首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The pharmacokinetics of doxycycline were investigated in sheep after oral (PO) and intravenous (IV) administration. The IV data were best described using a 2- (n = 5) or 3- (n = 6) compartmental open model. Mean pharmacokinetic parameters obtained using a 2-compartmental model included a volume of distribution at steady-state (Vss) of 1.759 ± 0.3149 L/kg, a total clearance (Cl) of 3.045 ± 0.5264 mL/kg/min and an elimination half-life (t1/2β) of 7.027 ± 1.128 h. Comparative values obtained from the 3-compartmental mean values were: Vss of 1.801 ± 0.3429 L/kg, a Cl of 2.634 ± 0.6376 mL/kg/min and a t1/2β of 12.11 ± 2.060 h. Mean residence time (MRT0−∞) was 11.18 ± 3.152 h. After PO administration, the data were best described by a 2-compartment open model. The pharmacokinetic parameter mean values were: maximum plasma concentration (Cmax), 2.130 ± 0.950 μg/mL; time to reach Cmax (tmax), 3.595 ± 3.348 h, and absorption half-life (t1/2k01), 36.28 ± 14.57 h. Non-compartmental parameter values were: Cmax, 2.182 ± 0.9117 μg/mL; tmax, 3.432 ± 3.307 h; F, 35.77 ± 10.20%, and mean absorption time (MAT0–∞), 25.55 ± 15.27 h. These results suggest that PO administration of doxycycline could be useful as an antimicrobial drug in sheep.  相似文献   

2.
OBJECTIVE: To compare pharmacokinetics of enrofloxacin administered IV and in various oral preparations to ewes. ANIMALS: 5 mature Katahdin ewes weighing 42 to 50 kg. PROCEDURE: Ewes received 4 single-dose treatments of enrofloxacin in a nonrandomized crossover design followed by a multiple-dose oral regimen. Single-dose treatments consisted of an IV bolus of enrofloxacin (5 mg/kg), an oral drench (10 mg/kg) made from crushed enrofloxacin tablets, oral administration in feed (10 mg/kg; mixture of crushed enrofloxacin tablets and grain), and another type of oral administration in feed (10 mg/kg; mixture of enrofloxacin solution and grain). The multiple-dose regimen consisted of feeding a mixture of enrofloxacin solution and grain (10 mg/kg, q 24 h, for 7 days). Plasma concentrations of enrofloxacin and ciprofloxacin were measured by use of high-performance liquid chromatography. RESULTS: Harmonic mean half-life for oral administration was 14.80, 10.80, and 13.07 hours, respectively, for the oral drench, crushed tablets in grain, and enrofloxacin solution in grain. Oral bioavailability for the oral drench, crushed tablets in grain, and enrofloxacin in grain was 4789, 98.07, and 94.60%, respectively, and median maximum concentration (Cmax) was 1.61, 2.69, and 2.26 microg/ml, respectively. Median Cmax of the multiple-dose regimen was 2.99 microg/ml. CONCLUSIONS AND CLINICAL RELEVANCE: Enrofloxacin administered orally to sheep has a prolonged half-life and high oral bioavailability. Oral administration at 10 mg/kg, q 24 h, was sufficient to achieve a plasma concentration of 8 to 10 times the minimum inhibitory concentration (MIC) of any microorganism with an MIC < or = 0.29 microg/ml.  相似文献   

3.
Rung, K., Riond, J.-L. & Wanner, M. Pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin after intravenous and oral administration of enrofloxacin in dogs. J. vet
Four dogs were given 5 mg/kg body weight enrofloxacin intravenously (i.v.) and orally (p.o.) in a cross-over study. Plasma concentrations of the active ingredient enrofloxacin and its main metabolite ciprofloxacin were determined by a reversed phase liquid chromatographic method. Pharmacokinetic parameters of both substances were calculated by use of statistical moments and were compared to those of enrofloxacin described in the veterinary literature. Mean enrofloxacin t ½λZ was 2.4 h, mean Cls was 27.1 ml/min-kg, and mean Vss was 7.0 1/kg. After i.v. and p.o. administration, concentrations of ciprofloxacin exceeding minimal inhibitory concentrations of several microorganisms were reached (Cmax= 0.2 ng/ml, max = 2.2 h after intravenous administration; Cmax= 0.2 (ig/ml, t max= 3.6 h after oral administration). A considerable part of the antimicrobial activity is due to ciprofloxacin, the main metabolite of enrofloxacin.  相似文献   

