首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Measurement of shikimic acid accumulation in response to glyphosate inhibition of 5-enolpyruvylshikimate-3-phosphate synthase is a rapid and accurate assay to quantify glyphosate-induced damage in sensitive plants. Two methods of assaying shikimic acid, a spectrophotometric and a high-performance liquid chromatography (HPLC) method, were compared for their accuracy of recovering known amounts of shikimic acid spiked into plant samples. The HPLC method recovered essentially 100% of shikimic acid as compared with only 73% using the spectrophotometric method. Relative sensitivity to glyphosate was measured in glyphosate-resistant (GR) and non-GR cotton leaves, fruiting branches, and squares (floral buds) by assaying shikimic acid. Accumulation of shikimic acid was not observed in any tissue, either GR or non-GR, at rates of 5 mM glyphosate or less applied to leaves. All tissues of non-GR plants accumulated shikimic acid in response to glyphosate treatment; however, only fruiting branches and squares of GR plants accumulated a slight amount of shikimic acid. In non-GR cotton, fruiting branches and squares accumulated 18 and 11 times, respectively, more shikimic acid per micromolar of translocated glyphosate than leaf tissue, suggesting increased sensitivity to glyphosate of reproductive tissue over vegetative tissue. GR cotton leaves treated with 80 mM of glyphosate accumulated 57 times less shikimic acid per micromolar of translocated glyphosate than non-GR cotton but only 12.4- and 4-fold less in fruiting branches and squares, respectively. The increased sensitivity of reproductive structures to glyphosate inhibition may be due to a higher demand for shikimate pathway products and may provide an explanation for reports of fruit abortion from glyphosate-treated GR cotton.  相似文献   

2.
Glyphosate is a nonselective herbicide used as a harvest aid in a variety of crops. Glyphosate is absorbed into the foliage and translocated to metabolically active regions in the plant where it interferes with the shikimic acid pathway. Experiments were conducted to determine the accumulation and distribution of shikimic acid in wheat treated with glyphosate at soft and hard dough stages of kernel development and to determine the fate of shikimic acid during milling and bread making. Elevated levels of shikimic acid were detected throughout the wheat plant. Shikimic acid concentrations peaked 3-7 days after treatment and then declined until harvest. Shikimic acid content was 3-fold greater in flour and 2-fold greater in the bread derived from treated wheat than nontreated wheat. Similarly, elevated levels of shikimic acid were found in the crumbs and crust of bread made with flour from glyphosate treated wheat. Glyphosate applied preharvest resulted in shikimic acid accumulation in hard red spring wheat and subsequent end-use products.  相似文献   

3.
为筛选耐草甘膦野生大豆种质并了解其耐性机制,本试验对采集于冀东地区的862份野生大豆进行了草甘膦的耐性鉴定。在草甘膦处理后,测定了高耐和敏感材料的莽草酸、丙二醛和叶绿素含量,过氧化物酶(POD)、过氧化氢酶(CAT)和超氧化物歧化酶(SOD)活性,以及草甘膦相关基因EPSPS表达量。结果显示,喷施草甘膦后,862份野生大豆材料中,药害等级在4级以上的材料占82.84%,3级占9.51%,2级占4.87%,1级占2.78%。筛选到高耐草甘膦的野生大豆材料Yong-33,其在1.125 kg a.i·hm-2 草甘膦处理后植株存活率达到96.67%。经草甘膦处理后,与对照相比,高耐材料的叶绿素、丙二醛和莽草酸含量在检测的各时间点均无显著差异,敏感材料叶绿素含量显著降低,丙二醛和莽草酸含量显著升高;高耐材料POD、CAT和SOD活性以及EPSPS基因表达量均显著升高,而敏感材料酶活性及EPSPS基因表达量无显著差异。以上结果表明,野生大豆中存在高耐草甘膦的种质资源,在草甘膦处理后其植株内活性氧清除酶系活性升高,EPSPE基因上调表达,推测这是野生大豆对草甘膦耐性较好的原因。本研究筛选到的耐草甘膦野生大豆材料可为培育耐草甘膦栽培大豆新品种提供种质资源。  相似文献   

