首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
在山西省3条高速路典型绿化路段路侧设置样带,按距离梯度采集路旁土壤及植物叶片进行Pb、Cr、Cu、Zn重金属含量测定,分析4种重金属污染物在表层土壤及叶片中的扩散格局和相关性。结果表明,山西省主要高速路绿化带路旁土壤中Pb、Cr、Cu和Zn4种重金属污染物相对集中在10~40m范围内,路旁绿化植物叶片中也主要集中在40m范围内,不同重金属元素峰值位置不同;路旁土壤中4种重金属元素之间有良好的同源关系,土壤Cu、Zn与植物叶片中同种元素含量呈正相关关系,土壤Cr、Cu、Zn与植物叶片中4种重金属元素与采样距离均呈负相关关系;杨树对4种重金属元素的富集能力不同,由高到低表现为Zn、Cu、Pb、Cr。    相似文献   

2.
有机覆盖物对城市绿地土壤水分和温度的影响   总被引:7,自引:1,他引:7       下载免费PDF全文
为了解有机覆盖物对城市绿地土壤水分和温度的影响,文章选择城市公园绿地对地表分别进行了覆盖3cm、5cm有机覆盖物和未覆盖空白对照三种处理试验,研究了0~10cm、10~20cm、20~30cm和30~40cm不同土层的水分和温度变化。结果表明:(1)三种覆盖处理土壤含水量的季节变化趋势一致。土壤含水量在0~10cm波动最大,随着土壤深度的增加,这种波动表现得越来越弱。(2)覆盖3cm有机物处理在四个土壤层次均高于空白对照,而在10~20cm和20~30cm的增加量最多;覆盖5cm有机物处理只在0~10cm明显的高于空白对照。(3)不同覆盖处理的土壤温度的季节变化趋势一致。相对于空白对照,覆盖处理的土壤日温变化幅度要明显小于空白对照,其中覆盖3cm和5cm有机物的处理比对照区在炎热的夏季土壤温度分别降低了2.0℃和0.9℃,而在寒冷的冬季升高了0.9℃和1.4℃。同时,覆盖处理也减小了不同土层深度的温度变幅。    相似文献   

3.
硬覆盖路面下绿化树根际土壤环境是影响树体生长势衰弱的主要原因。以改良土壤透气性、调节土壤含水量、增加土壤养分为目的,对绿化树根际土壤实施钻孔通气,补充养料。研究结果表明,治理后的植物叶片增厚、颜色加深、叶中保持相对较高含水量,新梢生长旺盛,病斑恢复较快;但是钻孔不是导致土壤气体浓度变化的主要因素。    相似文献   

4.
粗看丹佛市樱桃溪只是一条宽不足5 m的小河,很不起眼,其实它是丹佛市阿拉珀霍县内一条著名的有几百年历史穿城而过的自然生态廊道。它发源于丹佛西南山区,流经本市第二大水库(现为樱桃溪州立公园),经市中心后汇入一条较宽河流,全长约33英里(52.8 km)。    相似文献   

5.
土壤是影响行道树生长的重要环境因子。从土壤的物理化学特征如上层厚度、土壤容重和紧实度、土壤的水分供应、土壤有机质与养分含量、土壤酸碱度、土壤离子浓度等时论土壤对行道树成活及生长的影响,确定行道树的选择与配置。    相似文献   

6.
泡桐与濮阳生态城市建设   总被引:1,自引:0,他引:1  
泡桐生态效益显著,景观效果突出,文化底蕴丰厚,可作为本市森林生态系统主要先锋树种。    相似文献   

7.
采用碎石、草坪、麦秆、木屑作覆盖材料,对树盘进行覆盖,测定土壤温湿度变化,探讨覆盖处理对绿地土壤的影响。结果表明:麦秆覆盖和木屑覆盖能有效调节土壤温度、提高土壤湿度,土壤有机质含量比对照提高56.3%、37.5%,碎石覆盖后的效应与对照(露地)相似,草坪覆盖仅对土壤温度有一定的调节能力。    相似文献   

