首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to clarify the effect of drying on structural changes of DMSO swell treated and DEA-SO2-DMSO decrystallization treated Chinese fir (Cunninghamia lanceolate) wood, the stress relaxation of treated oven-dry specimens during the processes of temperature elevation and reduction and that of treated wet specimens at constant temperature were determined. A stress decrease process and a stress increase process were observed in all stress ratio curves of wood during the processes of decreasing temperature. Untreated wood, during the process of temperature reduction under higher initial temperature conditions and during the process of temperature elevation, has a larger stress decrease than treated woods. In a wet state this trend is reversed. It indicated that the drying set made treated woods have a smaller increase in fluidity of wood constituents with increasing temperature. Some bonding between decrystallization reagents and wood molecules may occur.  相似文献   

2.
Stress relaxation of water-saturated wood was examined at various temperatures and during the processes of elevation and lowering of temperature. The difference between relaxation at a lower temperature and that at a higher temperature was almost same as the increase in relaxation during temperature elevation. Similar results were obtained regardless of the elevating speed of the temperature and regardless of preheating the samples. On the other hand, relaxation behavior during temperature lowering was quite different from that during temperature elevation. The relaxation moduli during the process of lowering the temperature scarcely changed, although those at various constant temperatures decreased with increases in temperature. Marked sets occurred after relaxation measurements under temperature lowering, whereas only slight sets occurred during the process of elevating the temperature or at a constant temperature of 80°C. Furthermore, it was found that the sets that occurred during the process of temperature reduction were almost recovered when the samples were heated again in water. The mechanism of the relaxation behaviors observed in the present study under nonequilibrium temperature is discussed in relation to the occurrence of set after relaxation measurements.Part of this report was presented at the 48th annual meeting of the Japan Wood Research Society, Shizuoka, April 1998  相似文献   

3.
Changes in the modulus of elasticity (MOE), modulus of rupture (MOR), and stress relaxation in the radial direction of wood (hinoki:Chamaecyparis obtusa) moisture-conditioned by the adsorption process from a dry state and by the desorption process from a moisture content slightly below the fiber saturation point were investigated. The MOE and MOR of wood conditioned by the adsorption process showed significant increases during the later stages of conditioning when the moisture content scarcely changed. However, with the desorption process they did not increase as much during later stages of conditioning, though they increased during early stages of conditioning when the moisture content greatly decreased. The stress relaxation of wood decreased with an increase in the conditioning period with both the adsorption and desorption processes. These results suggest that wood in an unstable state, caused by the existing state of moisture differed from that in a true equilibrium state shows lower elasticity and strength and higher fluidity than wood in a true equilibrium state. Furthermore, the present study demonstrates that the unstable states of wood induced during the course of drying, desorption, and possibly adsorption of moisture are slowly modified as wood approaches a true equilibrium state.  相似文献   

4.
Influence of heating and drying history on micropores in dry wood   总被引:1,自引:1,他引:0  
To investigate the influence of heating and drying history on the microstructure of dry wood, in addition to the dynamic viscoelastic properties, CO2 adsorption onto dry wood at ice.water temperature (273 K) was measured, and the micropore size distribution was obtained using the Horvath-Kawazoe (HK) method. Micropores smaller than 0.6 nm exist in the microstructures of dry wood, and they decreased with elevating out-gassing temperature and increased again after rewetting and drying. Dry wood subjected to higher temperatures showed larger dynamic elastic modulus (E′) and smaller loss modulus (E″). This is interpreted as the result of the modification at higher temperature of the instability caused by drying. Drying history influenced the number of micropores smaller than 0.6 nm in dry wood not subjected to high temperature, although the difference in the number of micropores resulting from the drying history decreased with increasing out-gassing temperature. A larger number of micropores smaller than 0.6 nm exist in the microstructure of dry wood in more unstable states, corresponding to smaller E′ and larger E″ than in the stable state. Consequently, unstable states are considered to result from the existence of temporary micropores in the microstructures of dry wood, probably in lignin. Part of this report was presented at the 55th Annual Meeting of the Japan Wood Research Society, Kyoto, March 2005, and at the 56th Annual Meeting of the Japan Wood Research Society, Akita, August 2006  相似文献   

