首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Soil water and nutrients play an important role in increasing sorghum (Sorghum bicolor L. Moench) yields in the Vertisols of semi-arid tropics during post-rainy season. The effects of tillage practices, organic materials and nitrogen fertilizer on soil properties, water conservation and yield of sorghum were evaluated during winter seasons of 1994–1995 and 1995–1996 on deep Vertisols at Bijapur in the semi-arid tropics of Karnataka State (Zone 3) of south India. Conservation and availability of water and nutrients during different stages of crop growth were increased by deeper tillage resulting in increased grain yield of winter sorghum. Medium and deep tillage increased the grain yield by 23% (1509 kg ha−1) and 57% (1919 kg ha−1) during 1994–1995 and 14% (1562 kg ha−1) and 34% (1835 kg ha−1) during 1995–1996, respectively, over shallow tillage. Water use efficiency increased from shallow (4.90 kg ha−1 mm−1) to deep tillage (7.30 kg ha−1 mm−1). Greater water use efficiency during 1994–1995 as compared to 1995–1996 was attributed to lower consumptive use of water during 1994–1995. Among organic materials, application of Leucaena loppings conserved larger amounts of water and increased winter sorghum yield and water use efficiency. Application of Leucaena loppings increased the winter sorghum grain yield by 9% (mean of 1994–1995 and 1995–1996) as compared to vermicompost. Significantly (P < 0.05) higher water use efficiency of 6.32 kg ha−1 mm−1 was observed in Leucaena loppings incorporated plots compared to 5.72 kg ha−1 mm−1 from vermicompost. Grain yield increased by 245 kg ha−1 with application of 25 kg N ha−1 in 1994–1995, and a further increase in N application to 50 kg ha−1 increased the grain yield by about 349 kg ha−1 in 1995–1996. Deep tillage with application of 25 kg N ha−1 resulted in significantly higher sorghum yield (2047 kg ha−1) than control during 1994–1995. Deep tillage with integrated nutrient management (organic and inorganic N sources) conserved higher amount of soil water and resulted in increased sorghum yields especially during drought years.  相似文献   

2.
Field experiments were conducted at Fort Vermilion (58°23′N 116°02′W), Alberta, to determine phosphorus (P) release patterns from red clover (Trifolium pratense) green manure (GM), field pea (Pisum sativum), canola (Brassica rapa) and monoculture wheat (Triticum aestivum) residues in the 7th and 8th years of conventional and zero tillage. Phosphorus contained in crop residues ranged from 1.5 kg ha−1 in pea to 9.2 kg ha−1 in clover GM, both under zero tillage. The patterns of P release over a 52-week period sometimes varied with tillage, i.e., a greater percentage of GM residue P was released under conventional tillage than under zero tillage in the first 2–10 weeks of residue placement. Wheat residues resulted in net P immobilization under zero tillage, but the amounts immobilized were less than 1 kg ha−1. When net P mineralization occurred, the percentage of P released ranged from 24% of wheat P under conventional tillage to 74% of GM P under conventional tillage. The amounts of P released were 0.4 kg ha−1 from wheat, 0.8 kg ha−1 from canola, 0.4 kg ha−1 from pea and 5.1–5.6 kg ha−1 from clover GM residues. Therefore, only GM residues recycled agronomically significant amounts of P for use by subsequent crops in rotation. Phosphorus release was positively correlated with residue P concentration and negatively correlated with C/P and lignin/P ratios.  相似文献   

3.
Information on N cycling in dryland crops and soils as influenced by long-term tillage and cropping sequence is needed to quantify soil N sequestration, mineralization, and N balance to reduce N fertilization rate and N losses through soil processes. The 21-yr effects of the combinations of tillage and cropping sequences was evaluated on dryland crop grain and biomass (stems + leaves) N, soil surface residue N, soil N fractions, and N balance at the 0–20 cm depth in Dooley sandy loam (fine-loamy, mixed, frigid, Typic Argiboroll) in eastern Montana, USA. Treatments were no-tilled continuous spring wheat (Triticum aestivum L.) (NTCW), spring-tilled continuous spring wheat (STCW), fall- and spring-tilled continuous spring wheat (FSTCW), fall- and spring-tilled spring wheat–barley (Hordeum vulgare L.) (1984–1999) followed by spring wheat–pea (Pisum sativum L.) (2000–2004) (FSTW-B/P), and spring-tilled spring wheat–fallow (STW-F). Nitrogen fractions were soil total N (STN), particulate organic N (PON), microbial biomass N (MBN), potential N mineralization (PNM), NH4-N, and NO3-N. Annualized crop grain and biomass N varied with treatments and years and mean grain and biomass N from 1984 to 2004 were 14.3–21.2 kg N ha−1 greater in NTCW, STCW, FSTCW, and FSTW-B/P than in STW-F. Soil surface residue N was 9.1–15.2 kg N ha−1 greater in other treatments than in STW-F in 2004. The STN at 0–20 cm was 0.39–0.96 Mg N ha−1, PON 0.10–0.30 Mg N ha−1, and PNM 4.6–9.4 kg N ha−1 greater in other treatments than in STW-F. At 0–5 cm, STN, PON, and MBN were greater in STCW than in FSTW-B/P and STW-F. At 5–20 cm, STN and PON were greater in NTCW and STCW than in STW-F, PNM and MBN were greater in STCW than in NTCW and STW-F, and NO3-N was greater in FSTW-B/P than in NTCW and FSTCW. Estimated N loss through leaching, volatilization, or denitrification at 0–20 cm depth increased with increasing tillage frequency or greater with fallow than with continuous cropping and ranged from 9 kg N ha−1 yr−1 in NTCW to 46 kg N ha−1 yr−1 in STW-F. Long-term no-till or spring till with continuous cropping increased dryland crop grain and biomass N, soil surface residue N, N storage, and potential N mineralization, and reduced N loss compared with the conventional system, such as STW-F, at the surface 20 cm layer. Greater tillage frequency, followed by pea inclusion in the last 5 out of 21 yr in FSTW-B/P, however, increased N availability at the subsurface layer in 2004.  相似文献   