8.
系统采集0~20 cm土壤样本,分析朔州市市区林业土壤土壤容重和速效养分现状。结果表明,朔州市公园绿地、街头绿地和附属绿地土壤容重适宜,基本不会影响绿化植物的生长,但道路绿地土壤容重偏大,不利于绿化植物的生长;土壤速效氮含量总体上处于较低水平,大部分林业土壤速效磷和速效钾丰富。    相似文献   

9.
城镇园林绿化优良树种——仪花   总被引:1,自引:0,他引:1  
仪花(Lysidice rhodostegia Hance)又名麻扎木、假格木、单刀根、麦粒(壮语)、红花树;苏木科,仪花属,常绿大乔木,树高达20m,胸径50cm;主要分布于我国云南、贵州、海南、广东、广西和台湾等省区。    相似文献   

10.
漳州城市古树名木资源现状及其保护利用   总被引:1,自引:0,他引:1  
文章对漳州城市古树名木的现状进行了调查分析,结果表明:漳州市现存古树名木113株,隶属于8科8属8种。大多数古树名木主要分布于寺庙及文物古迹、居住区和道路。古树名木的树高大多为10~25m,占90%以上,10m以下的仅占6.31%,25m以上的占2.70%,胸径主要分布于1.0~2.5m,占87.38%。文章还指出了对古树名木保护和研究中存在的问题,并提出相应的对策。    相似文献   

11.
Semiarid woodlands dominated by Prosopis caldenia thrive at the dry edge of the Argentinean Pampas. Deforestation and increased precipitation have driven sustained water table level rise in the region that are likely to affect the dynamics of remnant woody vegetation patches. Here we analyze the effect of climate and groundwater level on the establishment, growth and death of P. caldenia located on lowland (current water table <0.5 m deep) and upland (current water table 8 m deep) positions within rolling sandy landscape. Standard dendrochronological techniques were applied on 98 cross sections and cores of P. caldenia trees. Results allowed us to estimated that trees in the lowland established a few years earlier than in the upland (1929 vs. 1936) and died between 1991 and 2002, while trees in higher positions are still alive. As a result of a faster growth in the lowland, maximum mean basal area increment took place earlier (1950s vs. 1990s) and achieved a higher mean value than in the upland (41.63 vs. 37.41 mm2). While mean annual chronologies were not associated across stands, an opposite highly significant association was found for the mean growth trends suggesting long-term effects of water table depths on growth. We found a different association between mean annual growth and climate, with lowland trees showing a negative response to precipitation before and during the growing season, and upland trees displaying a positive response to summer rainfall inputs. Temperature at the end of the growing season had a positive effect in the lowland whereas temperature during the growing season had a positive effect in the upland. These results show how groundwater can induce diverging sensitivity of forest growth and survival to climate variability, enhancing growth at optimum depths (2-8 m in our study) but depressing it or even killing trees when it approaches the surface (<2 m in our study). Groundwater dynamic should be considered in forest management and conservation strategies in semiarid woodlands in Central Argentina.  相似文献   

12.
Water use by mature trees of Acacia tortilis (Forsk.) Hayne ssp. raddiana (Savi) Brenan var. raddiana growing in the northern Sahel was continuously recorded over 4 years. Water use was estimated from xylem sap flow measured by transient heat dissipation. Concurrently, cambial growth, canopy phenology, leaf water potential, climatic conditions and soil water availability (SWA) were monitored. In addition to the variation attributable to interannual variation in rainfall, SWA was increased by irrigation during one wet season. The wet season lasted from July to September, and annual rainfall ranged between 146 and 367 mm. The annual amount and pattern of tree water use were stable from year-to-year despite interannual and seasonal variations in SWA in the upper soil layers. Acacia tortilis transpired readily throughout the year, except for one month during the dry season when defoliation was at a maximum. Maximum water use of about 23 l (dm sapwood area)(-2) day(-1) was recorded at the end of the wet season. While trees retained foliage in the dry season, the decline in water use was modest at around 30%. Variation in predawn leaf water potential indicated that the trees were subject to soil water constraint. The rapid depletion of water in the uppermost soil layers after the wet season implies that there was extensive use of water from deep soil layers. The deep soil profile revealed (1) the existence of living roots at 25 m and (2) that the availability of soil water was low (-1.6 MPa) down to the water table at a depth of 31 m. However, transpiration was recorded at a predawn leaf water potential of -2.0 MPa, indicating that the trees used water from both intermediary soil layers and the water table. During the full canopy stage, mean values of whole-tree hydraulic conductance were similar in the wet and dry seasons. We propose that the stability of water use at the seasonal and annual scales resulted from a combination of features, including an extensive rooting habit related to deep water availability and an effective regulation of canopy conductance. Despite a limited effect on tree water use, irrigation during the wet season sharply increased predawn leaf water potential and cambial growth of trunks and branches.  相似文献   

