首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
生物质炭与氮肥配施降低水稻重金属含量的盆栽试验   总被引:6,自引:2,他引:4  
针对重金属污染严重的土壤,探索施用氮肥和生物质炭减少水稻重金属吸收的可行性。该研究采用盆栽试验,选用生物质炭、硫硝铵氮肥(简称普通氮肥)和含硝化抑制剂3,4-二甲基吡唑磷酸盐的硫硝铵氮肥(简称3,4-dimethylpyrazolephosphate,DMPP氮肥),设置了5种处理包括对照即未添加氮肥和生物质炭、普通氮肥添加、DMPP氮肥添加、生物质炭+普通氮肥添加和生物质炭+DMPP氮肥添加,研究了不同处理对水稻华航丝苗(Oryza sativa L.)生长和重金属Cu、Zn和Cd吸收特性的影响。结果表明,不配施生物质炭时,DMPP氮肥对水稻籽粒产量无显著(P0.05)影响;生物质炭与普通氮肥或DMPP氮肥配施均能增加水稻籽粒产量:与单施普通氮肥相比,生物质炭与普通氮肥配施水稻籽粒产量显著(P0.05)增加20.3%;与单施DMPP氮肥相比,生物质炭与DMPP氮肥配施水稻籽粒产量显著(P0.05)增加49.3%。与不施肥对照相比,生物质炭与DMPP氮肥配施能降低籽粒Cu、Zn和Cd含量,其籽粒Cu、Zn和Cd质量分数分别显著降低20.0%、21.4%和11.6%。未配施生物质炭时DMPP促进Cu从秸秆向籽粒的转移,配施生物质炭时DMPP促进Cu和Cd从根向秸秆的转移;生物质炭与不同氮肥配施对水稻籽粒/秸秆和秸秆/根Cu、Zn和Cd转运系数的影响因配施氮肥品种不同而存在差异。综上,生物质炭与DMPP氮肥配施可降低籽粒中重金属Cu、Zn和Cd质量分数,促进水稻生长,增加水稻籽粒产量,适宜在多重金属污染稻田施用。  相似文献   

2.
脲酶抑制剂与硝化抑制剂对稻田氨挥发的影响   总被引:10,自引:7,他引:3  
采用密闭室间歇通气法和15N标记技术研究了尿素施入稻田后氨挥发损失特征以及脲酶抑制剂(N-丁基硫代磷酰三胺,NBPT)和硝化抑制剂(3, 4-二甲基吡唑磷酸盐,DMPP)对稻田氨挥发损失的影响。结果表明,稻田施用尿素后第4天氨挥发速率达到峰值,氨挥发损失主要发生在施肥后21天内。与单施尿素处理相比,添加NBPT处理的氨挥发速率峰值降低27.04%,累积氨挥发损失量降低21.65%;NBPT与DMPP配施时,氨挥发速率峰值降低12.95%,累积氨挥发损失量降低13.58%;而添加DMPP时,氨挥发速率峰值增加23.61%,累积氨挥发损失量与单施尿素的差异不显著。相关性分析表明,地表水中铵态氮浓度和pH值与氨挥发速率均达极显著正相关,说明二者是影响氨挥发速率的主要因素,而气温、 地温和水温与氨挥发速率的相关性不显著。与单施尿素相比,添加脲酶抑制剂可显著增加稻谷产量。脲酶抑制剂与硝化抑制剂配合施用可更有效地提高氮肥的回收率。综合降低氨挥发、 提高水稻产量及地上部氮肥回收率的效果,添加脲酶抑制剂以及脲酶抑制剂与硝化抑制剂配施的两个处理效果较为理想,硝化抑制剂不宜单独添加。  相似文献   