4.
为探明干旱胁迫及复水条件下不同剂量草甘膦对抗草甘膦大豆(RR1)幼苗叶片渗透调节物质、莽草酸(shikimic acid, SA)含量及根系活力的影响,采用盆栽试验,在大豆的第3复叶期进行水分胁迫5d和除草剂草甘膦处理,研究RR1幼苗叶片可溶性蛋白(soluble protein, SP)、可溶性糖(soluble sugar, SS)、游离脯氨酸(free praline, FP)、莽草酸(shikimic acid, SA)含量和根系活力(RA)的变化。结果表明,干旱胁迫前期RR1叶片的SP含量随草甘膦剂量的增加呈先升高后降低趋势,0.46kg/hm2叶片SP的含量最高,胁迫后期SP含量随草甘膦剂量的增加而降低;SS、FP和SA含量随草甘膦剂量的增加和胁迫时间的延长而增加,RA随草甘膦剂量的增加和胁迫时间的延长而降低。复水12d后,不同剂量草甘膦处理的各指标均有所恢复。干旱条件下,经草甘膦处理的RR1叶片的SP含量和RA低于草甘膦在正常水分条件下的处理,而SS、FP和SA含量相反。相关性分析表明,FP和SA含量与草甘膦剂量的相关关系最明显;而SS和SA含量与干旱胁迫时间的相关关系最明显。说明正常水分条件下,草甘膦对RR1幼苗造成的伤害经过一段时间后有所缓解;干旱胁迫加剧了草甘膦对RR1幼苗叶片渗透调节物质、莽草酸含量和根系活力的影响。抗草甘膦大豆主要通过积累FP、SS和SA对草甘膦和干旱胁迫做出响应。  相似文献   

5.
Field studies were conducted in 2001 through 2003 to determine if shikimic acid accumulation could be used to accurately predict yield reductions in field corn exposed to sublethal rates of glyphosate. Glyphosate (0-0.32 kg ae/ha) was applied to corn at the V6 to V8 growth stage. Corn whorls were randomly collected up to 14 days after application (DAA), and shikimic acid accumulation in the whorls was determined using HPLC-UV. Maximum shikimic acid accumulation occurred 3-7 DAA in corn receiving 0.16 and 0.32 kg/ha. Shikimic acid accumulation 3, 5, and 7 DAA did correlate (r = 0.80-0.86) to yield losses from a sublethal application of glyphosate. Shikimic acid accumulation 3, 5, and 7 DAA was better correlated to visual injury at 14 DAA than to yield reductions. Visual injury ratings 14 DAA were a slightly better indicator of potential yield losses (r = 0.93) than shikimic acid accumulation in field-grown corn whorls (r = 0.8-0.86).  相似文献   

6.
Vaccinium myrtillus or bilberry fruit is a commonly used herbal product. The usual method of determining the anthocyanin content is a single-wavelength spectrophotometric assay. Using this method, anthocyanin levels of two extracts were found to be 25% as claimed by the manufacturers. When high-performance liquid chromatography (HPLC) was used, however, one extract was found to contain 9% anthocyanins probably not derived from V. myrtillus but from an adulterant. This adulterant was subsequently identified, using HPLC, mass spectroscopy, and nuclear magnetic resonance, as amaranth, that is, 3-hydroxy-4-[(4-sulfo-1-naphthalenyl)azo]-2,7-naphthalenedisulfonic acid trisodium salt-a synthetic dark red sulfonic acid based naphthylazo dye. As described in this study, if deliberate adulteration occurs in an extract, a single-wavelength spectrophotometric assay is inadequate to accurately determine the levels of compounds such as anthocyanins. Detection of deliberate adulteration in commercial samples thus requires the use of alternative, more sophisticated, methods of analysis such as HPLC with photodiode array detection as a minimum.  相似文献   