13.
Australian savannas exhibit marked seasonality in precipitation, with more than 90% of the annual total falling between October and May. The dry season is characterized by declining soil water availability and high vapor pressure deficits (up to 2.5 kPa). We used heat pulse technology to measure whole-tree transpiration rates on a daily and seasonal basis for the two dominant eucalypts at a site near Darwin, Australia. Contrary to expectations, transpiration rates were higher during the dry season than during the wet season, largely because of increased evaporative demand and the exploitation of groundwater reserves by the trees. Transpiration rates exhibited a marked hysteresis in relation to vapor pressure deficit, which was more marked in the dry season than in the wet season. This result may be attributable to low soil hydraulic conductivity, or the use of stored stem water, or both. Tree water use was strongly correlated with leaf area and diameter at breast height and there were no differences in transpiration between the species studied. These results are discussed in relation to scaling tree water use to stand water use.  相似文献   

14.
Sap flow was measured on five branches of two poplar (Populus trichocarpa Torr. & A. Gray x P. tacamahaca L.) trees from June to September 1994 in the south of England with stem-surface, heat balance gauges, and was scaled up to estimate transpiration from single trees on the basis of leaf area. On six days, stomatal conductance and plant water potential were measured simultaneously with a porometer and pressure chamber, respectively. The effects of solar radiation (S), vapor pressure deficit (D) and stomatal conductance on transpiration were evaluated. Sap flow per unit leaf area (F(a)) was closely related to the time course of demand attributable to S and D throughout the season, and only slightly affected by the water content of the top 120 cm of soil. Although F(a) increased linearly at low values of D, it showed a plateau with increases in D above 1.2 kPa. The canopy coupling coefficient (1 - Omega) ranged from 0.48 to 0.78 with a mean of 0.65 +/- 0.01, indicating that transpiration was controlled more by stomatal conductance than by incident radiation. The seasonal pattern of tree water loss followed potential evaporation with a peak in late June or early July. On bright days, daily transpiration over the projected crown area was 3.6 mm early in the season, 3.8 mm in mid-season, and 2.7 mm late in the season. The water balance of the system indicated that poplar trees took 15-60% of water transpired from groundwater, with the proportion increasing as the soil in the unsaturated zone dried out. Access to the water table resulted in high predawn water potentials throughout the season. Estimated hydraulic resistance to water flow in the soil-tree system was in the range of 1.5 to 1.93 x 10(6) MPa s m(-3).  相似文献   