3.
添加氮素抑制剂是提高水稻氮肥利用率的有效途径之一。采用大田试验,探讨了氮素抑制剂(脲酶抑制剂N-丁基硫代磷酰三胺(NBPT)、硝化抑制剂3,4-二甲基吡唑磷酸盐(DMPP)及其组合)对沿淮平原水稻产量、氮肥利用率及稻田氮素的影响,旨在为优化沿淮稻田生态系统氮素养分管理,减少氮素损失提供科学依据。以"常糯1号"为供试材料,于2018年6—10月在安徽省怀远县(沿淮平原典型水稻种植区)进行试验。试验设5个处理:不施氮肥(CK);尿素(U);尿素+硝化抑制剂(U+DMPP);尿素+脲酶抑制剂(U+NBPT);尿素+硝化抑制剂+脲酶抑制剂(U+NBPT+DMPP)。结果表明:尿素配施NBPT或者DMPP均有利于提高水稻产量、植株吸氮量和氮素利用效率,NBPT效果优于DMPP,NBPT和DMPP联合施用表现出协同增效作用。尿素配施抑制剂的3个处理U+NBPT、U+DMPP和U+NBPT+DMPP较单独施用尿素U处理的产量分别增加6.8%,4.3%,8.6%,植物吸氮量分别增加9.6%,6.5%,12.2%,与U处理之间差异达显著水平(P0.05)。尿素单独配施NBPT或者NBPT+DMPP组合均显著提高了氮肥吸收利用率(NRE)、氮肥农学利用率(NAE)、氮素吸收效率(NUP)和氮肥偏生产力(NPFP)(P0.05),而尿素单独配施DMPP也有不同程度的提高,但差异未达到显著水平(P0.05)。另外,尿素单独配施DMPP或者DMPP+NBPT组合均显著提高了水稻成熟期土壤铵态氮(NH_4~+-N)和微生物量氮(SMBN)的含量,降低了硝态氮(NO_3~--N)的含量,提高了土壤中铵/硝比,而尿素单独配施NBPT对水稻成熟期土壤NH_4~+-N、NO_3~--N和SMBN无显著影响。总体认为,在沿淮平原稻作种植体系中,尿素配施NBPT或者DMPP可以有效地增加水稻产量,促进水稻对氮素的吸收利用,提高氮素利用效率,NBPT和DMPP联合施用效果最理想。  相似文献   

4.
[目的]研究添加脲酶/硝化抑制剂的高效稳定性尿素在黑土和褐土中的作用效果,为科学合理选择抑制剂提供科学依据.[方法]以春玉米为试材,采用东北典型的黑土和褐土进行盆栽试验.供试抑制剂包括N-丁基硫代磷酰三胺(NBPT)、3,4-二甲基吡唑磷酸盐(DMPP)、2-氯-6(三氯甲基)-吡啶(CP).试验设不施氮肥(U0)、施...  相似文献   

5.
唐冲  杨劲松  姚荣江  王胜  王相平  谢文萍 《土壤》2021,53(2):291-298
为研究生物质炭及硝化/脲酶抑制剂对滨海盐渍土土壤盐碱、氮素有效性、作物氮素吸收利用以及土壤氮平衡的影响,通过盆栽试验,共设9个处理:不施氮肥、常规化肥、生物质炭+常规化肥、常规化肥+硝化抑制剂DCD、常规化肥+脲酶抑制剂NBPT、常规化肥+DCD+NBPT、生物质炭+常规化肥+DCD、生物质炭+常规化肥+NBPT、生物...  相似文献   

6.
The effect of the combined application of urease and nitrification inhibitors on ammonia volatilization and the abundance of nitrifier and denitrifier communities is largely unknown. Here, in a mesocosm experiment, ammonia volatilization was monitored in an agricultural soil treated with urea and either or both of the urease inhibitor N‐(n‐butyl) thiophosphoric triamide (NBPT) and the nitrification inhibitor 3,4‐dimethylpyrazole phosphate (DMPP), with 50% and 80% water‐filled pore space (WFPS). The effect of the treatments on the abundance of bacteria and archaea was estimated by quantitative PCR (qPCR) amplification of their respective 16S rRNA gene, that of nitrifiers using amoA genes, and that of denitrifiers by qPCR of the norB and nosZI denitrification genes. After application of urea, N losses due to NH3 volatilization accounted for 23.0% and 9.2% at 50% and 80% WFPS, respectively. NBPT reduced NH3 volatilization to 2.0% and 2.4%, whereas DMPP increased N losses by up to 36.8% and 26.0% at 50% and 80% WFPS, respectively. The combined application of NBPT and DMPP also increased NH3 emissions, albeit to a lesser extent than DMPP alone. As compared with unfertilized control soil, both at 50% and 80% WFPS, NBPT strongly affected the abundance of bacteria and archaea, but not that of nitrifiers, and decreased that of denitrifiers at 80% WFPS. Regardless of moisture conditions, treatment with DMPP increased the abundance of denitrifiers. DMPP, both in single and in combined application with NBPT, increased the abundance of nitrification and denitrification genes.  相似文献   