4.
In Vertisols of central India erratic rainfall and prevalence of drought during crop growth, low infiltration rates and the consequent ponding of water at the surface during the critical growth stages are suggested as possible reasons responsible for poor yields (<1 t ha−1) of soybean (Glycine max (L.) Merr.). Ameliorative tillage practices particularly deep tillage (subsoiling with chisel plough) can improve the water storage of soil by facilitating infiltration, which may help in minimizing water stress in this type of soil. In a 3-year field experiment (2000–2002) carried out in a Vertisol during wet seasons at Bhopal, Madhya Pradesh, India, we determined infiltration rate, root length and mass densities, water use efficiency and productivity of rainfed soybean under three tillage treatments consisting of conventional tillage (two tillage by sweep cultivator for topsoil tillage) (S1), conventional tillage + subsoiling in alternate years using chisel plough (S2), and conventional tillage + subsoiling in every year (S3) as main plot. The subplot consisted of three nutrient treatments, viz., 0% NPK (N0), 100% NPK (N1) and 100% NPK + farmyard manure (FYM) at 4 t ha−1 (N2). S3 registered a significantly lower soil penetration resistance by 22%, 28% and 20%, respectively, at the 17.5, 24.5 and 31.5 cm depths over S1 and the corresponding decrease over S2 were 17%, 19% and 13%, respectively. Bulk density after 15 days of tillage operation was significantly low in subsurface (15–30 cm depth) in S3 (1.39 mg m−3) followed by S2 (1.41 mg m−3) and S1 (1.58 mg m−3). Root length density (RLD) and root mass density (RMD) of soybean at 0–15 cm soil depth were greater following subsoiling in every year. S3 recorded significantly greater RLD (1.04 cm cm−3) over S2 (0.92 cm cm−3) and S1 (0.65 cm cm−3) at 15–30 cm depth under this study. The basic infiltration rate was greater after subsoiling in every year (5.65 cm h−1) in relation to conventional tillage (1.84 cm h−1). Similar trend was also observed in water storage characteristics (0–90 cm depth) of the soil profile. The faster infiltration rate and water storage of the profile facilitated higher grain yield and enhanced water use efficiency for soybean under subsoiling than conventional tillage. S3 registered significantly higher water use efficiency (17 kg ha−1 cm−1) over S2 (16 kg ha−1 cm−1) and S1 (14 kg ha−1 cm−1). On an average subsoiling recorded 20% higher grain yield of soybean over conventional tillage but the yield did not vary significantly due to S3 and S2. Combined application of 100% NPK and 4 t farmyard manure (FYM) ha−1 in N2 resulted in a larger RLD, RMD, grain yield and water use efficiency than N1 or the control (N0). N2 registered significantly higher yield of soybean (1517 kg ha−1) over purely inorganic (N1) (1392 kg ha−1) and control (N0) (898 kg ha−1). The study indicated that in Vertisols, enhanced productivity of soybean can be achieved by subsoiling in alternate years and integrated with the use of 100% NPK (30 kg N, 26 kg P and 25 kg K) and 4 t FYM ha−1.  相似文献   

