首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seedlings (transplants) of 2+1 Sitka spruce (Picea sitchensis(Bong.) Carr.) and 1 + 1 Douglas fir (Pseudotsuga menziesii(Mirb.) Franco) were grown in a nursery at the Bush Estate,Scotland. Batches were lifted and cold stored at 0.5°C inNovember, December and January. Changes in growth, shoot apicalmitotic index, root growth potential (RGP), carbohydrate content,bud dormancy and shoot frost hardiness were monitored throughoutthe winter by taking samples at intervals from the nursery andfrom cold storage. Frost hardening occurred during the later stages of bud development(as mitotic indices decreased); autumn hardening was arrestedwhen seedlings were put in cold store, and some dehardeningoccurred in cold storage, especially in spring. Bud dormancystarted, and was greatest, just after bud growth (mitotic activity)virtually ceased; chilling in cold store was almost as effectivein releasing dormancy as natural chilling. The concentrationof total nonstructural carbohydrates stayed more or less constantat 100–150mg g–1 from September to April in thenursery; in cold storage carbohydrates were depleted at 0.4–0.6mgg–1 d–1 (corresponding to respiration at 0.03–0.05mgCO2 g–1 h–1) until there was only 40–50mgg–1. Root growth potentials in the nursery increased in December,once the buds ceased growth, became dormant and had receivedsome chilling. Sitka spruce was ‘storable’ in November,before RGPs increased, but they then failed to achieve maximalfrost hardiness or ROP. Winter RGPs were high in Sitka spruceand were increased or maintained in cold storage, whereas RGPswere low in Douglas fir and decreased immediately after storage(except when stored in January). By the end of April, the RGPof cold stored Sitka spruce was much higher than that of directlifted plants. ROP changes in the nursery and in cold storagewere not consistently related to changes in seedling carbohydratecontents, shoot frost hardiness or bud dormancy. In practical terms, it was concluded that (1) the optimum dateto start lifting bare- rooted conifer transplants in the autumnis when their shoot apical mitotic indices have decreased tonear zero, and their RGPs have risen sharply; (2) high RGPsmay depend as much on the morphology of the roots (e.g. numberof undamaged root apices) as on the physiology of the shoots(e.g. carbohydrate status, dormancy and frost hardiness); and(3) in spring, transplants kept in cold storage since November,December or January are more frost hardy, slightly more dormant,and (in May) have higher RGPs than transplants lifted from thenursery.  相似文献   

2.
GOSLING  P. G. 《Forestry》1991,64(1):51-59
Beechnuts are not easy to store or long-lived in storage. Theyexhibit storage characteristics between those of ‘orthodox’and ‘recalcitrant’ seeds. Superimposed upon thisis a pronounced dormancy which is overcome by between 4 and20 weeks of moist chilling. Pretreatment periods of 15–20weeks occupy most of the time between collection in Octoberand sowing the following April; hence short-term storage isa combination of moist storage and pretreatment. Most evidencepoints to the best short-term storage/pretreatment conditionsbeing 0–5°C at 28–32 per cent moisture content(m.c.) (fresh weight basis). Long-term storage requires a periodat low moisture content and the best conditions appear to be10 per cent m.c. and –10°C or below. The relative merits of overcoming seed dormancy before or afterdry storage are reviewed. There is no consensus about whichsequence is best but the former procedure is likely to be preferredby nursery managers because it allows storage of non-dormantnuts which can be withdrawn from store and sown immediately. Received 13 February 1990.  相似文献   

3.
An experiment was conducted to ascertain what relationships might exist among dormancy status, cold hardiness and stress resistance in 2+0 Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), seedlings. Seedlings were lifted from a western Washington nursery on six dates spanning the 1980–81 lifting season. On each date samples of seedlings were subjected to the following treatment: (1) tumbling for 5 minutes, (2) desiccation of roots for 30 minutes at 30°C and 2.1 kPa vapor pressure deficit, (3) exposure of shoots to temperatures of –10°C, –15°C or –20°C for two hours and (4) unstressed control. On two lift dates sub-samples of seedlings were placed into –1°C storage and held for two months before the above stress treatments were administered. Bud dormancy status was determined, using a bud break test, on seedlings from each lift date before and after storage.After one growing season in the field percent survival, vigor, height growth and shoot and root weight were determined on stressed and unstressed seedlings. Survival and vigor were less affected by the stress treatments than were height and weight. Severity of stress was in the order –20°C > –15°C > desiccation > handling > –10°C. Degree of cold injury was directly related to seedling dormancy status whether dormancy status had been attained in the nursery from natural chilling or in frozen storage. Seedlings in a mid-range of dormancy release (between deep rest and quiescence) were most resistant to all imposed stresses.  相似文献   