5.
Elastic and strength properties(proportional-limit stress(σ prop ),Young's modulus(E),breaking stress(σ max )in static bending parallel to grain in a longitudinal direction),as well as stress relaxation in air-dried condition and water-saturated conditions at seven different constant temperatures and increasing and decreasing temperatures were investigated for wood from Chinese-fir and poplar plantations.The results show that hygrothermal conditions considerably affect these mechanical properties.The higher the moisture content(MC)or temperature,the lower the strength of wood.Further investigation of the effects of constant temperature on stress relaxation indicates that high temperature specimens have low relaxation moduli and high fluidity.In the case of increasing temperature the range of the modulus of relaxation is larger than in the case of a reduction in temperature,while the residual moduli do not show large differences.This is because the modulus at high temperatures decreases more than that at low temperatures.The fluidity of specimens in a state of water desorption increases slowly at the beginning,increases quickly until the MC reaches an equilibrium moisture content(EMC)and then becomes stable,which is quite different from that in a water-saturated state.Fluidity in a desorption state is much higher than in a water-saturated state.This is probably due to the fact that the former is in an unstable state which can be interpreted as a state with internal strain and has therefore a greater potential to release strain.  相似文献   

6.
Vibrational properties of Sitka spruce heat-treated in nitrogen gas   总被引:6,自引:0,他引:6  
Sitka spruce (Picea sitchensis Carr.) wood was heated for 0.5–16.Oh at temperatures of 120°–200°C in nitrogen gas or air. The values for Young's modulus, shear modulus, and loss tangent were measured by free-free flexural vibration tests. X-ray diffractometry was carried out to estimate the crystallinity index and crystallite width. The results obtained are as follows: (1) Density decreased at higher temperatures and longer heating times. The specific Young's modulus, specific shear modulus, crystallinity index, and crystallite width increased during the initial stage and were constant after this stage at 120°C and 160°C, whereas they increased during the initial stage and decreased later when the temperature was high. Loss tangent in the longitudinal direction increased under all conditions, whereas that in the radial direction increased at 120°C and decreased at 160°C and 200°C. (2) From the relation between Young's modulus and moisture content, it can be safely said that Young's modulus is increased by the crystallization and the decrement in equilibrium moisture content, and that crystallization (rather than degradation) is predominant at the initial stage of the heat treatment, whereas the latter is predominant as the heating time increases. (3) It is implied that the specific Young's modulus, specific shear modulus, crystallinity index, and crystallite width decreased more in air than in nitrogen gas because of oxidation in air.This study was presented in part at the 43th Annual Meeting of Japan Wood Research Society at Morioka, August 1993, the 44th Annual Meeting of Japan Wood Research Society at Nara, April 1994, and the 45th Annual Meeting of Japan Wood Research Society at Tokyo, April 1995  相似文献   

7.
The dynamic shear modulus and the loss modulus of Betula alba, Ulmus parvifolia, Quercus robur, Acer platanoides, Tilia cordata, Fraxinus excelsior and Pinus sylvestris wood were measured using an inverted torsion pendulum within a wide temperature range. The glass transition temperature of the lignin–carbohydrate complex and the decomposition temperature of the wood cellulose were estimated. The temperature band from 170°C to 240°С shows the transition of the lignin–cellulose complex from the glassy to the rubbery state. Mechanical properties of different types of wood are affected by moisture and anatomical differences, but glass transition and decomposition temperatures are the same. More than 5% of moisture in the wood stored at normal conditions were found. After drying, the increase of dynamic shear modulus of wood over the entire region of the glassy state was observed. The intensity of maximum peak of dynamic loss modulus is also increased due to activation of the segmental motion of macromolecules of the ligno-carbon complex. The decomposition temperature of the cellulose crystallites was unchanged for specimens containing moisture and for dried specimens.  相似文献   

8.
The modulus of elasticity and the modulus of rupture during static bending in the radial direction, and the viscoelastic properties in the radial direction in the temperature range 20°–100°C of hinoki (Chamaecyparis obtusa) swollen in organic liquids with two or more functional groups in a molecule were compared with those of wood swollen by moisture. The wood swollen in organic liquids in or near the swelling equilibrium, but not that swollen in organic liquids distant from the swelling equilibrium, showed higher moduli of elasticity and rupture than the wood swollen to a similar degree by moisture. This suggests that wood exists in an unstable state as it approaches the swelling equilibrium, rendering it highly flexible and weak. During the first viscoelastic measurements for wood swollen in various organic liquids, thermal softening was observed in 40°–60°C range and above 80°C, though this softening disappeared during the second measurement. The softening observed in the 40°–60°C range and above 80°C was thought to have been caused by the redistribution of liquid toward the equilibrium state at a higher temperature and the swelling accompanying an elevated temperature, respectively.Part of this report was presented at the 49th Annual Meeting of the Japan Wood Research Society, Tokyo, April 1999  相似文献   