5.
A field trial was conducted during the kharif (rainy) seasons of 2002 and 2003 at the Research Farm, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India. The trial was carried out to study the effect of planting methods, sources and levels of nitrogen on soil properties, yield and NPK uptake by rice (Oryza sativa L.) under direct seeded condition. Planting methods significantly influenced the physical, chemical and biological properties of soil. Bulk density (1.385 g cm−3), organic carbon (0.43%) and soil moisture content (15.46%) were higher in zero till seeding plots than rotavator and conventional seeding. However, infiltration rate, soil temperature, pH and electrical conductivity showed a declining trend under this treatment and were found maximum (11.54 mm h−1, 36.21 °C at 55 DAS, 30.65 °C at harvest, 7.59 and 0.47 ds m−1) with conventional seeding. The maximum population of bacteria (25.60 × 105), fungi (14.26 × 104) and azotobactor (10.19 × 103) were found in the plot with zero till seeding while in case of actinomycetes the highest population (25.61 × 105) was found in conventional seeding. Nitrogen sources as well as levels failed to bring about any significant change in the soil properties. The highest grain (3825 kg ha−1) and straw yields (5446 kg ha−1) and N, P, K uptake were recorded in conventional seeding and were found significantly superior to zero till seeding (3144 kg ha−1) but it remained at par with rotavator seeding (3585 kg ha−1). Among the nitrogen sources, neem (Azadirachta indica) coated urea produced significantly higher grain (3761 kg ha−1) and straw yields (5396 kg ha−1) with greater NPK uptake than prilled urea and prilled urea + spent mentha. (The distillation waste of mint (Mentha arvensis) herbage is known as spent mentha.) Application of 150 kg N ha−1 produced maximum grain (3828 kg ha−1) and straw yields (5460 kg ha−1) although it remained at par with 100 kg N ha−1 (3738 and 5393 kg ha−1).  相似文献   

6.
Although the Midwestern United States is one of the world's major agricultural production areas, few studies have assessed the effects of the region's predominant tillage and rotation practices on greenhouse gas emissions from the soil surface. Our objectives were to (a) assess short-term chisel (CP) and moldboard plow (MP) effects on soil CO2 and CH4 fluxes relative to no-till (NT) and, (b) determine how tillage and rotation interactions affect seasonal gas emissions in continuous corn and corn–soybean rotations on a poorly drained Chalmers silty clay loam (Typic Endoaquoll) in Indiana. The field experiment itself began in 1975. Short-term gas emissions were measured immediately before, and at increasing hourly intervals following primary tillage in the fall of 2004, and after secondary tillage in the spring of 2005, for up to 168 h. To quantify treatment effects on seasonal emissions, gas fluxes were measured at weekly or biweekly intervals for up to 14 sampling dates in the growing season for corn. Both CO2 and CH4 emissions were significantly affected by tillage but not by rotation in the short-term following tillage, and by rotation during the growing season. Soil temperature and moisture conditions in the surface 10 cm were significantly related to CO2 emissions, although the proportion of variation explained by temperature and moisture was generally very low (never exceeded 27%) and varied with the tillage system being measured. In the short-term, CO2 emissions were significantly higher for CP than MP and NT. Similarly, mean seasonal CO2 emissions during the 2-year period were higher for CP (6.2 Mg CO2-C ha−1 year−1) than for MP (5.9 Mg CO2-C ha−1 year−1) and NT (5.7 Mg CO2-C ha−1 year−1). Both CP and MP resulted in low net CH4 uptake (7.6 and 2.4 kg CH4-C ha−1 year−1, respectively) while NT resulted in net emissions of 7.7 kg CH4-C ha−1 year−1. Mean emissions of CO2 were 16% higher from continuous corn than from rotation corn during the two growing seasons. After 3 decades of consistent tillage and crop rotation management for corn and soybean producing grain yields well above average in the Midwest, continuous NT production in the corn–soybean rotation was identified as the system with the least soil-derived C emissions to the atmosphere from among those evaluated prior to and during corn production.  相似文献   

7.
Conservation tillage practices are commonly used to reduce erosion; however, in fields that have been in no-tillage (NT) for long periods, compaction from traffic can restrict infiltration. Rotational tillage (RT) is a common practice that producers use in the central corn-belt of the United States, and could potentially reduce soluble nutrient loads to surface waters. The objectives of this study were to determine the first year impacts of converting from long-term NT to (RT) on N and P losses through runoff. Plots (2 m × 1 m) were constructed in two fields that had been in NT corn–soybean rotation for the previous 15 years. One field remained in NT management, while RT was initiated prior to planting corn in the other field using a soil finisher. Variable-intensity rainfall simulations occurred before and after fertilization with urea (224 kg N ha−1) and triple superphosphate (112 kg P ha−1). Rainfall was simulated at (1) 50 mm h−1 for 50 min; (2) 75 mm h−1 for 15 min; (3) 25 mm h−1 for 15 min; (4) 100 mm h−1 for 15 min. Runoff volumes and nutrient (NH4-N, NO3-N and dissolved P [DP]) concentrations were greater from the NT field than the RT field before and after fertilization.Dissolved P concentrations in runoff prior to fertilization were greater during the 50 mm h−1 rainfall period (0.09 mg L−1) compared to the other periods (0.03 mg L−1). Nutrient concentrations increased by 10–100-fold when comparing samples taken after fertilization to those taken prior to fertilization. Nutrient loads were greater prior to and after fertilization from the NT treatment. Prior to fertilization, NT resulted in 83 g ha−1 greater NH4-N and 32.4 g ha−1 greater dissolved P losses than RT treatment. After fertilization, NT was observed to lose 5.3 kg ha−1 more NH4-N, 1.3 kg ha−1 more NO3-N, and 2.4 kg ha−1 more dissolved P than RT. It is typically difficult to manage land to minimize P and N losses simultaneously; however, in the short term, tillage following long-term NT resulted in lowering the risk of transport of soluble N and P to surface water.  相似文献   