4.
Colombo  Stephen J. 《New Forests》1997,13(1-3):449-467
Difficulties overwintering container stock in northern Ontario led to the development of the extended greenhouse culture hardening regime for spruce seedlings. Laboratories to measure shoot frost hardiness and evaluate terminal bud development were established to monitor nursery crops being hardened using this regime. Information on frost hardiness and bud development provided by these laboratories has been used by nursery managers to determine readiness of container seedlings for overwintering. Since 1982, over 200 stock lots have been monitored by these operational laboratories. This database can be used to determine the importance of nursery cultural factors and seed source on frost hardening. The database shows large differences between nurseries in approach to hardening seedlings which were reflected in levels of freezing damage, winter desiccation and overwintering success. Rates of frost hardening (i.e., the interval between terminal bud initiation and attainment of a --15°C level of shoot frost hardiness) of crops produced in north central Ontario failed to show significant seed source effects. The rate of frost hardening was faster in crops producing fewer needle primordia in terminal buds.  相似文献   

5.
Greenhouse-cultured, container-grown ponderosa pine (Pinus ponderosa var. scopulorum Engelm.), interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) and Engelmann spruce (Picea engelmannii (Parry) Engelm.) were cold acclimated and deacclimated in growth chambers over 19 weeks. Stem cold hardiness, total new root length at 14 days and days to bud break were measured weekly. Relationships among cold hardiness, root growth potential (RGP) and bud dormancy suggest that cold hardiness, which can be measured quickly, could provide a useful basis for estimating the two other parameters. During cold acclimation, there was a lag period in which stem cold hardiness remained at -15 degrees C and RGP was at a minimum, in all three species. Douglas-fir and Engelmann spruce buds remained fully dormant during this lag period. Ponderosa pine buds had no chilling requirement for the loss of dormancy, and reached quiescence during the lag period. Immediately following the lag period, as stem cold hardiness progressed to -22 degrees C, RGP increased to a high plateau in all three species, and Douglas-fir and Engelmann spruce buds approached quiescence. Cold deacclimation and bud development began immediately on exposure to warm, long days, but RGP remained high until stem cold hardiness returned to approximately -15 degrees C. At bud break, cold hardiness and RGP were at the minimum.  相似文献   

6.
This research examined the first year growth characteristics of cold stored and transplanted nursery-produced aspen (Populus tremuloides) seedlings (container and bareroot (BR)) and compared it to the growth of seedlings that had not been transplanted (established from germinants in the field) and therefore had an unrestricted root system (UR). Prior to planting, nursery-produced seedlings were placed in cold storage (−3°C) and root growth potential (RGP) and total non-structural carbohydrate (TNC) root reserves were tested at 0, 10, 75 and after 150 (container) and 190 days (BR) of storage. Both container and BR stock had much lower root to shoot ratios (RSRs) and root carbohydrate reserves compared to UR seedlings after 170 days. During storage, root reserves in container stock declined faster than in the BR and UR seedlings. RGP in all nursery stock was the highest after 75 days of storage, while longer storage resulted in shoot dieback and reduced root growth. After the first growing season, UR seedlings were one tenth the size of the nursery stock; however, in the second growing season they had no stem dieback and grew twice the height and stem diameter. The higher RSRs and root reserves in the UR seedlings was likely caused by early bud set in its first year of growth. This suggests that inducing bud set earlier in the growing regime might allow seedlings to increase root mass and carbohydrate reserves.  相似文献   