4.
The pharmacokinetics of levamisole at doses of 5, 7.5 and 10 mg/kg were determined after its intravenous administration to eighteen healthy Merino sheep. Using compartmental analysis, the disposition of the drug best fitted a two-compartmental open model. The mean values for the compartmental volume of distribution at steady state (Vss) were 2.034 +/- 0.23 I, 2.347 +/- 0.720 and 2.001 +/- 0.367 I/kg for each dose, respectively, and values obtained using the statistical moment theory were 2.141 +/- 0.269,2.390 +/- 0.536 and 2.140 +/- 0.345 l/kg for each dose, respectively. There were no dose-related differences (one-way ANOVA) in the constants describing distribution and elimination phases (alpha and beta) or Vss, but significant differences were detected in the total body clearance (Cl) and the area under the plasma concentration-time curve (AUC). After non-compartmental analysis, no significant differences were found when the parameters lambda (the linear terminal slope) and Vss were compared, but significant differences were detected in Cl and AUC. There were no significant differences between the values obtained using the compartmental and non-compartmental analysis when lambda -beta, Cl, Vss, and AUC were compared.  相似文献   

5.
6.
The pharmacokinetics of indomethacin (1mg/kg) was determined in six adult sheep after intravenous (i.v.) and intramuscular (i.m.) injection. Plasma concentrations were maintained within the therapeutic range (0.3–3.0 μg/mL) from 5 to 50 min after i.v. and from 5 to 60–90 min after i.m. administration. After two trials, indomethacin best fitted an open two-compartment model. The mean (±SD) volumes of distribution at steady state ( V dss) were 4.10 ± 1.40 and 4.21 ± 1.93 L/kg and the mean clearance values ( C lB) were 0.17 ± 0.06 and 0.22 ± 0.12 L/h.kg for i.v. and i.m. routes, respectively. The elimination phase half-lives did not show any significant difference between routes of injection ( t ½β = 17.4 ± 4.6 and 21.25 ± 4.44 h, i.v. and i.m. respectively). After i.m. administration, plasma maximum concentration ( C max =  1.10 ± 0.68 μg/mL) was reached 10 min after dosing; the absorption phase was fast ( K ab = 26 ± 18 h-1) and short ( t ½ab = 2.33 ± 1.51 min) and the mean bioavailability was 91.0 ± 32.8%, although there was considerable interanimal variation. In some individuals, bioavailability was higher than 100%. This fact combined with the slower elimination phase after i.m. than after i.v. administration, could be related with enterohepatic recycling.  相似文献   

7.
8.
The disposition kinetics of moxifloxacin, a fluoroquinolone antibiotic, after intravenous (IV), intramuscular (IM) and subcutaneous (SC) administration was determined in sheep at a single dose of 5 mg/kg. The concentration-time data were analysed by compartmental (after IV dose) and non-compartmental (after IV, IM and SC administration) pharmacokinetic methods. Plasma concentrations of moxifloxacin were determined by high performance liquid chromatography with fluorescence detection. Steady-state volume of distribution (Vss) and clearance (Cl) of moxifloxacin after IV administration were 2.03 ± 0.36 L/kg and 0.39 ± 0.04 L/h kg, respectively. Following IM and SC administration, moxifloxacin achieved maximum plasma concentration of 1.66 ± 0.62 mg/L and 0.90 ± 0.19 mg/L at 2.25 ± 0.88 h and 3.25 ± 1.17 h, respectively. The absolute bioavailabilities after IM and SC routes were 96.12 ± 32.70% and 102.20 ± 23.76%, respectively. From these data (kinetic parameters and absence of adverse reactions) moxifloxacin may be a potentially useful antibiotic in sheep.  相似文献   