8.
Nitrous oxide (N2O) and methane (CH4) emitted by anthropogenic activities have been linked to the observed and predicted climate change. Conservation tillage practices such as no-tillage (NT) have potential to increase C sequestration in agricultural soils but patterns of N2O and CH4 emissions associated with NT practices are variable. Thus, the objective of this study was to evaluate the effects of tillage practices on N2O and CH4 emissions in long-term continuous corn (Zea mays) plots. The study was conducted on continuous corn experimental plots established in 1962 on a Crosby silt loam (fine, mixed, mesic Aeric Ochraqualf) in Ohio. The experimental design consisted of NT, chisel till (CT) and moldboard plow till (MT) treatments arranged in a randomized block design with four replications. The N2O and CH4 fluxes were measured for 1-year at 2-week intervals during growing season and at 4-week intervals during the off season. Long-term NT practice significantly decreased soil bulk density (ρb) and increased total N concentration of the 0–15 cm layer compared to MT and CT. Generally, NT treatment contained higher soil moisture contents and lower soil temperatures in the surface soil than CT and MT during summer, spring and autumn. Average daily fluxes and annual N2O emissions were more in MT (0.67 mg m−2 d−1 and 1.82 kg N ha−1 year−1) and CT (0.74 mg m−2 d−1 and 1.96 kg N ha−1 year−1) than NT (0.29 mg m−2 d−1 and 0.94 kg N ha−1 year−1). On average, NT was a sink for CH4, oxidizing 0.32 kg CH4-C ha−1 year−1, while MT and CT were sources of CH4 emitting 2.76 and 2.27 kg CH4-C ha−1 year−1, respectively. Lower N2O emission and increased CH4 oxidation in the NT practice are attributed to decrease in surface ρb, suggesting increased gaseous exchange. The N2O flux was strongly correlated with precipitation, air and soil temperatures, but not with gravimetric moisture content. Data from this study suggested that adoption of long-term NT under continuous corn cropping system in the U.S. Corn Belt region may reduce GWP associated with N2O and CH4 emissions by approximately 50% compared to MT and CT management.  相似文献   

9.
A field experiment was conducted for two crop cycles during 2003–2005 and 2004–2006 at the Indian Institute of Sugarcane Research, Lucknow in subtropical India. Trichoderma viride and Gluconacetobacter diazotrophicus amended farm yard manure (FYM) increased organic carbon (19.44 Mg ha−1) and available nitrogen (260 kg N ha−1) content of soil from 14.78 Mg ha−1 (OC) and 204 kg N ha−1 observed under farmer's practice (sole N application). Application of bioagents amended FYM improved soil porosity and reduced compaction (bulk density—1.39 Mg m−3 over 1.48 Mg m−3 under farmer's practice). Sugarcane ratoon crop removed the highest amount of nitrogen (N—165.7 kg ha−1), phosphorus (P—24.01 kg ha−1) and potassium (K—200.5 kg ha−1) in the plots receiving FYM with Trichoderma and Gluconacetobacter. Inoculation of FYM with bioagents improved population of ammonifying and nitrifying bacteria in the soil. Phosphorus and potassium uptake of the crop was greatest in the plots receiving FYM, Trichoderma and Gluconacetobacter. Bioagents (Trichoderma and Gluconacetobacter) amended FYM increased ratoon cane (70.2 Mg ha−1) and sugar yields (7.93 Mg ha−1) compared with control (62.3 and 7.06 Mg ha−1 ratoon cane and sugar yields, respectively).  相似文献   

10.
Few studies address nutrient cycling during the transition period (e.g., 1–4 years following conversion) from standard to some form of conservation tillage. This study compares the influence of minimum versus standard tillage on changes in soil nitrogen (N) stabilization, nitrous oxide (N2O) emissions, short-term N cycling, and crop N use efficiency 1 year after tillage conversion in conventional (i.e., synthetic fertilizer-N only), low-input (i.e., alternating annual synthetic fertilizer- and cover crop-N), and organic (i.e., manure- and cover crop-N) irrigated, maize–tomato systems in California. To understand the mechanisms governing N cycling in these systems, we traced 15N-labeled fertilizer/cover crop into the maize grain, whole soil, and three soil fractions: macroaggregates (>250 μm), microaggregates (53–250 μm) and silt-and-clay (<53 μm). We found a cropping system effect on soil Nnew (i.e., N derived from 15N-fertilizer or -15N-cover crop), with 173 kg Nnew ha−1 in the conventional system compared to 71.6 and 69.2 kg Nnew ha−1 in the low-input and organic systems, respectively. In the conventional system, more Nnew was found in the microaggregate and silt-and-clay fractions, whereas, the Nnew of the organic and low-input systems resided mainly in the macroaggregates. Even though no effect of tillage was found on soil aggregation, the minimum tillage systems showed greater soil fraction-Nnew than the standard tillage systems, suggesting greater potential for N stabilization under minimum tillage. Grain-Nnew was also higher in the minimum versus standard tillage systems. Nevertheless, minimum tillage led to the greatest N2O emissions (39.5 g N2O–N ha−1 day−1) from the conventional cropping system, where N turnover was already the fastest among the cropping systems. In contrast, minimum tillage combined with the low-input system (which received the least N ha−1) produced intermediate N2O emissions, soil N stabilization, and crop N use efficiency. Although total soil N did not change after 1 year of conversion from standard to minimum tillage, our use of stable isotopes permitted the early detection of interactive effects between tillage regimes and cropping systems that determine the trade-offs among N stabilization, N2O emissions, and N availability.  相似文献   