7.
PERKS  M. P.; MCKAY  H. M. 《Forestry》1997,70(3):223-232
One-year-old seedlings of Scots pine (Pinus sylvestris L.) offour native seed origins (Loch Maree Islands, Glengarry/GlenMorriston, Glen Affric and Abernethy), a commercial Britishseedlot, and a seedlot from Hedesunda, in middle Sweden, werecompared at monthly intervals from October 1993 to April 1994.Seedling morphology, root condition, root frost hardiness andbud dry matter were determined at each date. There were clear morphological differences among seed origins.Seedlings raised from the commercial seedlot (A70) were largerbut had a poorer root:shoot ratio than the other seed origins.Of the native pines tested, the Loch Maree Islands origin allocateda larger proportion of its photosynthate to fine roots and needlesand smaller proportion to woody structures. Seedlings raised from the commercial British seedlot tendedto have poorer bud lignification than the other origins andalso, in autumn, higher electrolyte leakage rates from its fineroots. During winter, the Swedish origin had the lowest fineroot electrolyte leakage. Seedlings of all origins showed aprogressive increase in fine root hardiness towards mid-winterwith maximum hardiness (–7°C) in January. Dehardeningoccurred over subsequent months reaching –3°C in April.Differences among origins were evident. The Swedish seedlotdeveloped greater frost resistance than the other origins, hardeningbegan earlier in autumn and dehardening began later in spring.The commercial seedlot hardened later than the other originsbut reached a similar level of frost hardiness by January. Ofthe native pines, seedlings of the Loch Maree Islands originwere slowest to develop root hardiness.  相似文献   

8.
CANNELL  M.G.R.; SHEPPARD  L.J. 《Forestry》1982,55(2):137-153
Changes in the natural level of frost hardiness of shoots offour provenances of Picea sitchensis were monitored over twogrowing seasons by detaching shoots from 7 to 10-year-old treesgrowing in a nursery in Scotland, and subjecting them to freezingtemperatures under conditions which simulated night frosts. Six seasonal phases of frost hardiness were identified (Fig.3).
  1. During each autumn, killing temperatures (the level of hardiness)decreased from –5°C to below –20°C, beginningseveral weeks after shoot elongation ceased. Alaskan provenanceshardened in September, apparently in response to shorteningday lengths alone, whereas an Oregon provenance did not hardenuntil November, after repeated frosts. Queen Charlotte Islandsprovenances were intermediate.
  2. From November to March allprovenances were hardy to below –20°C,which is adequateto prevent direct freezing injury at mostplantation sites.
  3. In March-April, several weeks before bud-burst, old shootsdehardenedto killing temperatures of about –10°Cin responseto warm temperatures, and southerly provenancesdid so beforenortherly ones.
  4. During bud-burst the newly-emergingshoots were hardy to only–3°C to –5°C untilthey were about 3.5 cmlong. All provenances burst bud at thesame time and were equallyfrost susceptible at this time.
  5. DuringMay-July the elongating shoots fluctuated in hardinessbetween–5°C and –10°C apparently in responsetofluctuating ambient temperatures.
  6. In August 1980 there wasa period of late summer dehardeningto killing temperaturesof about –3°C.
Seasonal changes in hardiness are discussed in relation to changesin shoot growth and environmental factors. The main opportunitiesfor selecting frost hardy genotypes seem to be in the rate ofautumn hardening, the time of pre-bud burst dehardening, andthe time of bud-burst.  相似文献   

9.
The effect of warm storage (15°C) for 0, 15 or 31 days, applied after cold storage until April, and date of lifting to cold storage on the physiological condition and field performance of two-year-old oak seedlings (Quercus robur L.) was investigated. Assessments before planting included plant moisture status, root and shoot dry weight, root growth potential (RGP), while after planting root growth, shoot growth phenology, shoot and root dry matter accumulation and stem quality were assessed. Warm storage effects were large, but lift date effects were small. Warm storage for 31 days reduced height and diameter growth, stem quality, total biomass, root growth, and reduced stem quality in the field, but 15 days storage had a smaller effect. Warm storage delayed bud break and shoot growth cessation but survival was unaffected. The depletion of food reserves during storage and low moisture availability might have caused shoot dieback leading to the development of poor quality stems. There was evidence that dry weight fraction of both the shoot tip and the taproot provided good information on the quality of the stock before planting. RGP was also a good indicator of quality. Electrolyte leakage readings from fine and taproots were not reliable indicators of plant quality.  相似文献   