7.
The short-term effects of the herbicide glyphosate (1.25-10 mM) on the growth, nitrogen fixation, carbohydrate metabolism, and shikimate pathway were investigated in leaves and nodules of nodulated lupine plants. All glyphosate treatments decreased nitrogenase activity rapidly (24 h) after application, even at the lowest and sublethal dose used (1.25 mM). This early effect on nitrogenase could not be related to either damage to nitrogenase components (I and II) or limitation of carbohydrates supplied by the host plant. In fact, further exposure to increasing glyphosate concentrations (5 mM) and greater time after exposure (5 days) decreased nodule starch content and sucrose synthase (SS; EC 2.4.1.13) activity but increased sucrose content within the nodule. These effects were accompanied by a great inhibition of the activity of phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31). There were remarkable and rapid effects on the increase of shikimic and protocatechuic (PCA) acids in nodules and leaves after herbicide application. On the basis of the role of shikimic acid and PCA in the regulation of PEPC, as potent competitive inhibitors, this additional effect provoked by glyphosate on 5-enolpyruvylshikimic-3-phosphate synthase enzyme (EPSPS; EC 2.5.1.19) inhibition would divert most PEP into the shikimate pathway, depriving energy substrates to bacteroids to maintain nitrogen fixation. These findings provide a new explanation for the effectiveness of glyphosate as a herbicide in other plant tissues, for the observed differences in tolerance among species or cultivars, and for the transitory effects on glyphosate-resistant transgenic crops under several environmental conditions.  相似文献   

8.
A methanol extract of nagkesar (buds of Mammea longifolia), which showed strong radical scavenging activity, yielded 13 compounds by separations using column chromatography and HPLC. Structure elucidation of these compounds was achieved by (1)H and (13)C NMR, including DQF-COSY, TOCSY, DEPT, HMQC, HSQC, and HMBC. They include two new compounds, quercetin 3-O-(2' ',4' 'di-E-p-coumaroyl)-alpha-L-rhamno-pyranoside and quercetin 3-O-(3' ',4' '-di-E-p-coumaroyl)-alpha-L-rhamnopyranoside, along with known compounds kaempferol, quercetin, the isopropylidenedioxy derivative of shikimic acid, kaempferol 3-O-(2' ',4' '-di-E-p-coumaroyl)-alpha-L-rhamnopyranoside, kaempferol 3-O-(3' ',4' '-di-E-p-coumaroyl)-alpha-L-rhamnopyranoside, kaempferol 3-O-alpha-L-rhamnopyranoside, quercetin 3-O-alpha-L-rhamnopyranoside, shikimic acid, kaempferol 3-O-beta-D-glucopyranoside, quercetin 3-O-beta-D-glucopyranoside, and beta-sitosterol 3-O-beta-D-glucopyranoside.  相似文献   

9.
There is evidence that glyphosate application in soybean tolerant to herbicides could interfere in the manganese (Mn) nutrition of the crop, but there is no information on this effect in cotton plants. This study aimed at assessing manganese accumulation and distribution in cotton as affected by glyphosate application. The experiment was conducted in nutrient solution with four Mn concentrations and two cotton cultivars: conventional NuOpal and NuOpal tolerant to glyphosate (RR). Glyphosate was applied or not to the tolerant cultivar. The inclusion of the glyphosate resistance gene in cotton and herbicide, application increased shikimic acid (ShA) concentration in the plants. Glyphosate application decreased cotton leaf area and the dry matter production of the plant structures. The adverse effects of glyphosate were not overcome with higher Mn rates in the solution.  相似文献   

10.
With the advent of glyphosate [N-(phosphonomethyl)glycine] tolerant crops, soils have now been receiving repeated applications of the herbicide for over 10 years in the Midwestern USA. There is evidence that long-term use of glyphosate can cause micronutrient deficiency but little is known about plant potassium (K) uptake interactions with glyphosate. The repeated use of glyphosate may create a selection pressure in soil microbial communities that could affect soil K dynamics and ultimately K availability for crops. Therefore, the objectives of this study were to characterize the effect of foliar glyphosate applied to GR (glyphosate resistant) soybeans on: (1) rhizosphere microbial community profiles using ester linked fatty acid methyl ester (EL-FAME) biomarkers, (2) exchangeable, non-exchangeable, and microbial K in the rhizosphere soil, and (3) concentrations of soybean leaf K. A greenhouse study was conducted in a 2 × 2 × 3 factorial design with two soil treatments (with or without long-term field applications of glyphosate), two plant treatments (presence and absence of soybean plants), and three rates of glyphosate treatments (0×, 1× at 0.87, and 2× at 1.74 kg ae ha?1, the recommended field rate). After each glyphosate application, rhizosphere soils were sampled and analyzed for microbial community structure using ester linked fatty acid methyl ester biomarkers (EL-FAME), and exchangeable, plant tissue and microbial biomass K. Glyphosate application caused a significant decrease in the total microbial biomass in soybean rhizosphere soil that had no previous exposure to glyphosate, at 7 days after glyphosate application. However, no significant changes were observed in the overall microbial community structure. In conclusion, the glyphosate application lowered the total microbial biomass in the GR soybean rhizosphere soil that had no previous exposure to glyphosate, at 7 days after glyphosate application; caused no changes in the microbial community structure; and did not reduce the plant available K (soil exchangeable or plant tissue K).  相似文献   