11.
Soil movement by tillage redistributes soil within the profile and throughout the landscape, resulting in soil removal from convex slope positions and soil accumulation in concave slope positions. Previous investigations of the spatial variability in surface soil properties and crop yield in a glacial till landscape in west central Minnesota indicated that wheat (Triticum aestivum) yields were decreased in upper hillslope positions affected by high soil erosion loss. In the present study, soil cores were collected and characterized to indicate the effects of long-term intensive tillage on soil properties as a function of depth and tillage erosion. This study provides quantitative measures of the chemical and physical properties of soil profiles in a landscape subject to prolonged tillage erosion, and compares the properties of soil profiles in areas of differing rates of tillage erosion and an uncultivated hillslope. These comparisons emphasize the influence of soil translocation within the landscape by tillage on soil profile characteristics. Soil profiles in areas subject to soil loss by tillage erosion >20 Mg ha−1 year−1 were characterized by truncated profiles, a shallow depth to the C horizon (mean upper boundary 75 cm from the soil surface), a calcic subsoil and a tilled layer containing 19 g kg−1 of inorganic carbon. In contrast, profiles in areas of soil accumulation by tillage >10 Mg ha−1 year−1 exhibited thick sola with low inorganic carbon content (mean 3 g kg−1) and a large depth to the C horizon (usually >1.5 m below the soil surface). When compared to areas of soil accumulation, organic carbon, total nitrogen and Olsen-extractable phosphorus contents measured lower, whereas inorganic carbon content, pH and soil strength measured higher throughout the profile in eroded landscape positions because of the reduced soil organic matter content and the influence of calcic subsoil material. The mean surface soil organic carbon and total nitrogen contents in cultivated areas (regardless of erosion status) were less than half that measured in an uncultivated area, indicating that intensive tillage and cropping has significantly depleted the surface soil organic matter in this landscape. Prolonged intensive tillage and cropping at this site has effectively removed at least 20 cm of soil from the upper hillslope positions.  相似文献   

12.
Crop residues and reduced tillage become current tendency in modifying tillage due to better water management, organic and nutrient supply and increasing crop production. This study was carried out to quantify the effect of fodder radish mulching and different tillage systems in wheat production. In 2004–2006 the field trial was set up on Luvic Chernozems derived from loess. This experiment consisted of two factors: tillage system (conventional or reduced) and mulch (with or without). The air–water properties of soil with particular focus on macropore characteristics were investigated.The tillage system and mulch application significantly influenced physical properties of investigated soil. Reduced tillage, without mouldboard plough, increased the soil density with respect to conventional tillage. However, in the upper soil layer (0–10 cm) with mulch residues the bulk density decreased and reached the similar value as those obtained at conventional tillage (1.25 g cm−3). The macroporosity of soil with conventional tillage (14.79%) was significantly higher in comparison with reduced tillage (6.55%). The mulch of fodder radish added at reduced tillage increased the macroporosity in pore diameter range of 50–500 μm. These changes referred to all shape classes: regular, irregular and elongated pores. The lowest transmission pores content (0.078 cm3 cm−3) was noticed at the reduced tillage without mulch at the 0–10 cm layer. Due to lack of differences in storage pores the tillage and mulching had no effect on both AWC (available water content) and PWC (productive water content) values. The higher value of AWC was noticed in the upper soil layer (0.198 cm3 cm−3 in average), whereas in the 10–20 cm soil layer it was 0.186 cm3 cm−3. Similar relation was recorded in PWC values, 0.165 and 0.154 cm3 cm−3, respectively. The results obtained in physical properties of soil reflected in wheat yields. The yields obtained at reduced tillage system without mulch (5.54 t ha−1) were significant lower with respect to treatment when mulch applied (6.79 t ha−1). The mulch residues did not affect yields at conventional tillage (6.53 t ha−1 without mulch and 7.00 t ha−1 with mulch). The main conclusion is that the mulching can help to avoid yield reduction in wheat production when reduced tillage is used.  相似文献   