10.
Pedunculate oak (Quercus robur L.) and Scots pine (Pinus sylvestris L.) seedlings were lifted on several occasions during autumn 1997 to determine the relationships between storability and frost hardiness. On each lifting date their physiological status was determined by assessment of shoot and root electrolyte leakage and frost hardiness, assessed as freeze-induced electrolyte leakage. Additional seedlings were simultaneously cold-stored for field planting and assessment of preplanting root growth potential in April 1998. First year field performance was determined the following winter. Storability and cold acclimation patterns differed between the two species. Both were negatively affected by early lifting, but oak was less sensitive with respect to survival, and pine attained tolerance to cold storage more rapidly and earlier with respect to growth increment. The correlations between shoot frost hardiness and performance suggest that freeze-induced shoot electrolyte leakage (SELdiff?20) below a threshold of 5% is a good storability predictor for Scots pine in Denmark. A completely reliable criterion for pedunculate oak could not be established.  相似文献   

11.
Laboratory freezing tests were used to determine seasonal changesin the frost hardiness of detached shoots of young trees ofEucalyptus gunnii (from central Tasmania), and E. niphophilaand E. debeuzevillei (‘snow gums’ from the SnowyMountains, Australian Capital Territory). The trees were growingat the Bush Estate. No difference was found between the speciesor between seedlots, all of which were from high altitudes nearthe tree line. In midwinter (February) the shoots tolerated –16°Cwithout suffering damage, and many shoots survived temperaturesas low as –18°C to –22°C. This result agreedwith Evans' (1986) observation that some trees within theseseedlots survived temperatures in the range –19°Cto –23°C in field planting during the winter 1981/82.In their native habitats the trees rarely experience temperaturesbelow –20°C. The shoots did not harden appreciably before they experiencedfrosts (in late October/early November) and so may be proneto autumn frost damage. By contrast, they were slow to dehardenin late winter and spring and did not seem prone to spring frostdamage. There were no killing air frosts during the period of this study(winter 1985/6), but many trees died, possibly as a result ofground freezing, producing root injury and/or shoot desiccation.In subalpine regions of Tasmania and the Snowy Mountains theground is covered by snow throughout the winter. Variation in frost hardiness within these hardy seedlots couldbe exploited.  相似文献   

12.
We studied the effects of "near-lethal" (NL, 47 degrees C for 1 h) heat stress, applied to intact shoots of red-osier dogwood (Cornus sericea L.) during early (October), deep (November) or late (December) dormancy, on bud dormancy release and development of stem tissue cold hardiness under natural conditions and at a constant temperature of 0 or 23 degrees C in the dark. The NL heat-stress treatment overcame bud dormancy when applied during the early and late stages of dormancy. During October and December, all plants in the 23 degrees C + dark post-stress environment broke bud within 35 and 12 days, respectively, whereas the corresponding values for days to bud break in the control plants were more than 150 and 110 days, respectively. Application of NL heat stress during deep dormancy caused only slightly earlier bud break compared to the control plants. In the 0 degrees C + dark post-stress environment, all NL heat-treated plants died within 9 weeks. Under natural post-stress conditions, bud break in plants receiving NL heat stress during early and deep dormancy occurred at the same time as in control plants, whereas bud break of plants receiving NL heat stress during late dormancy occurred 55 days earlier than in control plants. Under both natural and 23 degrees C + dark post-stress conditions, cold hardiness of plants receiving NL heat stress during early dormancy was similar to that of controls. Application of NL heat stress during deep dormancy hastened the rate of deacclimation under the 23 degrees C + dark post-stress conditions but had no effect on deacclimation under natural post-stress conditions. Application of NL heat stress during late dormancy enhanced deacclimation of plants in both the 23 degrees C + dark and natural post-stress environments.  相似文献   