9.
The disposition kinetics of difloxacin, a fluoroquinolone antibiotic, after intravenous (IV), intramuscular (IM) and subcutaneous (SC) administration were determined in sheep at a single dose of 5mg/kg. The concentration-time data were analysed by compartmental (after IV dose) and non-compartmental pharmacokinetics method (after IV, IM and SC administration). Plasma concentrations of difloxacin were determined by high performance liquid chromatography with fluorescence detection. Steady-state volume of distribution (V(ss)) and clearance (Cl) of difloxacin after IV administration were 1.68+/-0.21L/kg and 0.21+/-0.03L/hkg, respectively. Following IM and SC administration difloxacin achieved maximum plasma concentration of 1.89+/-0.55 and 1.39+/-0.14mg/L at 2.42+/-1.28 and 5.33+/-1.03h, respectively. The absolute bioavailabilities after IM and SC routes were 99.92+/-26.50 and 82.35+/-25.65%, respectively. Based on these kinetic parameters, difloxacin is likely to be effective in sheep.  相似文献   

10.
The pharmacokinetics of chloramphenicol were studied in sheep after 3 single intravenous (IV), intramuscular (IM) and subcutaneous (SC) administrations (30 mg/kg). The two extravascular routes were studied during a crossover trial for a bioequivalence test. After IV and SC administrations, the plasma-concentration time graphs were characteristic of a two-compartment model, and after IM administration it was characteristic of a monocompartment model. The two routes of absorption were not bioequivalent. Using the kinetic values, multidose regimens to maintain the therapeutic chloramphenicol blood level (5 micrograms/ml) were proposed: 60 mg/kg every 12 hours for 72 hours for the IM administration and 45 mg/kg administered subcutaneously according to the same regimen. A study of the chloramphenicol residues in tissues was carried out. Chloramphenicol residues remained at the injection site, and 400 hours would be necessary to obtain the level of 10 micrograms/kg. Determination of the creatinine phosphokinase serum values showed that the subcutaneous route induced less damage to muscle than the intramuscular route.  相似文献   

11.
Li G  Yang F  He L  Ding H  Sun N  Liu Y  Liu Y  Shan Q  Li Y  Zeng Z 《Research in veterinary science》2012,93(3):1380-1386
Pharmacokinetics of mequindox (MEQ) and its metabolites were determined in rats after intravenous (i.v.) and oral (p.o.) administration of MEQ at a single dose of 10mgkg(-1) bodyweight. After both administrations, MEQ and five of its metabolites were quantified, except M4, whereas M1 and M2 were the predominant ones. The areas under the concentration-time curves (hngmL(-1)) of MEQ, M1, M2, M3, M5 and M10 after i.v. administration were 7559±495, 6354±2761, 5586±2337, 1034±160, 2370±791 and 1813±622, respectively, whereas after p.o. administration, remained as 2809±40, 4361±3544, 4351±1046, 1444±814, 3864±305 and 1213±569, respectively. The elimination half-lives (h) of these compounds after i.v. administration were 3.48±0.80, 4.20±0.76, 6.25±2.41, 4.77±1.54, 4.69±1.62 and 16.89±5.15, respectively, and were 3.21±0.40, 3.66±1.06, 4.20±1.03, 8.91±5.99, 4.20±2.02 and 20.84±10.85 after p.o. administration, respectively. After p.o. administration, the bioavailability of MEQ was 37.16%. The results showed that MEQ was extensively metabolized in rats and rapidly absorbed after p.o. administration.  相似文献   

12.
Pharmacokinetics of mequindox (MEQ) and its metabolites were determined in rats after intravenous (i.v.) and oral (p.o.) administration of MEQ at a single dose of 10 mg kg−1 bodyweight. After both administrations, MEQ and five of its metabolites were quantified, except M4, whereas M1 and M2 were the predominant ones. The areas under the concentration–time curves (h ng mL−1) of MEQ, M1, M2, M3, M5 and M10 after i.v. administration were 7559 ± 495, 6354 ± 2761, 5586 ± 2337, 1034 ± 160, 2370 ± 791 and 1813 ± 622, respectively, whereas after p.o. administration, remained as 2809 ± 40, 4361 ± 3544, 4351 ± 1046, 1444 ± 814, 3864 ± 305 and 1213 ± 569, respectively. The elimination half-lives (h) of these compounds after i.v. administration were 3.48 ± 0.80, 4.20 ± 0.76, 6.25 ± 2.41, 4.77 ± 1.54, 4.69 ± 1.62 and 16.89 ± 5.15, respectively, and were 3.21 ± 0.40, 3.66 ± 1.06, 4.20 ± 1.03, 8.91 ± 5.99, 4.20 ± 2.02 and 20.84 ± 10.85 after p.o. administration, respectively. After p.o. administration, the bioavailability of MEQ was 37.16%. The results showed that MEQ was extensively metabolized in rats and rapidly absorbed after p.o. administration.  相似文献   