13.
Soil organic matter (SOM) contributes to the productivity and physical properties of soils. Although crop productivity is sustained mainly through the application of organic manure in the Indian Himalayas, no information is available on the effects of long-term manure addition along with mineral fertilizers on C sequestration and the contribution of total C input towards soil organic C (SOC) storage. We analyzed results of a long-term experiment, initiated in 1973 on a sandy loam soil under rainfed conditions to determine the influence of different combinations of NPK fertilizer and fertilizer + farmyard manure (FYM) at 10 Mg ha−1 on SOC content and its changes in the 0–45 cm soil depth. Concentration of SOC increased 40 and 70% in the NPK + FYM-treated plots as compared to NPK (43.1 Mg C ha−1) and unfertilized control plots (35.5 Mg C ha−1), respectively. Average annual contribution of C input from soybean (Glycine max (L.) Merr.) was 29% and that from wheat (Triticum aestivum L. Emend. Flori and Paol) was 24% of the harvestable above-ground biomass yield. Annual gross C input and annual rate of total SOC enrichment were 4852 and 900 kg C ha−1, respectively, for the plots under NPK + FYM. It was estimated that 19% of the gross C input contributed towards the increase in SOC content. C loss from native SOM during 30 years averaged 61 kg C ha−1 yr−1. The estimated quantity of biomass C required to maintain equilibrium SOM content was 321 kg ha−1 yr−1. The total annual C input by the soybean–wheat rotation in the plots under unfertilized control was 890 kg ha−1 yr−1. Thus, increase in SOC concentration under long-term (30 years) rainfed soybean–wheat cropping was due to the fact that annual C input by the system was higher than the required amount to maintaining equilibrium SOM content.  相似文献   

14.
High population pressure in the central highlands of Kenya has led to continuous cultivation of land with minimal additional inputs leading to soil nutrient depletion. Research work has reported positive results from use of manure and biomass from Tithonia, Calliandra, Leucaena, Mucuna and Crotolaria for soil fertility replenishment. An experimental field was set up in Chuka Division to test different soil nutrient replenishment treatments. The experimental design was randomised complete block with 14 treatments replicated three times. At the beginning and end of the experiment, soil was sampled at 0–15 cm depth and analysed for pH, Ca, Mg, K, C, N and P. End of the 2000/2001 short rains (SR) season and 2001 long rains (LR) season, soil samples were taken at 0–30, 30–100 and 100–150 cm for nitrate and ammonium analysis. All the treatments received an equivalent of 60 kg N ha−1, except herbaceous legume treatments, where N was determined by the amount of the biomass harvested and incorporated in soil and control treatment received no inputs. Results indicate soil fertility increased slightly in all treatments (except control) over the 2-year study period. Average maize grain yield across the treatments was 1.1, 5.4, 3.5 and 4.0 Mg ha−1 during the 2000 LR, 2000/2001 SR, 2001 LR and 2001/2002 SR, respectively. The reduced yield in 2000 LR and 2001 LR are attributed to poor rainfall distribution during the two seasons. On average, Tithonia with half recommended rate of inorganic fertilizer recorded the highest (4.8 Mg ha−1) maize yield followed by sole Tithonia (4.7 Mg ha−1). Highest average concentration (144.8 and 115.5 kg N ha−1) of mineral N was recorded at the 30–100 cm soil depth at the end of both 2000/2001 SR and LR, respectively. The lowest average concentration (67.1 kg N ha−1) was recorded in the 100–150 cm soil depth in both seasons, while during the 2001 LR, the 0–30 cm soil depth recorded the lowest concentration (52.3 kg N ha−1). The residual mineral N in the 100–150 cm soil depth doubled at the end of the LR 2001 compared to what was present and the end of the SR 2000/2001 season in all treatments. This shows that there is substantial amount of mineral N that is being leached below the rooting zone of maize in this region.  相似文献   

15.
Cover crop and tillage effects on soil enzyme activities following tomato   总被引:2,自引:0,他引:2  
Increasing numbers of vegetable growers are adopting conservation tillage practices and including cover crops into crop rotations. The practice helps to increase or maintain an adequate level of soil organic matter and improves vegetable yields. The effects of the practices, however, on enzyme activities in southeastern soils of the United States have not been well documented. Thus, the objectives of the study were to investigate the effects of cover crops and two tillage systems on soil enzyme activity profiles following tomato and to establish relationships between enzyme activities and soil organic carbon (C) and nitrogen (N). The cover crops planted late in fall 2005 included black oat (Avena strigosa), crimson clover (Trifolium incarnatum L.), or crimson clover–black oat mixed. A weed control (no cover crop) was also included. Early in spring 2006, the plots were disk plowed and incorporated into soil (conventional tillage) or mowed and left on the soil surface (no-till). Broiler litter as source of N fertilizer was applied at a rate of 4.6 Mg ha−1, triple super phosphate at 79.0 kg P ha−1, and potassium chloride at 100 kg K ha−1 were also applied according to soil testing recommendations. Tomato seedlings were transplanted and grown for 60 days on a Marvyn sandy loam soil (fine-loamy, kaolinitic, thermic Typic Kanhapludults). Ninety-six core soil samples were collected at incremental depths (0–5, 5–10, and 10–15 cm) and passed through a 2-mm sieve and kept moist to study arylamidase (EC 3.4.11.2), l-asparaginase (EC 3.5.1.1), l-glutaminase (EC 3.5.1.2), and urease (EC 3.5.1.5) activities. Tillage systems affected only l-glutaminase activity in soil while cover crops affected activities of all the enzymes studied with the exception of urease. The research clearly demonstrated that in till and no-till systems, l-asparaginase activity is greater (P ≤ 0.05) in plots preceded by crimson clover than in those preceded by black oat or their mixture. Activity of the enzyme decreased from 11.7 mg NH4+–N kg−1 2 h−1 at 0–5 cm depth to 8.73 mg NH4+–N kg−1 2 h−1 at 5–10 cm and 10–15 cm depths in the no-till crimson clover plots. Arylamidase activity significantly correlated with soil organic C (r = 0.699**) and soil organic N (r = 0.764***). Amidohydrolases activities significantly correlated with soil organic N but only urease significantly correlated with soil organic C (r = 0.481*). These results indicated that incorporation of cover crops into rotations may increase enzyme activities in soils.  相似文献   