13.
After cold storage, conifer seedlings in British Columbia are tested for field growth potential before planting. We compared three tests of performance potential using container-grown seedlings of Douglas-fir, interior spruce, lodgepole pine, and western larch (14 seedlots total). On several autumn dates, seedlings were lifted and stored at −2°C. The following spring we tested stored seedlings for root growth potential (RGP), chlorophyll fluorescence (CF), and stomatal conductance (Gs), and then planted seedlings in nursery beds. We assessed survival and shoot dry weight (SDW) after one growing season. Performance test results were significantly correlated with each other (r ≥ 0.47) but showed different relationships with field performance, which varied with lift date. The best performance predictor was the sum of CF and RGP (R 2 = 0.79 for 78 seedlot by lift-date combinations), which minimized the risk of planting poor seedlings and not planting good seedlings. A sum of 83 for CF (Fv/Fm %) and RGP (new roots >1 cm) provided a threshold above which survival and growth were good. For evergreen conifers, Gs was a good performance predictor, but required extra time to measure leaf area. We recommend a combination of CF and RGP to assess vigor of shoot and root systems before planting. Wolfgang D. Binder––Scientist Emeritus.  相似文献   

14.
In Finland, under nursery conditions hybrid aspen may continue their shoot growth until early September. Thus, frost hardening is usually delayed. To solve this problem, we used a three-week period of short-day (SD) treatment between late July and mid-August. During autumn after frost exposure, frost hardiness (FH) was assessed three times with a stem-browning test. The re-sults showed that after SD treatment shoot growth ceased and FH increased when compared to untreated hybrid aspen. Furthermore, the height of SD-treated hybrid aspen varied much less than that of the control plants. We conclude that SD treatment in the nursery during the growing period can be used as a supplementary method for producing well-hardened and uniform hybrid aspen plants.  相似文献   

15.
SHARPE  A. L.; MASON  W. L. 《Forestry》1992,65(4):463-472
Sitka spruce and Douglas fir transplants were kept under threecold storage regimes: (1) bare-root in a humidified cold store(H); (2) sealed in polythene bags in a humidified cold store(HP); (3) sealed in polythene bags in a direct cold store (D).Regimes H and D are routinely used in current practice. Plants of both species had significantly (P < 0.001) lowerroot moisture content (RMC) in treatment H within 4 weeks ofstorage; this difference was maintained throughout the periodof storage and potentially damaging levels of RMC were reachedwithin 8 weeks. Sitka spruce had significantly (P < 0.001)higher root growth potential (RGP) than Douglas fir throughoutthe storage period. Differences in RGP between storage treatmentswere not significant until 12 weeks after storage when treatmentH was poorer (P < 0.05) than treatments HP and D. The survival of plants from treatment H after 1 year in thefield was significantly poorer (P < 0.001) than the othertreatments in both species. Height increment was also less intreatment H than the other treatments (P < 0.001) after 1year. However, this difference disappeared in the second season.After 1 year there were no differences in root collar diameter(RCD) increment between storage treatments but Douglas fir showedgreater increment (P < 0.001) than Sitka spruce. Rapid assessment of RMC in slightly over 48 h makes this a potentiallyuseful test of planting stock quality during and after coldstorage.  相似文献   

16.
Operational stock-testing facilities that estimate overwinter storability of seedlings (ability to survive and grow after storage) need a reliable method that provides fast results to forest nurseries. We compared three methods using container-grown seedlings of Douglas-fir, interior spruce, lodgepole pine, and western larch from forest nurseries in British Columbia. On three to nine dates in autumn, frost hardiness at −18°C was estimated using visible injury of foliage or stems (VI), electrolyte leakage from needles or stems (EL), and chlorophyll fluorescence of shoots (CF). Seedlings were placed into overwinter cold storage (−2°C). In the spring, stored seedlings were planted in nursery beds; survival and growth were assessed after one growing season. There were close correlations (r ≥ 0.93) between the assessment methods. Seedlings lifted after they reached thresholds of 69% or higher for CF and 25% or lower for EL and VI had over 90% survival at harvest and doubled shoot dry weight compared with seedlings lifted earlier. Measuring CF was the fastest and most easily replicated method to estimate successful storability, and reduced testing time by 6 days relative to VI tests.  相似文献   