13.
OBJECTIVE: To determine serum pharmacokinetics of pentoxifylline and its 5-hydroxyhexyl metabolite in horses after administration of a single IV dose and after single and multiple oral doses. ANIMALS: 8 healthy adult horses. PROCEDURES: A crossover study design was used with a washout period of 6 days between treatments. Treatments were IV administration of a single dose of pentoxifylline (8.5 mg/kg) and oral administration of generic sustained-release pentoxifylline (10 mg/kg, q 12 h, for 8 days). Blood samples were collected 0, 1, 3, 6, 12, 20, 30, and 45 minutes and 1, 2, 4, 6, 8, and 12 hours after IV administration. For oral administration, blood samples were collected 0, 0.25, 0.5, 0.75, 1, 2, 4, 8, and 12 hours after the first dose and 0, 0.25, 0.5, 0.75, 1, 2, 4, 8, 12, and 24 hours after the last dose. RESULTS: Elimination of pentoxifylline was rapid after IV administration. After oral administration, pentoxifylline was rapidly absorbed and variably eliminated. Higher serum concentrations of pentoxifylline and apparent bioavailability were observed after oral administration of the first dose, compared with values after administration of the last dose on day 8 of treatment. CONCLUSIONS AND CLINICAL RELEVANCE: In horses, oral administration of 10 mg of pentoxifylline/kg results in serum concentrations equivalent to those observed for therapeutic doses of pentoxifylline in humans. Twice daily administration appears to be appropriate. However, serum concentrations of pentoxifylline appear to decrease with repeated dosing; thus, practitioners may consider increasing the dosage if clinical response diminishes with repeated administration.  相似文献   

14.
Tramadol is a centrally acting analgesic drug that has been used clinically for the last two decades to treat moderate to moderately severe pain in humans. The present study investigated tramadol administration in horses by intravenous, intramuscular, oral as immediate-release and oral as sustained-release dosage-form routes. Seven horses were used in a four-way crossover study design in which racemic tramadol was administered at 2 mg/kg by each route of administration. Altogether, 23 blood samples were collected between 0 and 2880 min. The concentration of tramadol and its M1 metabolite were determined in the obtained plasma samples by use of an LC/MS/MS method and were used for pharmacokinetic calculations. Tramadol clearance, apparent volume of distribution at steady-state, mean residence time (MRT) and half-life after intravenous administration were 26+/-3 mL/min/kg, 2.17+/-0.52 L/kg, 83+/-10 min, and 82+/-10 min, respectively. The MRT and half-life after intramuscular administration were 155+/-23 and 92+/-14 min. The mean absorption time was 72+/-22 min and the bioavailability 111+/-39%. Tramadol was poorly absorbed after oral administration and only 3% of the administered dose was found in systemic circulation. The fate of the tramadol M1 metabolite was also investigated. M1 appeared to be a minor metabolite in horses, which could hardly be detected in plasma samples. The poor bioavailability after oral administration and the short half-life of tramadol may restrict its usefulness in clinical applications.  相似文献   

15.
Metronidazole pharmacokinetics in horses was studied after intravenous (i.v.), rectal (p.r.) and oral (p.o.) administration at 20 mg/kg using a triple crossover study design. Metronidazole mean+/-SD half-life was 196+/-39, 212+/-30 and 240+/-65 min after i.v., p.r. and p.o. administration, respectively. The metronidazole clearance was 2.8 (mL/min/kg) and the volume of distribution at steady state was 0.68 L/kg. The pharmacokinetic parameters calculated for metronidazole after administration of the drug by the various routes showed that bioavailability (74+/-18 vs. 30+/-9%) and maximum serum concentration (22+/-8 vs. 9+/-2 microg /mL) were significantly higher after p.o. administration compared with p.r. administration. There were no significant differences in mean absorption time (45+/-69 vs. 66+/-18 min) and the time to reach maximum serum concentration (65+/-36 vs. 58+/-18 min). The results indicated that p.r. administration of metronidazole to horses, although inferior to p.o. administration in terms of bioavailability, provides an alternative route of administration when p.o. administration cannot be used.  相似文献   