11.
A competitive direct enzyme-linked immunosorbent assay (ELISA) and high-pressure liquid chromatographic (HPLC) methods were compared in terms of accuracy and precision for the detection and quantification of glyphosate-spiked Nanopure, tap, and river waters. The ELISA had a detection limit of 0.6 ng mL(-)(1) and a linear working range of 1-25 ng mL(-)(1), whereas the HPLC method had a detection limit of 50 ng mL(-)(1) and a linear working range of 100-10000 ng mL(-)(l). No statistically significant differences (95% confidence interval) were found between the ELISA and HPLC analysis of the three water matrixes. The coefficients of variation obtained with the ELISA in tap water were between 10 and 19%, whereas the coefficients of variation for the HPLC analysis were between 7 and 15%. The use of ELISA for the analysis of glyphosate in water is a cost-effective and reliable method capable of meeting water quality guidelines established for Europe and North America.  相似文献   

12.
Procedures were developed for the simultaneous determination of glyphosate [N-(phosphonomethyl)glycine] and glufosinate [dl-homoalanin-4-yl-(methyl)phosphinic acid] and their major metabolites, aminomethylphosphonic acid (AMPA) and 3-(methylphosphinico)propionic acid (3-MPPA), in rice and soybean sprouts by gas chromatography (GC) equipped with a pulsed flame photometric detector (PFPD). Herbicides and their major metabolites were previously derivatized with TMOA (trimethyl orthoacetate (TMOA) in the presence of acetic acid, and their GC responses versus heating temperature (70-90 degrees C) and heating time (30-120 min) were optimized. It was found that increases in heating temperature and heating time were unfavorable for the derivatization of glyphosate or glufosinate, whereas high temperature and extended reaction time remarkably facilitated that of AMPA and 3-MPPA except at 90 degrees C for an extended reaction time (120 min). Combination of AG1-X8 anion-exchange chromatography with a Florisil cartridge cleanup process was favorable for the GC-PFPD analysis. Four types of derivatives spiked in rice and soybean sprout matrices were eluted, reaching a baseline separation, in a sequence of 3-MPPA, AMPA, glyphosate, and glufosinate within 14 min using a DB-608 capillary column. Recoveries of glyphosate, AMPA, glufosinate, and 3-MPPA (0.5 ppm) spiked in both sample matrices were determined to be 72-81, 71-86, 101-119, and 83-90%, respectively, whereas the coefficient of variation was determined to be <10% in three repeated determinations. The instrumental limits of detection for glyphosate, AMPA, glufosinate, and 3-MPPA in sample matrices were 0.02, 0.03, 0.02, and 0.01 ppm, respectively. The limits of quantification for glyphosate, AMPA, glufosinate, and 3-MPPA in sample matrices were 0.06, 0.10, 0.06, and 0.04 ppm, respectively.  相似文献   

13.
采用随机区组的设计方法,在第二复叶期喷施不同剂量的农达41%水剂,研究了其对不同大豆品种叶片叶绿素含量指数、莽草酸含量、SOD活性等生理指标和产量构成的影响。结果表明:喷施农达41%水剂可以降低抗草甘膦大豆RR1、RR2和普通大豆晋大75、晋豆27叶片的叶绿素指数,而抗草甘膦大豆RR1和RR2的降低幅度远小于普通大豆晋大75和晋豆27。抗草甘膦大豆可以忍受较高剂量(7.38kg/hm2)的农达41%水剂,普通大豆晋大75和晋豆27在较低剂量(0.46kg/hm2)时体内莽草酸就大量积累。随着农达41%水剂剂量的增加,抗草甘膦大豆体内的SOD活性也提高,而普通大豆随着剂量的增加,体内SOD活性受到抑制。RR2和RR1分别以农达41%剂量为1.85kg/hm2和0.92kg/hm2时的各产量构成因素值最高,晋大75和晋豆27以0.46kg/hm2时最高。作物不同品种对草甘膦的敏感程度不同,对农达41%水剂的抗性抗草甘膦大豆大于普通大豆,RR2的抗性和RR1相差不大,晋大75(早熟)的抗性和晋豆27(晚熟)相差不大。在这3个生理指标中,叶片莽草酸含量和叶绿素含量指数的变化比SOD活性敏感。  相似文献   