17.
Frequent bud frost damage in cultivation of Abies procera Rehderand pending climate changes are the background for this studyof cold hardiness under varying acclimation regime (in closed-topchambers) and experimental warm spells during the cold season.LT50 values were established by freezing tests at differenttimes of year. Damage and deaths were assessed on leader buds,subapical lateral buds, needles and cambium. Minor parallelexperiments involved Abies nordmanniana, Picea abies and Piceasitchensis. Lower acclimation temperatures resulted in deeperfrost hardiness during late autumn but less during spring, comparedwith ambient temperature controls. Elevated temperatures resultedin less deep frost resistance. Apical buds generally developeddeeper frost hardiness than lateral buds but less deep thanthe cambium, varying with species, however. Frost damage inbuds ranged from death over partially destroyed bud contentsresulting in distorted shoots to buds seemingly remaining dormant.Responses to warm spells differed with duration, timing andspecies, ranging from dramatic decrease in frost hardiness withor without subsequent recovery to no reaction. Furthermore,the reactions did not show any clear relation to dormancy level.For A. procera, exposure to fluctuating temperatures appearedto be particularly problematic. This explains why this speciesdevelops best in coastal climates, and in sites sheltered fromtemperature extremes either by hedging, a winter snow cover,or topography. The Christmas tree production will suffer severelyon sites with harsh temperatures due to losses of lateral andterminal buds, which destroy the crown symmetry. Clipping ofgreenery is less influenced by frost damages, although the developmentof normal branch whorls is often disturbed.  相似文献   

18.
The frost hardiness of the shoots of individual trees withintwo Chilean provenances of Nothofagus procera (Poepp & Endl.)Oerst. was measured once in each of the months January, February,November and December 1989 and January and February 1990. Therewere significant (P<0.05) differences of frost hardinessbetween provenances but only one tree could be shown to be significantlymore frost hardy than the others within the same provenance.During the winter of 1989/90 both provenances were hardy toabout –14°C (temperature killing 50 per cent of shoots)in December, but the shoots dehardened to about –9°Cin January before hardening again in February. This patternof alternate hardening and dehardening seemed to mirror changesin air temperature and could render N. procera liable to frostdamage where (as happened in 1988/9 in the UK) mild spells occurin winter followed by severe frosts.  相似文献   

19.
Cold hardiness and timing of bud set and bud break are important processes that provide protection of nursery seedlings against low temperatures. Seedlings of 9 provenances of Pinus greggii from two different regions of Mexico were tested to determine cold hardiness, bud set, and bud break timing differences. Needle sections were exposed to freezing temperatures to determine an injury index of each provenance. In addition, bud set and bud break timing were recorded through the fall, winter and spring. There were significant differences in cold hardiness between seedlings from northern and southern provenances. At the maximum cold hardiness, the index of injury (LT50) for northern provenances was LT50 = −18 °C, compared to −12 °C for southern provenances. There was a considerable variation among the provenances in the proportion of seedlings that set terminal buds. Seedlings from northern provenances had greater proportions of seedlings that set a terminal bud than seedlings from southern provenances. There were also significant differences in the bud break timing in the following spring among the 9 provenances. Seedlings from northern provenances broke bud earlier than southern provenances. Cold hardiness, bud set, and bud break timing results may be useful to determine how far a specific seed source can be moved from its natural environment.  相似文献   

20.
Seventeen‐week‐old black spruce seedlings were hardened under short daylengths and one of three short day length environments, which were either warm (24/16°C, day/night) throughout a 10 week hardening period (WW), cool (10/5°C) throughout hardening (CC), or warm for three weeks followed by seven weeks of cool temperatures (WC). Greatest root and shoot frost hardiness resulted from the exposure of seedlings to three weeks of warm followed by seven weeks of cool temperatures. Seedlings receiving warm temperatures throughout hardening increased in root and shoot frost hardiness, but to a lesser extent than seedlings exposed to cool temperatures. The frost hardiness of woody roots was generally greater than that of fine roots, but the extent of the difference in frost hardiness depended on the time since bud initiation and on the hardening treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号