16.
Broiler chicken (Gallus gallus) manure, a rich source of plant nutrients, is generated in large quantities in southeastern USA where many row crops, such as corn (Zea mays L.), are also extensively grown. However, the use of broiler manure as an economical alternative source of nutrients for corn production has not been extensively explored in this region. This study was conducted to examine the use of broiler litter as a source of nutrients for corn production, as influenced by tillage and litter rate, and any residual effects following application. In addition, the consequence of litter application to soil test nutrient levels, particularly P, Zn and Cu, was explored. The treatments consisted of two rates of broiler litter application, 11 and 22 Mg ha−1 on a wet weight basis, and one rate of chemical fertilizer applied under no-till and conventional tillage systems. Treatments were replicated three times in a randomized complete block design. Corn was grown with broiler litter and inorganic fertilizer applied to the same plots each year from 1998 to 2001. In 2002 and 2003, corn was planted no-till, but only N fertilizer was applied in order to make use of other residual litter nutrients. Soil samples were taken yearly in the spring prior to litter application and 4 years after the cessation of litter application to evaluate the status of the residual nutrients in soil. Two years out of the 4-year experiment, broiler litter application produced significantly greater corn grain yield than equivalent chemical fertilizer application and produced similar grain yield in the other 2 years. Corn grain yield was significantly greater under no-till in 1999, but significantly greater under conventional-till in 2000, and no difference between the two tillage systems were observed in 1998 and 2001. With 4 years of litter application, Mehlich-3 P increased from an initial 18 mg kg−1 to 156 mg kg−1 with 11 Mg ha−1 litter and to 257 mg kg−1 with 22 Mg ha−1 litter. For every 6 kg ha−1 of P applied in poultry litter Mehlich-3 P was increased by 1 mg kg−1. Modest increases in Mehlich-3 Cu and Zn did not result in phytotoxic levels. This study indicated that an optimum rate of broiler litter as a primary fertilizer at 11 Mg ha−1 applied in 4 consecutive years on a silt loam soil produced corn grain yields similar to chemical fertilizer under both no-till and conventional tillage systems and kept soil test P, Cu and Zn levels below values considered to be harmful to surface water quality or the crop.  相似文献   

17.
Diversification of production is a concern for farmers in many regions of the world, raising a renewed interest in crop-animal rotations. However little information is available on whether the introduction of grazing animals in a no-till system could be a sustainable practice. The present long-term study was carried out in the semiarid region of Argentina, on an Entic Haplustoll (A, AC, C and Ck profile). The experimental plots were established in August 1993, with two treatments, no-till (NT) and conventional tillage (CT). Stubble was regularly used for grazing until 2002, when plots were divided into grazed (G) and non-grazed (NG) sub-treatments. Soil samples were taken at 0–0.10 and 0.10–0.20 m depth at the beginning of the experiment (1993) and during 2007, with the following determinations: clay + silt contents, bulk density (BD), total carbon (C), total nitrogen (N), available P, C contents of aggregate fractions of 2000–100 (POC), 100–50 (IOC) and <50 (FOC) μm diameter, aggregate size distribution and mean weight diameter change. NT showed a strong effect on all analyzed soil attributes: it had higher total carbon stocks (NT 16.6 Mg ha−1 vs. CT 13.2 Mg ha−1) and higher amounts in all C fractions, even in FOC (11.3 Mg ha−1 vs. 9.2 Mg ha−1). For BD, we found no difference between NT and CT at the surface and an even lower value for NT at 0.10–0.20 m depth. Under NT no depletion of available P occurred, while CT lost about 23 kg ha−1. Grazing had a negative effect on BD when averaging BD data across tillage systems, while there was no effect on aggregate stability, and a positive one on the proportion of >8 mm aggregates (23.3% vs. 11.7% for CT G and CT NG, respectively). C stratification showed a differential effect of grazing: NT G had the highest index (1.31) and CT G the lowest one (0.98). Our results indicated that the introduction of grazing animals in NT crop systems would not be detrimental to soil conditions and quality, at least in semiarid conditions of Argentina.  相似文献   