9.
To investigate the effect of wall thickening around cell corners on the tangential Young's modulus of coniferous early wood, tapered beam cell models in which the variation of the cell wall thickness in the axial direction was taken into account were constructed for seven species. Their tangential Young's moduli were compared with the experimental results. The calculated Young's moduli of tapered beam cell models were larger than those of the models composed of the cell walls with uniform thickness, although both models showed almost the same density. For some species the calculated Young's moduli of the models in which the cell wall thickness increased curvilinearly in the axial direction were much closer to the experimental values. The reduction of the radial cell wall deflection due to the increase of the stiffness around cell corners was considered to increase the tangential Young's modulus of a wood cell.This report was presented at the 49th annual meeting of the Japan Wood Research Society, Tokyo, April 1999  相似文献   

10.
Bending strength and toughness of heat-treated wood   总被引:9,自引:0,他引:9  
The load-deflection curve for static bending and the force-time curve for impact bending of heat-treated wood were examined in detail. The effect of oxygen in air was also investigated. Sitka spruce (Picea sitchensis Carr.) was heated for 0.5–16.0h at a temperature of 160°C in nitrogen gas or air. The dynamic Young's modulus was measured by the free-free flexural vibration test, the static Young's modulus and work needed for rupture by the static bending test, and the absorbed energy in impact bending by the impact bending test. The results obtained were as follows: (1) The static Young's modulus increased at the initial stage of the heat treatment and decreased later. It decreased more in air than in nitrogen. (2) The bending strength increased at the initial stage of the heat treatment and decreased later. It decreased more in air than in nitrogen. (3) The work needed for rupture decreased steadily as the heating time increased. It decreased more in nitrogen than in air. It is thought that heat-treated wood was more brittle than untreated wood in the static bending test because W12 was reduced by the heat treatment. This means that the main factors contributing to the reduction of the work needed for rupture were viscosity and plasticity, not elasticity. (4) The absorbed energy in impact bending increased at the initial stage of the heat treatment and decreased later. It decreased more in air than in nitrogen. It was concluded that heat-treated wood became more brittle in the impact bending test becauseI 12 andI 23 were reduced by the heat treatment.  相似文献   

11.
Thermal-softening properties and cooling set of water-saturated bamboo were investigated using stressrelaxation measurements in heating and cooling processes, followed by residual deflection measurement. In the heating process, an obvious decrease in relative relaxation modulus due to thermal-softening of lignin was found at around 60°C. On the other hand, no clear change in the relative relaxation modulus was recognized in the cooling process. After the cooling process, about 65% and 75% of residual set was measured when the specimen was loaded on the epidermis and endodermis side, respectively. Also, residual set depended on the maximum temperature reached in the heating process and the unloaded temperature in the cooling process. From these results, it was deduced that the glass transition of lignin from the rubbery to glassy state is important to fix the deformation. Comparing thermal-softening behavior between bamboo and wood, the relative relaxation modulus of wood decreased steeply at higher temperatures than for bamboo. On the other hand, while about 75% of residual set was also found for wood, almost the same as for bamboo, the recovery of deformation with time was larger for wood than for bamboo. Part of this article was presented at the 53rd Annual Meeting of the Japan Zairyou Society, Okayama, May 2004  相似文献   

12.
We investigated the temporal changes in creep and stress relaxation behavior in both microscopic crystalline cellulose and macroscopic strain of wood specimen using Japanese cypress (Chamaecyparis obtusa Endl.) to understand the viscoelastic properties of wood cell walls. Specimens 600 µm in thickness were observed by the X-ray diffraction and submitted to tensile load. The crystal lattice strain of (004) plane and macroscopic strain of specimen were continuously detected during creep and stress relaxation tests. It was found that the creep compliance based on macroscopic strain showed a gradual increase after instantaneous deformation due to loading and then the parts of creep deformation remained as permanent strain after unloading. On the other hand, crystal lattice strain showed a different behavior for macroscopic strain; it kept a constant value after instantaneous deformation due to loading and then increased gradually after a certain period of time. These differences between macroscopic and microscopic levels were never found in the stress relaxation tests in this study. Relaxation modulus at the macroscopic level only showed a decreasing trend throughout the relaxation process. However crystal lattice strain kept a constant value during the macroscopic relaxation process. In addition, the microfibril angle (MFA) of wood cell wall has a role of mechanical behavior at microscopic level; crystal lattice strains were smaller with increasing MFA at both creep and relaxation processes. Creep compliance and stress relaxation modulus at the macroscopic level decreased and increased with increasing MFA, respectively. Our results on the viscoelastic behavior at microscopic level evidenced its dependency on MFA.  相似文献   