15.
Cottonwoods (Populus spp.) are dioecious phreatophytes of hydrological and ecological importance in riparian woodlands throughout the Northern Hemisphere. In streamside zones of southern Alberta, groundwater and soil water typically decline between May and September. To understand how narrowleaf cottonwoods (Populus angustifolia James) are adapted to this seasonal decrease in water availability, we measured photosynthetic gas exchange, leaf reflectance, chlorophyll fluorescence and stable carbon isotope composition (delta(13)C) in trees growing in the Oldman River valley of southern Alberta during the 2006 growth season. Accompanying the seasonal recession in river flow, groundwater table depth (Z(gw)) declined by 1.6 m, but neither mean daily light-saturated net photosynthetic rate (A(max)) nor stomatal conductance (g(s)) was correlated with this change. Both A(max) and g(s) followed a parabolic seasonal pattern, with July 24 maxima of 15.8 micromol m(-2) s(-1) and 559 mmol m(-2) s(-1), respectively. The early summer rise in A(max) was related to an increase in the chlorophyll pool during leaf development. Peak A(max) coincided with the maximum quantum efficiency of Photosystem II (F(v)/F(m)), chlorophyll index (CI) and scaled photochemical reflectance index (sPRI), but occurred one month after maximum volumetric soil water (theta(v)) and minimum Z(gw). In late summer, A(max) decreased by 30-40% from maximum values, in weak correlation with theta(v) (r(2) = 0.50). Groundwater availability limited late-season water stress, so that there was little variation in mean daily transpiration (E). Decreasing leaf nitrogen (% dry mass), CI, F(v)/F(m) and normalized difference vegetation index (NDVI) were also consistent with leaf aging effects. There was a strong correlation between A(max) and g(s) (r(2) = 0.89), so that photosynthetic water-use efficiency (WUE; A(max)/E) decreased logarithmically with increasing vapor pressure deficit in both males (r(2) = 0.75) and females (r(2) = 0.95). The male:female ratio was unequal (2:1, chi(2) = 16.5, P < 0.001) at the study site, but we found no significant between-sex differences in photosynthetic gas exchange, leaf reflectance or chlorophyll fluorescence that might explain the unequal ratio. Females tended to display lower NDVI than males (P = 0.07), but mean WUE did not differ significantly between males and females (2.1 +/- 0.2 versus 2.5 +/- 0.2 mmol mol(-1)), and delta(13)C remained in the -28.8 to -29.3 per thousand range throughout the growth season, in both sexes. These results demonstrate changes in photosynthetic and water-use characteristics that collectively enable vigorous growth throughout the season, despite seasonal changes in water supply and demand.  相似文献   

16.
Hill evergreen forest is the dominant vegetation type in northern Thailand. In this region, there is higher atmospheric evaporative demand and lower soil moisture during the 5- to 7-month dry season than in the rainy season under influences from Asian monsoons. In an earlier study we revealed that canopy-scale transpiration is actively maintained even during the latter part of the dry season in hill evergreen forest. However, the impact of soil drought on tree water use was not investigated. To clarify the ecohydrological processes at this site, we used individual tree-scale measurements during a 2-year period to base our examination of whether limited water use in individual trees is caused by soil drought in the latter part of the dry season. Sap flow and water potential measurements were conducted in four evergreen trees, two large emergent trees 29.8 and 25.4 m high, and two smaller understory trees 4.8 and 1.4 m high.The amount of rainfall preceding the late dry season of 2004 was significantly less than that preceding the late dry season of 2003. Although a distinct decrease in sap-flow velocities in individual trees due to soil water stress was not found in the late dry season of 2003, it did become comparatively apparent in the late dry season of 2004; ranging from 10 to 40% for a given atmospheric evaporative demand. Furthermore, the reductions in sap-flow velocities and predawn stem-water potential were most significant in the smallest tree. The recovery of sap-flow velocities and water potential in the smallest tree after irrigation confirmed that the reductions in sap-flow velocity and predawn stem-water potential in the smallest tree were caused by soil drought. These results suggest that shallower roots could be reason for the significant decrease in water use in the smallest trees. The deeper roots of larger trees could be the reason for the reduced impact of soil drought on water use in larger trees, and canopy-scale transpiration might be maintained by larger trees, even in an unusually severe drought. These possibilities provide a new insight for management of evergreen forests under Asian monsoon influences.  相似文献   

17.
经过连续多年采用不同的整地方式、不同造林密度、不同覆盖保水对辐射松(Pinus radiataD.Don)造林及幼林生长的试验研究,结果表明:(1)干旱地带采用水平沟、短册状整地比穴状整地造林成活率提高2.4~7.8个百分点,保存率提高1.0~7.6个百分点,高生长量提高7.8 cm~28.4 cm,地径生长量提高0.28 cm~0.84 cm。(2)水平沟整地比短册状、穴状整地0~100 cm土壤层含水量全年分别提高1.29个百分点和2.08个百分点,旱季分别提高1.36个百分点和1.37个百分点,雨季分别提高1.16个百分点和2.87个百分点;短册状整地比穴状整地0~100 cm土壤层含水量全年提高0.80个百分点,旱季提高0.01个百分点,雨季提高1.72个百分点。(3)采用1.5 m×2.0 m造林密度,短册状或水平沟整地,采用石块、塑料薄膜覆盖,造林成活率达96%,保存率达90%。  相似文献   