18.
Denitrification rates are often greater in no-till than in tilled soils and net soil-surface greenhouse gas emissions could be increased by enhanced soil N2O emissions following adoption of no-till. The objective of this study was to summarize published experimental results to assess whether the response of soil N2O fluxes to the adoption of no-till is influenced by soil aeration. A total of 25 field studies presenting direct comparisons between conventional tillage and no-till (approximately 45 site-years of data) were reviewed and grouped according to soil aeration status estimated using drainage class and precipitation during the growing season. The summary showed that no-till generally increased N2O emissions in poorly-aerated soils but was neutral in soils with good and medium aeration. On average, soil N2O emissions under no-till were 0.06 kg N ha−1 lower, 0.12 kg N ha−1 higher and 2.00 kg N ha−1 higher than under tilled soils with good, medium and poor aeration, respectively. Our results therefore suggest that the impact of no-till on N2O emissions is small in well-aerated soils but most often positive in soils where aeration is reduced by conditions or properties restricting drainage. Considering typical soil C gains following adoption of no-till, we conclude that increased N2O losses may result in a negative greenhouse gas balance for many poorly-drained fine-textured agricultural soils under no-till located in regions with a humid climate.  相似文献   

19.
Tillage with a spring tine harrow has become a recommended mechanical weeding technique for cereal crops. In this study, the impact of its use on soil mineral N content, soil aggregation and spring wheat (Triticum aestivum L.) production was investigated. The experiment was performed during 2 successive years (2005–2006) on a clay loam and on a silty loam. The two-main plot treatments consisted of a wheat crop subjected or not to intensive harrow use in a weed-free production system. Two N fertilizer treatments (mineral fertilizer and dry granular poultry manure) were also included as subplots within these main treatments and compared to a non-fertilized control. Harrowing had significant and variable effects on soil NO3 contents in the 0–5 cm soil layer. Slightly higher NO3 contents (average difference of 3.2 kg NO3 ha−1) were measured in the harrowed treatments than in the undisturbed plots in the clay loam soil in 2006. However, significantly lower mineral N contents were observed in the harrowed treatments than in the undisturbed plots in the clay loam soil in 2005 and in the silty loam soil in 2006. This apparent N immobilization amounted to 19 kg NO3 ha−1 in the clay loam soil in 2005 (for both fertilizers) and 30 kg NO3 ha−1 in the silty loam soil in 2006 (only in mineral fertilizer plots) after the successive harrowing treatments. In all cases, data of the last sampling dates in the fall indicated that residual NO3 content was not affected by the treatments. Overall harrowing had a minor decreasing and transient effect on the mean weight diameter (MWD) of soil aggregates while the dry poultry manure tended to increase MWD. The harrowing treatment had no significant effect on wheat, grain N uptake and yield. In conclusion, harrow use had variable impacts on soil NO3 content and a minor decreasing effect on the MWD of soil aggregates. Of note, significant apparent mineral N immobilization was observed on a few sampling dates following the harrow treatments.  相似文献   

20.
To assess the scope for enhancing productivity of soybean (Glycine max L. Merr.), the CROPGRO-Soybean model was calibrated and validated for the diverse soybean-growing environments of central and peninsular India. The validated model was used to estimate potential yields (water non-limiting and water limiting) and yield gaps of soybean for 21 locations representing major soybean regions of India. The average water non-limiting potential yield of soybean for the locations was 3020 kg ha−1, while the water limiting potential was 2170 kg ha−1 indicating a 28% reduction in yield due to adverse soil moisture conditions. As against this, the actual yields of locations averaged 1000 kg ha−1, which was 2020 and 1170 kg ha−1 less than the water non-limiting potential and water limiting potential yields, respectively. Across locations the water non-limiting potential yields were less variable than water limited potential and actual yields, and strongly correlated with solar radiation during the season (R2 = 0.83, p ≤ 0.01). Both simulated water limiting potential yield (R2 = 0.59, p ≤ 0.01) and actual yield (R2 = 0.33, p ≤ 0.05) had significant but positive and curvilinear relationships with crop season rainfall across locations. The gap between water non-limiting and water limiting potential yields was very large at locations with low crop season rainfall and narrowed down at locations with increasing quantity of crop season rainfall. On the other hand, the gap between water limiting potential yield and actual farmers yield was narrow at locations with low crop season rainfall and increased considerably at locations with increasing amounts of rainfall. This yield gap, which reflects the actual yield gap in rainfed environment, is essentially due to non-adoption of improved crop management practices and could be reduced if proper interventions are made. The simulation study suggested that conservation of rainfall and drought resistant varieties in low rainfall regimes; and alleviation of water-logging and use of water-logging tolerant varieties in high rainfall regimes will be the essential components of improved technologies aimed at reducing the yield gaps of soybean. Harvesting of excess rainfall during the season and its subsequent use as supplemental irrigation would further help in increasing crop yields at most locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号