13.
Enthalpy relaxation of dry wood has been investigated by temperature-modulated differential scanning calorimetry. The reversing and non-reversing heat flow changes revealed that enthalpy relaxation occurred in dry wood, which did not exhibit any clear glass transitions. This enthalpy relaxation behavior seemed to differ significantly from those of previously reported isolated lignins, which implies that the microstructure of dry wood possesses a rigid amorphous state derived from interactions among wood components. The observed enthalpy relaxation is considered to be related to other components besides lignin, and the time-dependent physical properties due to unstable states or physical aging of wood originate not only from lignin but also from other components, such as cellulose and hemicellulose and the interactions between them.  相似文献   

14.
Vibrational properties of heat-treated green wood   总被引:2,自引:0,他引:2  
To investigate the influence of water on heat treatment, green wood was heat-treated. Sitka spruce (Picea sitchensis Carr.) with about 60% moisture content (MC) was used. Young's modulus and loss tangent were measured by the free-free flexural vibration test. The specimens were heated in nitrogen at 160°C for 0.5h. The results were as follows. (1) Recognizing that the effects of heat treatment are mild and that the same specimens cannot be used for both heat treatment and as controls, it was necessary to investigate the effects of the heat treatment based on the variations of properties in the whole of the test lumber. (2) Young's modulus increased and the loss tangent decreased due to heat treatment. When the vibrational properties were measured at various MCs, the MCs at the maximum value of Young's modulus and the minimum value of the loss tangent were lower in heat-treated specimens than in controls. The effects of heat treatment in green wood were similar to those in air-dried wood. (3) The loss tangents of heat-treated specimens were smaller than those of controls at about 0% MC but were larger than those of controls at about 10% MC. We thought that this resulted from the decreased MC at the minimum loss tangent after the heat treatment mentioned above. (4) The properties measured at several MCs were more useful than those at only one moisture content for investigating the effects of heat treatment.This study was presented in part at the 46th annual meeting of the Japan Wood Research Society, Kumamoto, April 3–5, 1996; and at the 47th annual meeting of the Japan Wood Research Society, Kochi, April 3–5, 1997  相似文献   

15.
To obtain new information about the mechanical and physical properties of dry wood in unstable states, the influence of heating history on viscoelastic properties and dimensional changes of dry wood in the radial, tangential, and longitudinal directions was studied between 100° and 200°C. Unstable states of dry wood still existed after heating at 105°C for 30 min and were modified by activated molecular motion in the first heating process to temperatures above 105°C. This phenomenon is thought to be caused by the unstable states reappearing after wetting and drying again. Dry wood components did not completely approach the stable state in the temperature range tested, because they did not entirely surpass the glass transition temperatures in most of the temperature range. In constant temperature processes at 135° and 165°C, E′ increased and E″ decreased with time regardless of the direction. This indicated that the unstable states of dry wood components were gradually modified with time at constant temperatures. On the other hand, anisotropy of dimensional change existed and dimension increased in the longitudinal direction, was unchanged in the radial direction, and decreased in the tangential direction with time at constant temperatures. Part of this report was presented at the 13th Annual Meeting of the Chubu Branch of the Japan Wood Research Society, Shizuoka, August 2003  相似文献   

16.
In order to investigate the effects of chemical components and matrix structure on the destabilization of quenched wood, we examined the physical and mechanical properties of steam-treated wood, hemicellulose-extracted wood, and delignified wood, which were treated at different levels. For steam-treated and hemicellulose-extracted wood,the relative relaxation modulus of the quenched sample was lower than that of the respective control sample. For delignified wood, the relative relaxation modulus fell with weight loss and reached a minimum value at a certain weight loss, and subsequently increased significantly. The hygroscopicity of all treated samples changed slightly by steaming, whereas increased with removing the component. More-over, the average volumetric swelling per 1% MC at 100% relative humidity (RH) was less than at 75% RH and 93% RH for component-removed wood. It was clear that a void structure existed. As a result, the destabilization evaluated by the fluidity (1 - E t/E 0) of steam-treated wood was influenced by the amount of adsorbed water. For component-removed wood, destabilization increased temporarily at lower weight loss because of nonuniform cohesive structure. At high weight loss, destabilization will decreased because capillary-condensed water gathered in the voids and obstructed the motion of adsorbed water. However, the destabilization of all treated wood changed less than that of chemically modified wood.  相似文献   