16.
17.
OBJECTIVE: To evaluate the pharmacokinetics of pentoxifylline (PTX) and its 5-hydroxyhexyl-metabolite, metabolite 1 (M1), in dogs after IV administration of a single dose and oral administration of multiple doses. ANIMALS: 7 sexually intact, female, mixed-breed dogs. PROCEDURE: A crossover study design was used so that each of the dogs received all treatments in random order. A drug-free period of 5 days was allowed between treatments. Treatments included IV administration of a single dose of PTX (15 mg/kg of body weight), oral administration of PTX with food at a dosage of 15 mg/kg (q 8 h) for 5 days, and oral administration of PTX without food at a dosage of 15 mg/kg (q 8 h) for 5 days. Blood samples were taken at 0.25, 0.5, 1, 1.5, 2, 2.5, and 3 hours after the first and last dose of PTX was administered PO, and at 5, 10, 20, 40, 80, and 160 minutes after PTX was administered IV. RESULTS: PTX was rapidly absorbed and eliminated after oral administration. Mean bioavailability after oral administration ranged from 15 to 32% among treatment groups and was not affected by the presence of food. Higher plasma PTX concentrations and apparent bioavailability were observed after oral administration of the first dose, compared with the last dose during the 5-day treatment regimens. CONCLUSIONS AND CLINICAL RELEVANCE: In dogs, oral administration of 15 mg of PTX/kg results in plasma concentrations similar to those produced by therapeutic doses in humans, and a three-times-a-day dosing regimen is the most appropriate.  相似文献   

18.
19.
This study describes the pharmacokinetics of vitacoxib in healthy rabbits following administration of 10 mg/kg intravenous (i.v.) and 10 mg/kg oral. Twelve New Zealand white rabbits were randomly allocated to two equally sized treatment groups. Blood samples were collected at predetermined times from 0 to 36 hr after treatment. Plasma drug concentrations were determined using UPLC‐MS/MS. Pharmacokinetic analysis was completed using noncompartmental methods via WinNonlin? 6.4 software. The mean concentration area under curve (AUClast) for vitacoxib was determined to be 11.0 ± 4.37 μg hr/ml for i.v. administration and 2.82 ± 0.98 μg hr/ml for oral administration. The elimination half‐life (T1/2λz) was 6.30 ± 2.44 and 6.30 ± 1.19 hr for the i.v. and oral route, respectively. The Cmax (maximum plasma concentration) and Tmax (time to reach the observed maximum (peak) concentration at steady‐state) following oral application were 189 ± 83.1 ng/ml and 6.58 ± 3.41 hr, respectively. Mean residence time (MRTlast) following i.v. injection was 6.91 ± 3.22 and 11.7 ± 2.12 hr after oral administration. The mean bioavailability of oral administration was calculated to be 25.6%. No adverse effects were observed in any rabbit. Further studies characterizing the pharmacodynamics of vitacoxib are required to develop a formulation of vitacoxib for rabbits.  相似文献   

20.
OBJECTIVE: To determine the pharmacokinetics of acetazolamide administered IV and orally to horses. ANIMALS: 6 clinically normal adult horses. PROCEDURE: Horses received 2 doses of acetazolamide (4 mg/kg of body weight, IV; 8 mg/kg, PO), and blood samples were collected at regular intervals before and after administration. Samples were assayed for acetazolamide concentration by high-performance liquid chromatography, and concentration-time data were analyzed. RESULTS: After IV administration of acetazolamide, data analysis revealed a median mean residence time of 1.71 +/- 0.90 hours and median total body clearance of 263 +/- 38 ml/kg/h. Median steady-state volume of distribution was 433 +/- 218 ml/kg. After oral administration, mean peak plasma concentration was 1.90 +/- 1.09 microg/ml. Mean time to peak plasma concentration was 1.61 +/- 1.24 hours. Median oral bioavailability was 25 +/- 6%. CONCLUSIONS AND CLINICAL RELEVANCE: Oral pharmacokinetic disposition of acetazolamide in horses was characterized by rapid absorption, low bioavailability, and slower elimination than observed initially after IV administration. Pharmacokinetic data generated by this study should facilitate estimation of appropriate dosages for acetazolamide use in horses with hyperkalemic periodic paralysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号