18.
Soil water and temperature measurements were made at a clearcutting in Jädraås, central Sweden, to give appropriate information for nutrient flow calculations and soil biological research. Compared to uncovered plots, slash‐covered plots were 1–2°C colder and had 3–6 volume percent higher water content in the 5 cm thick humus‐layer during the growing season following cutting. Relative to air, soil temperatures became warmer at both treatments during the second season and differences between uncovered and covered plots decreased. Tension dynamics in the mineral soil was most pronounced in uncovered plots, especially during the first dry growing season. The physically based model, SOIL, was used to analyse these observations and to estimate the effects of clearcutting. Simulated snow and frost depths, soil temperatures, water contents and tensions as well as ground water table were compared with measured data during a period of one to four years. Physical parameter values were estimated from independent measurements and by subjective optimization. Simulated soil water dynamics revealed the importance of hysteresis and vapour flows in sandy forest soils. The hydrological clearcutting effect as estimated from mature Scots pine evapotranspiration properties showed a 50% reduction of evapotranspiration, an increased soil water storage (0–1 m) of up to 120 mm and an increased percolation of 125 mm per year.  相似文献   

19.
In the Mediterranean evergreen oak woodlands of southern Portugal, the main tree species are Quercus ilex ssp. rotundifolia Lam. (holm oak) and Quercus suber L. (cork oak). We studied a savannah-type woodland where these species coexist, with the aim of better understanding the mechanisms of tree adaptation to seasonal drought. In both species, seasonal variations in transpiration and predawn leaf water potential showed a maximum in spring followed by a decline through the rainless summer and a recovery with autumn rainfall. Although the observed decrease in predawn leaf water potential in summer indicates soil water depletion, trees maintained transpiration rates above 0.7 mm day(-1) during the summer drought. By that time, more than 70% of the transpired water was being taken from groundwater sources. The daily fluctuations in soil water content suggest that some root uptake of groundwater was mediated through the upper soil layers by hydraulic lift. During the dry season, Q. ilex maintained higher predawn leaf water potentials, canopy conductances and transpiration rates than Q. suber. The higher water status of Q. ilex was likely associated with their deeper root systems compared with Q. suber. Whole-tree hydraulic conductance and minimum midday leaf water potential were lower in Q. ilex, indicating that Q. ilex was more tolerant to drought than Q. suber. Overall, Q. ilex seemed to have more effective drought avoidance and drought tolerance mechanisms than Q. suber.  相似文献   

20.
We examined sources of water and daily and seasonal water use patterns in two riparian tree species occupying contrasting niches within riparian zones throughout the wet-dry tropics of northern Australia: Corymbia bella Hill and Johnson is found along the top of the levee banks and Melaleuca argentea W. Fitzg. is restricted to riversides. Patterns of tree water use (sap flow) and leaf water potential were examined in four trees of each species at three locations along the Daly River in the Northern Territory. Predawn leaf water potential was higher than -0.5 MPa throughout the dry season in both species, but was lower at the end of the dry season than at the beginning of the dry season. Contrary to expectations, predawn leaf water potential was lower in M. argentea trees along the river than in C. bella trees along the levees. In contrast, midday leaf water potential was lower in the C. bella trees than in M. argentea trees. There were no seasonal differences in tree water use in either species. Daily water use was lower in M. argentea trees than in C. bella trees. Whole-tree hydraulic conductance, estimated from the slope of the relationship between leaf water potential and sap flow, did not differ between species. Xylem deuterium concentrations indicated that M. argentea trees along the riverbank were principally reliant on river water or shallow groundwater, whereas C. bella trees along the levee were reliant solely on soil water reserves. This study demonstrated strong gradients of tree water use within tropical riparian communities, with implications for estimating riparian water use requirements and for the management of groundwater resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号