17.
In order to clarify the relationship between the microstructural changes and the rheological behaviors of four chemically treated woods (delignified wood, hemicellulose-removed wood, DMSO swollen and decrystallization treated wood), the stress relaxation of wood with three different moisture contents was determined during periodic temperature changes. The experimental results show that after wood relaxation for 4 h at 25℃, the stress decays sharply when the temperature increases and 2 h later the stress recovers again when the temperature drops back to the original point. The additional stress relaxation, produced after temperature begins to increase, is mainly caused by the thermal swelling, molecular thermal movement and the break of a part of residual hydrogen bonds. The number of hydrogen bonds and the size and amount of cavities in various treated woods greatly affect themagnitude of the additional relaxed stress and the recovery stress.  相似文献   

18.
In order to understand the mechanism of destabilization occurring when wood is quenched, we applied chemical modifications, and controlled the number of moisture adsorption sites in wood. The degree of destabilization was evaluated according to the fluidity (1-E t/E 0), increase in fluidity, and relative fluidity in relation to the nonmodified wood, and was discussed by comparing these quantities with the hygroscopicity or swelling of wood. We found that destabilization of chemically modified wood was lower than that in nonmodified wood, and the amount of adsorbed water controlled the magnitude of flow of wood. Moreover, according to the analysis of water state by the Hailwood-Horrobin equation, it was shown that the function of dissolved water to the fluidity is almost identical for both chemical modifications, whereas hydrated water has more effect on acetylated wood than on formaldehydetreated wood. We speculate that the motion of water molecules due to quenching accompanied with the redistribution of energy resulting from the exchange of their potential energy and movement to attain a new balance, and the introduced acetyl groups and cross-linking restrict the water molecule movement. An erratum to this article is available at .  相似文献   

19.
In order to understand the reason why glycerin pre-treatment can accelerate the deformation fixation of compressed wood, the interaction between glycerin and wood at various temperatures was investigated in this study from stress relaxation approach. The compression stress relaxation curves of poplar (Populus cathayana Rehd.) samples impregnated with glycerin were measured at temperatures ranging from 25 to 180°C, together with the curves of oven-dry wood at temperatures between 100 and 180°C for comparison. The activation energy was calculated according to the Eyring’s absolute rate reaction theory. The results showed that temperature had very obvious effect on stress relaxation for both glycerin-treated wood (GTW) and oven-dry wood. The stress released very fast at higher temperatures. Glycerin showed an accelerating effect on stress relaxation. At temperatures exceeding 120°C, a complete relaxation of the stress could be expected. While for untreated wood, it cannot be reached until 160°C. By calculating the apparent activation energy (ΔE) of GTW at different temperatures, it is clear that two mechanisms are responsible for different temperature ranges. From 40 to 100°C, ΔE is only 8.24 kJ/mol, which corresponds to the hydrogen bonds formed between wood and glycerin molecules; from 120 to 180°C, ΔE reached 81.38 kJ/mol, which corresponds to the degradation of hemicelluloses or lignin, and during this process, new cross-linking would happen.  相似文献   

20.
As an essential preliminary evaluation for understanding the hydration behavior of wood-cement-water mixtures, an isothermal calorimetry and experimental method were used to measure the hydration heat of woodcement-water mixtures. The compatibility of 38 wood species with ordinary portland cement was studied using this procedure. Based on the results, all the wood species tested were classified into two groups. The 24 species included in the first group showed a moderating influence on the hydration reaction of cement, and a maximum temperature (T max) peak during the exothermic reaction while the cement set appeared within 24h for each species. The other 14 species inhibited cement hydration completely. According to the maximum hydration temperature (T max) and the time (T max) required to reach the maximum temperature of the mixture, the suitability of each species in the first group was estimated when used as a raw material during production of cement-bonded particleboard. By testing mechanical properties [modulus of rupture (MOR) and internal bonding strength (IB)] during the board-making experiment using the same composition of wood-cement-water, a positive correlation was found betweenT max andt max and MOR and IB. The results imply that the method can be used as a predictor of the general inhibitory properties and feasibility of using wood species as raw materials prior to manufacture of cement-bonded particleboard.Part of this report was presented at the 49th annual meeting of the Japan Wood Research Society, Tokyo, April 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号