7.
全面、准确分析重要农业管理措施对于农业固碳减排的影响特征,对于中国农业可持续发展具有重要意义。该文以华北平原冬小麦-夏玉米生产为对象,研究硝化/脲酶抑制剂对土壤温室气体(CO_2、N_2O和CH4)排放、土壤有机碳和作物产量的影响;在此基础上利用土壤碳库排放法(soil based approach,SBA)、生物量排放法(crop based approach,CBA)和土壤生物量排放法(soilcrop based approach,SCBA)3种方法对农田净温室气体效应(net greenhouse gas warming potential,NGWP)进行评价。研究发现,相比只施尿素(U)处理,尿素+硝化抑制剂(NI)、尿素+脲酶抑制剂(UI)和尿素+硝化抑制剂+脲酶抑制剂(NIUI)均能增加粮食产量和降低净温室气体排放。用SCBA方法计算得到的农田温室气体净排放的潜力最大(15 704~17 860 kg/hm~2),CBA法次之(4 195~7 107 kg/hm~2),SBA法最低(-7 304~-6 599 kg/hm2)。由于3种方法的固碳单元不一样,评估结果差异较大、一致性差。SCBA方法更适于评价强调粮食生产条件下的农田净温室气体效应。增加作物籽粒和秸秆产量,降低化肥使用和减少灌溉量是提高当前华北平原农田温室气体系统净排放潜力的主要措施。  相似文献   

8.
  【目的】  包衣和添加抑制剂是常用的制备缓控释肥料的手段。尝试同时使用这两种方法,制备更加可控氮素释放与转化的新型肥料,并研究其在小麦上的应用效果。  【方法】  采用先在大颗粒尿素 (2.5~3.5 mm) 表面涂层,再用树脂包膜的方法制备含不同抑制剂的树脂包膜尿素。依据不同抑制剂,制备了无涂层 (CU)、脲酶抑制剂HQ涂层 (CRU1)、硝化抑制剂DCD涂层 (CRU2) 和HQ + DCD组合涂层 (CRU3) 4种新型树脂包膜尿素。通过扫描电镜观测了4种包膜尿素的微观结构,采用静水释放的方法测定了养分和抑制剂的缓释性能。在山东省潍坊和泰安两地布置冬小麦等氮磷钾施用量和相同施肥方法的田间试验,以普通大颗粒尿素为对照,在冬小麦苗期、拔节期、开花期、灌浆期和成熟期采集耕层土壤样品,测定速效氮含量,并于小麦成熟期测定产量及构成因素。  【结果】  1) 制备的4种包膜尿素成膜完整,包膜厚度均匀,表面光滑且膜层致密,树脂包膜材料能完整地覆盖在肥核的表面,膜表面有微孔,成为尿素和抑制剂向膜外释放的通道;尿素与抑制剂交接处结合严密,无间隙产生,抑制剂在包膜层的完全包围之中,可实现对尿素和抑制剂释放的同时控制。2) 包膜与抑制剂结合可有效控制尿素溶出。静水释放条件下,4种包膜尿素的氮素初期溶出率分别为7.59%、1.96%、2.12%、0.89%,尿素控释期依次是42、56、56、56天;CRU1的HQ释放期为28天,CRU2的DCD释放期为14天,CRU3中HQ和DCD的释放期分别为42和14天。相比较而言,CRU3的氮素释放期长于CRU1和CRU2,抑制剂的释放期也长于CRU1和CRU2,因此缓释效果大于CRU1和CRU2。3) 与大颗粒尿素对照 (U) 相比,4个包膜尿素处理在小麦苗期能维持土壤中NH4+-N的适宜浓度,开花期后显著增加土壤NH4+-N含量,保障了氮素的持续供应;而在小麦整个生育期内均显著降低土壤NO3–-N含量,从而减少氮素淋溶损失。含HQ涂层的CRU1、CRU3处理能在小麦生育期内维持土壤脲酶活性处于较低水平;含DCD涂层的CRU2、CRU3处理能够抑制土壤NH4+-N向NO3–-N的转化,显著降低土壤NH4+-N表观硝化率。与CU相比,CRU1、CRU2和CRU3处理的小麦产量在潍坊试验点分别显著增加23.38%、23.13%和38.79%,在泰安试验点分别增加6.36%、9.52%和28.57%。  【结论】  先在大颗粒尿素表面包裹抑制剂涂层,再包裹树脂,可在尿素表面形成完整且均匀的膜,而且在膜表面仍有一定量的微孔,实现尿素与抑制剂释放的同时控制。小麦整个生育期,与施用单一抑制剂的包膜尿素处理相比,施用含两种抑制剂 (CRU3) 的包膜尿素处理的土壤氮素持续供应能力更强,小麦产量最高;而且土壤硝态氮水平一直较低,也减少了氮素淋溶损失的可能。  相似文献   

