提高土壤微生物量碳、氮含量,维持较高的菜田土壤肥力,有利于设施蔬菜的可持续和高效生产。   相似文献   

14.
通过一年三茬蔬菜田间试验,研究了7种不同施肥模式(即,不施肥,化肥基施,化肥基追肥各半,化肥和双氰胺基施,化肥和双氰胺基追肥各半,化肥和有机肥各半,有机肥)对蔬菜产量、硝酸盐含量及菜地氮、磷随地表径流流失的影响。结果表明,化肥和有机肥各半、化肥和双氰胺基施等两种施肥模式,不仅能使蔬菜获得较高的产量,硝酸盐含量较低,还能明显减少蔬菜种植期间菜地硝态氮、铵态氮和水溶性总磷随地表径流的流失量,从而减少了菜地土壤造成的农业面源污染,值得在今后蔬菜生产上加以推广应用。  相似文献   

15.
[目的]明确京津冀地区农牧系统氮素流动及平衡特征,解析化学氮肥减施潜力,从而为该地区化肥零增长和农业绿色发展提供依据.[方法]通过收集文献数据及2017年统计数据,采用Nufer(nutrient flows in food chain,environment and resources use)模型,以"农田-畜牧"...  相似文献   

16.
不同有机肥与化肥配施对氮素利用率和土壤肥力的影响   总被引:15,自引:7,他引:8  
【目的】不同类型畜禽粪便有机肥在成分和性质上存在明显差异,本文研究了华北地区主要有机肥与化肥以不同比例配施后,对作物氮素吸收利用及土壤养分的影响,以期为本地区有机肥的科学利用提供理论依据和数据支撑。【方法】在华北平原冬小麦–夏玉米种植区进行田间试验。以推荐养分施用量 (每季作物N 225 kg/hm2) 为基础,设置了1个常规单施化肥处理 (CF),12个鸡粪、猪粪和牛粪氮分别与化肥氮配比处理 (有机肥氮素占比25%、50%、75%、100%),化肥及3种有机肥的加倍单施处理,同时设1个不施肥处理为对照,共18个处理。分析了作物的氮素吸收量、氮素利用效率,测定了0—20、20—40 cm土层土壤氮、磷、钾含量。【结果】常规施肥量下,单施鸡粪、猪粪、牛粪处理的氮素收获指数 (NHI) 均与化肥处理相当,平均为79.06%;单施牛粪处理的氮素生理利用率 (NPE) 为64.42 kg/kg,显著高于化肥处理;而单施鸡粪、猪粪处理的NPE与化肥处理相当,平均为55.14 kg/kg。与常规施肥量相比,加倍施用鸡粪、猪粪和化肥处理的显著降低NHI值和NPE值,而加倍牛粪处理的NHI与NPE值没有降低。牛粪、鸡粪、猪粪与化肥配施的处理间NHI与NPE值均未表现出显著性差异,且与单施化肥的处理相当。常规施氮量下,单施猪粪、鸡粪处理的氮素偏生产力 (PFP) 和回收率 (NRE) 接近,均值为分别39.67 kg/kg和41.85%,达到了单施化肥处理的水平,而牛粪处理的氮素PFP以及NRE仅为29.08 kg/kg和15.6%,显著低于化肥、鸡粪和猪粪处理。与常规施氮量相比,加倍施用牛粪、鸡粪、猪粪和化肥处理的氮素的PFP值平均降低了49.1%,氮肥NRE值平均降低了23.2%。牛粪、鸡粪、猪粪与化肥各配施比例处理的氮素PFP和NRE值均达到了单施化肥的水平。与单施化肥相比,单施有机肥以及有机无机配施没有明显提高土壤全氮含量,但显著提高有效磷和速效钾含量,单施鸡粪、猪粪处理土壤表层有效磷含量分别是单施化肥处理的5.82和7.06倍。【结论】推荐施肥量下,鸡粪或猪粪单独施用或配施少量化肥氮,牛粪配施75%左右的化肥氮可实现与化肥相当的氮素利用效率,同时提升土壤肥力。在实际生产中应根据有机肥特性调节有机肥与化肥配施比例,实现有机肥的科学利用。  相似文献   