14.
Analysis of the hydrophilic fraction of cranberry juice by reversed-phase HPLC using an Aqua LUNA column with diode array or MS detection revealed the presence of quinic acid, malic acid, shikimic acid, and citric acid. For the first time, two iridoid glucosides were found in the juice. The two iridoid glucosides were shown to be monotropein and 6,7-dihydromonotropein by MS and NMR spectroscopy. A fast reversed-phase HPLC method for quantification of the hydrophilic carboxylic acids was developed and used for analyses of cranberry, lingonberry, and blueberry juices. The level of hydrophilic carboxylic acids in cranberries was 2.67-3.57% (w/v), in lingonberries 2.27-3.05%, and in blueberries 0.35-0.75%. In lingonberries both iridoid glucosides were present, whereas only monotropein was present in blueberries.  相似文献   

15.
High levels of aminomethylphosphonic acid (AMPA), the main glyphosate metabolite, have been found in glyphosate-treated, glyphosate-resistant (GR) soybean, apparently due to plant glyphosate oxidoreductase (GOX)-like activity. AMPA is mildly phytotoxic, and under some conditions the AMPA accumulating in GR soybean correlates with glyphosate-caused phytotoxicity. A bacterial GOX is used in GR canola, and an altered bacterial glyphosate N-acetyltransferase is planned for a new generation of GR crops. In some weed species, glyphosate degradation could contribute to natural resistance. Neither an isolated plant GOX enzyme nor a gene for it has yet been reported in plants. Gene mutation or amplification of plant genes for GOX-like enzyme activity or horizontal transfer of microbial genes from glyphosate-degrading enzymes could produce GR weeds. Yet, there is no evidence that metabolic degradation plays a significant role in evolved resistance to glyphosate. This is unexpected, considering the extreme selection pressure for evolution of glyphosate resistance in weeds and the difficulty in plants of evolving glyphosate resistance via other mechanisms.  相似文献   

16.
A series of five food reference materials (RM) that had certified values of folate concentrations and five frozen food samples were analyzed for 5-methyltetrahydrofolic acid (5-MTHFA) and folic acid (FA) using a high-performance liquid chromatography (HPLC) method with fluorescence detection that was validated using an HPLC mass spectrometry (MS) method with electrospray ionization. Identical sample specimens were extracted and analyzed in triplicate using both instrumental methods, and a comparison was made of the mean values of 5-MTHFA and FA resulting from these determinations. The analytes were isolated on either a high capacity strong anion exchange solid phase extraction column (HPLC method) or a phenyl Bond Elut column (MS method) prior to analyses. For quantification of the analytes by MS, (13)C-labeled 5-MTHFA and FA were added to samples as internal standards prior to enzymatic digestion and conversion of the polyglutamate forms of 5-MTHFA to the monoglutamic acid. Quantification of FA and 5-MTHFA using the HPLC analysis was carried out using external standards. With the exception of one RM (pig liver), the values established for 5-MTHFA using these methods were highly comparable. In determining the variance associated with these two procedures, it was observed that the mean relative standard error for 5-MTHFA was 12 (range, 2-27%) and 11% (range, 5-25%) for the HPLC and MS methods, respectively. FA was detected in only three of the samples, and the values obtained for it by either method were similar. This is the first paper that describes a mass spectrometric method used in the validation of an HPLC determination of food folates across a wide range of sample matrixes. The comparable values for 5-MTHFA and FA suggest that HPLC analysis with fluorescent detection may be used to accurately quantify folates present in a variety of food matrixes.  相似文献   