9.
脲酶/硝化抑制剂对尿素氮在白浆土中转化的影响   总被引:8,自引:1,他引:7  
采用室内恒温培养方法,研究了脲酶抑制剂(NBPT)、硝化抑制剂(DMPP)及其协同对尿素氮在三江平原白浆土中转化作用效果。研究表明,在白浆土中NBPT有效作用时间小于13 d,作用时间较在棕壤和黑土中短;对土壤中铵态氮、硝态氮及表观硝化率影响与普通尿素基本一致。NBPT与DMPP组合缓释尿素施入4-7 d,能够有效抑制脲酶活性,减缓尿素水解;只添加DMPP与添加NBPT与DMPP协同作用对抑制铵态氮硝化作用效果相同,二者能保持土壤中NH4+-N高含量时间超过80 d。DMPP作用时间可达80 d以上,能有效抑制NH4+-N向NO3--N的转化;在第80 d,土壤中仍有54.58%~56.85%的氮以铵态氮形式存在,表观硝化率只有50%左右。DMPP抑制硝化作用效果十分显著,因此,在白浆土中施用添加NBPT缓释尿素、DMPP缓释尿素、NBPT与DMPP缓释尿素时,应首选添加1%DMPP的缓释尿素肥料。  相似文献   

10.
通过田间随机区组试验,就缓释尿素对土壤脲酶活性,土壤有效态氮及小麦产量的影响进行了研究。本试验设置4个处理,1)普通尿素(U);2)U+脲酶抑制剂LNS(SRU1);3)SRU1+硝化抑制剂双氰胺(DCD)(SRU2);4)SRU1+硝化抑制剂3,5-二甲基吡唑(DMP)(SRU3)。结果表明,在整个春小麦(TriticumaestivumL.)生育期内,SRU1、SRU2和SRU3处理的土壤脲酶活性低于U处理,且SRU2、SRU3处理的土壤NH4+-N含量在较长时间内维持在较高水平;小麦成熟期,SRU1、SUR2和SRU3处理土壤有效态N含量显著高于U处理(p<0.05);SRU1、SRU2、SRU3处理小麦的生物学性状和产量略高于U处理,但是处理间没有显著差异。  相似文献   