17.
山东省农业污染综合分析与评价   总被引:1,自引:1,他引:0  
山东省的农业生产在全国占有重要地位,然而农业非点源污染的日益严重使产地环境质量问题日趋突出,对优势农产品的生产与出口构成巨大威胁。从化肥、畜禽粪便、生活排污、秸秆、农药、地膜6个方面分析了目前山东省农业污染的主要影响因素,计算了2001—2006年主要污染源中氮、磷元素的排放量与流失量。结果表明,农业生产过程中农业化学品的大量投入与农业废弃物的大量产出及不合理利用,是目前山东省农业污染发生的主要原因;在对氮、磷流失负荷的贡献上,畜禽粪便、化肥与生活排污是农业污染的3种主要污染源,2006年3种污染源共造成6.73×105t氮素与1.35×105t磷素流失,其中畜禽粪便、化肥与生活排污分别占50.78%,41.99%,7.22%与80.30%,11.78%,7.93%;山东省农业污染在源头预防层次上应重点加强两方面的研究,一是化肥等农用化学品的高效施用技术,二是畜禽粪便等农产废弃物的资源化利用技术。  相似文献   

18.
长期施肥对农田土壤氮素关键转化过程的影响   总被引:32,自引:0,他引:32  
王敬  程谊  蔡祖聪  张金波 《土壤学报》2016,53(2):292-304
当前,如何合理施肥、提高作物产量、维持土壤肥力、并兼顾生态环境效应是农业研究的主要挑战之一。本文综述了长期施肥对农田土壤氮素关键转化过程的影响,主要从土壤氮转化过程的初级转化速率角度综述肥料(有机肥和化学氮肥)对土壤氮素关键转化过程的影响。土壤氮素矿化-同化循环是自然界氮循环过程中两个至关重要的环节,是决定土壤供氮能力的重要因素。总体而言,长期施用氮肥,尤其是有机肥能显著提高初级矿化-同化周转速率;长期施肥可以刺激自养硝化作用,且有机肥的刺激作用更明显;施用化学氮肥和有机肥均能提高反硝化速率,且有机肥的刺激作用高于化学氮肥。有机肥一直被提倡和实践用来改善土壤肥力和提高土壤固碳能力,无论是单施有机肥还是有机-无机配施,均能有效地减轻硝酸盐污染,改善土壤肥力并提高作物产量。但是有机肥的施用并不是多多益善,有机肥过多施用也会增加氮损失的风险。因此,本文综述了长期施肥对农田土壤氮素关键转化过程初级转化速率的影响,讨论了各个氮转化过程之间的联系,以期增强人们对长期施肥措施影响农田土壤氮素循环的理解,并为合理施用氮肥、提高氮肥利用率、减少与氮相关的环境污染提供理论依据。  相似文献   

19.
2018年8月~2019年6月,调研了顺义区31个典型设施蔬菜生产经营主体的生产及施肥现状及该区畜禽养殖粪源年产出情况,并借助估算模型,分析了该区蔬菜产业有机肥替代化肥的潜力.结果表明,该区设施蔬菜以果菜、叶菜和瓜菜为主,排名前10位的蔬菜按照种植面积由大至小排序依次为:番茄、西瓜、生菜、白菜、茄子、辣椒、芹菜、甘蓝、...  相似文献   

20.
河北省果园氮素投入特点及其土壤氮素负荷分析   总被引:19,自引:1,他引:18  
以河北省果园土壤地力调查、农户调查和统计数据为基础,采用氮盈余法从果树种类和区域角度分析了果园生产体系中的氮素输入输出特点及氮养分盈余状况。结果表明,河北果园平均化肥氮投入量为438.0 kg/hm2,主要品种为尿素和复合肥,有机肥氮为181.6 kg/hm2,以畜禽粪为主,其中禽粪占25.5%。京津东部区和冀中、南平原区的果园氮素投入、盈余量较高;葡萄园和桃园的氮素投入水平较高;果园氮素施用与养分盈余量之间存在极显著的正相关,过量施用氮肥是氮盈余量很高的主要原因。随着氮盈余量增加,果园土壤全氮呈增加趋势,而土壤C/N均呈下降趋势,氮素盈余对土壤全氮的影响大于对土壤有机质的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号