17.
The determination of free flavan-3-ol compounds in barley flours (cv. Gotic) and two resulting milling fractions (fine fraction 57% and coarse fraction 43%, w/w) obtained by air classification of dehulled grain is herein described. The determinations were carried out using reversed phase high-performance liquid chromatography coupled with both diode array detection and ESI-MS compared with conventional spectrophotometric determinations (total phenolic compounds by the Folin-Ciocalteu method and free radical scavenging activity with the DPPH assay). Significant correlations among the HPLC quantification, the spectrophotometric data, and the antioxidant capacity of extracts were revealed by Pearson's analysis. Nine flavan-3-ols were identified by HPLC-MS. Catechins and their derivatives were found to make a substantial contribution to the antioxidant power of extracts. The coarse fraction showed larger concentrations of flavan-3-ols (221%) with respect to the fine fraction. This was confirmed by the antioxidant activity of the analyzed flours. The coarse fraction showed the greatest antioxidant activity (1200.1 +/- 66.2 micromol of Trolox equiv/100 g of flour) with respect to whole meal and fine fraction (1025.9 +/- 18.3 and 761.7 +/- 55.3 micromol of Trolox equiv/100 g of flour, respectively).  相似文献   

18.
A competitive indirect enzyme-linked immunosorbent assay (CI-ELISA) was developed to quantitate the herbicide glyphosate [N-(phosphonomethyl)glycine] in water. The ELISA has a detection limit of 7.6 microg mL(-1) and a linear working range of 10-1000 microg mL(-1) with an IC(50) value of 154 microg mL(-1). The glyphosate polyclonal antisera did not cross-react with a number of other herbicides tested but did cross-react with the glyphosate metabolite aminomethylphosphonic acid and a structurally related herbicide, glyphosine [(N,N-bis(phosphonomethyl)glycine]. The assay was used to estimate, quantitatively with accuracy and precision, glyphosate concentrations in water samples. Water samples were analyzed directly, and no sample preparation was required. To improve detection limits, water samples were concentrated prior to analysis, resulting in the increase of the detection limits by 100-fold. After the sample preconcentration step, the detection limit improved to 0.076 microg mL(-1) with an IC(50) value of 1.54 microg mL(-1), and a linear working range was 0.1-10 microg mL(-1). Glyphosate concentrations determined by ELISA correlated well with those determined by high-pressure liquid chromatography (r(2) = 0.99). This assay contributes to reducing the costs associated with conventional residue analysis techniques for the quantitation of glyphosate in water.  相似文献   

19.
Arbutus unedo L., the strawberry tree (Ericaceae family), is an evergreen shrub or small tree, typical of the Mediterranean fringe and climate. The aim of the present study was to evaluate the profile of the phenolic constituents of A. unedo fruits. Seven compounds were purified by Sephadex LH-20 column chromatography of the MeOH extract followed by HPLC and were characterized as arbutin, beta-D-glucogalline, gallic acid 4-O-beta-D-glucopyranoside, 3-O-galloylquinic acid, 5-O-galloylquinic acid, 3-O-galloylshikimic acid, and 5-O-galloylshikimic acid, by means of NMR and ESI-MS analyses. Moreover, LC-PDA-MS analysis of the red pigment of A. unedo fruits revealed the presence of three anthocyanins recognized as cyanidin 3-O-beta-D-galactopyranoside, delphinidin 3-O-beta-D-glucopyranoside, and cyanidin 3-O-beta-D-arabinopyranoside. These pigments were also quantified.  相似文献   

20.
Deltamethrin (S)-alpha-cyano-3-phenoxybenzyl) (1R,3R)-3-(2, 2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylate is classified as a pyrethroid pesticide that is largely used as an acaricide and scabicide. For bovines, especially, the treatment is done with the aid of dipping baths of the pyrethroid solution. Analytical control of the concentration of deltamethrin in these baths must be done periodically in order to guarantee treatment efficacy. In the proposed procedure, the sample is prepared by centrifugation followed by filtration and measurement by high-performance liquid chromatography (HPLC) with spectrophotometric detection at 275 nm. Separation is done in a Nucleosil C-18 column with acetonitrile-water as the mobile phase. A calibration curve was constructed with external standards, and a detection limit of 0.2 mg L(-)(1) was obtained. In the samples analyzed, only ca. 20% of the total deltamethrin content was found in the solution. The results obtained demonstrate the potential of the described procedure for the determination of deltamethrin in animal baths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号