11.
【目的】包膜和稳定性尿素肥料的氮素释放及其在土壤中的转化、残留特征不同于普通尿素,本研究评价了长期施用包膜和稳定性尿素肥料对土壤相关性质的影响。【方法】不同包膜和稳定性尿素肥料的定位试验始于2007年。将脲酶抑制剂[N-丁基硫代磷酰三胺(N)、氢醌(H)]和硝化抑制剂[3,4-二甲基吡唑磷酸盐(DM)、双氰胺(D)]按常用添加量添加到大颗粒尿素中制备6种稳定性尿素,供试包膜尿素肥料包括树脂包膜尿素(PCU)和硫包衣尿素(SCU)。试验共9个处理,具体为普通大颗粒尿素(U)、H+U、N+U、D+U、DM+U、H+D+U、N+DM+U、SCU和PCU。于2021年收获期采集0—20 cm耕层土样,分析了土壤基本理化性质指标及与氮转化相关的酶活性及土壤微生物量碳、氮含量。【结果】与试验前(2007年)土壤相比,施用包膜和稳定性尿素增加了棕壤有机质、全氮、全磷、全钾、有效磷以及速效钾含量,有机质增幅达34%~48%,以SCU和U处理的全氮含量最高,为1.26 g/kg,增幅为88%。稳定性尿素处理的土壤pH较常规尿素处理有所提高,其中DM+U处理的土壤pH最高(5.83),较U处理升高了10%...  相似文献   

12.
通过室内培养试验研究4种肥料增效剂对尿素在海南土壤中氮素转化和N2O排放的影响,以期筛选出适合海南土壤的氮肥增效剂类型。培养试验设单施尿素(CK)、尿素 + 长效复混肥添加剂(加入尿素量的8‰,NAM)、尿素 + 双氰胺(加入尿素量的3.5%,DCD)、尿素 + 3,4-二甲基吡唑磷酸盐(加入尿素量的1%,DMPP)、尿素 + 2-氯-6-三氯甲基吡啶(加入尿素量的8‰,NMAX)5个处理。在培养过程中定期测定土壤理化性质、铵态氮和硝态氮含量以及N2O排放量的变化,以分析不同增效剂对土壤氮素形态及N2O排放的影响。结果表明:添加增效剂处理土壤的pH、有机质、全氮和速效钾等均与CK无显著差异,但土壤速效磷含量显著降低。培养过程中,除DCD外,DMPP、NAM和NMAX处理铵态氮浓度一直处于较低水平,而土壤硝态氮含量缓慢增长,显示出明显的硝化抑制效果。与CK处理相比,添加抑制剂处理土壤N2O浓度峰值延后,累计排放量显著降低,但不同抑制剂间差异不显著。综合比较硝化抑制作用及N2O减排效果,可以认为添加长效复混肥添加剂(NAM)、3,4-二甲基吡唑磷酸盐(DMPP)和2-氯-6-三氯甲基吡啶(NMAX)等抑制剂的肥料适宜应用于海南水稻土。  相似文献   

13.
曾科  王书伟  朱文彬  田玉华  尹斌 《土壤》2023,55(3):503-511
为了筛选出在水稻生产中应用效果更佳的硝化抑制剂,探讨三种不同硝化抑制剂对水稻季N2O排放、NH3挥发、水稻产量和氮肥利用率的影响。本研究在太湖地区开展水稻季田间小区试验,在尿素中分别添加化学合成硝化抑制剂2-氯-6-三氯甲基吡啶(CP)和3,4-二甲基吡唑磷酸盐(DMPP)以及生物硝化抑制剂对羟基苯丙酸甲酯(MHPP)。结果表明,与单施尿素处理相比,尿素添加三种硝化抑制剂能显著减少N2O排放总量,抑制效果表现为DMPP(31.71%)>MHPP(30.40%)>CP(27.83%),不同硝化抑制剂间减排效果无显著差异;添加硝化抑制剂均显著增加了NH3挥发总量,促进作用表现为CP(58.7%)>DMPP(40.3%)>MHPP(25.3%),不同硝化抑制剂间差异显著;添加硝化抑制剂的增产幅度为MHPP(4.9%)>CP(3.3%)>DMPP(1.1%),不同硝化抑制剂间无显著差异,氮肥表观利用率显著增加,表现为MHPP(15.7%)>CP(13.8%)>DMPP(10.9%),但不同硝化抑制剂间无显著差异;综合考虑活性气态氮损失量和水稻产量,三种硝化抑制剂相比单施尿素均显著增加了单位产量活性气态氮排放强度,增加幅度表现为CP(50.3%)>DMPP(35.0%)>MHPP(17.8%),CP显著高于DMPP和MHPP。综合比较,生物硝化抑制剂MHPP在水稻生产中增效减排的作用优于化学合成硝化抑制剂CP和DMPP,但在生产应用中要与其他NH3挥发减排措施相结合,更好的发挥其增效减排潜力,推动农业绿色可持续发展。  相似文献   

14.
采用土壤盆栽法,研究了双氰胺(DCD)、硫脲(THU)和硫脲甲醛树脂(TFR)以及包硫尿素(SCU)对土壤氮素形态和小麦产量的影响。试验共设不施氮(CK)、单施尿素、包硫尿素(SCU)、以及尿素分别与DCD、THA、TUF的3个浓度梯度(分别按尿素用量的0.5%、1%、2%)配合施用共12个处理。结果表明:随添加浓度的增加,硝化抑制作用逐渐增强,高剂量硝化抑制剂显著降低土壤NO-3-N含量,在2%添加浓度下,DCD、THU、TFR的土壤NO-3-N浓度分别比单施尿素降低29%、22%和14%,对土壤表观硝化率的抑制强度也是2%DCD2%THU2%TFR;SCU处理与2%DCD作用强度接近,且在施用早期就体现抑制效果,并在追肥后第74 d土壤表观硝化率显著低于使用硝化抑制剂的处理(P0.05);硝化抑制剂和SCU都可以使土壤NH+4-N含量稳定在较高的水平,抑制剂用量越多,土壤NH+4-N含量越高;与单施尿素相比,尿素+DCD模式,均可提高小麦产量,且在0.5%、1%、2%添加浓度,都达到显著水平(P0.05);THU在1.0%和2.0%添加浓度,小麦产量显著高于单施尿素,但增产效果次于DCD。总体上,包硫尿素(SCU)比硝化抑制剂在控释氮素方面效果更持久,而3种硝化抑制剂中,在控制土壤NH+4-N转化、土壤硝化抑制方面,DCD和THU优于TFR;作为外源添加物的抑制剂长期应用可能对土壤环境造成潜在的危害,不同硝化抑制在土壤中的形态归趋和长期作用还有待进一步研究。  相似文献   

15.
【目的】本文研究添加不同种类硝化抑制剂的高效稳定性氯化铵氮肥在黑土中的施用效果,旨在筛选出适合旱作黑土的高效稳定性氯化铵态氮肥。【方法】在氯化铵中分别添加硝化抑制剂3,4-二甲基吡唑磷酸盐 (DMPP)、双氰胺 (DCD)、2-氯-6-三甲基吡啶 (Nitrapyrin,CP)、氨保护剂 (N-GD) 和1种氮肥增效剂 (HFJ) 及其组合,制成9种稳定性氯化铵氮肥。以不施氮肥 (CK) 和施普通氯化铵 (CK-N) 为对照,以9种稳定性氯化铵为处理进行了等氮量盆栽试验。在玉米苗期、大喇叭口期、灌浆期和成熟期测定了土壤中铵态氮和硝态氮含量,在玉米成熟期测定植株生物量、籽粒产量和氮素含量,计算铵态氮肥的表观硝化率、硝化抑制率、氮肥农学效率、氮肥偏生产力。【结果】1) 与CK-N处理相比,9个处理均显著提高玉米的产量,HFJ的效果均为最显著,可增加玉米籽粒产量3.99倍,提高氮肥吸收利用率4.98倍,显著高于8个硝化抑制剂处理 (P < 0.05)。CP + DMPP和CP + DCD处理提高玉米籽粒产量1.90~2.11倍,两个处理之间无显著差异;CP + DMPP玉米生物量显著高于CP处理,而与DMPP和DCD处理无显著差异;CP + DMPP玉米氮肥吸收利用率显著高于CP和DMPP处理,显著提高3.71倍 (P < 0.05);2) CP + DMPP和CP + DCD土壤中铵态氮含量提高2.09~2.42倍,且显著高于CP、DMPP和DCD处理 (P < 0.05),而硝态氮含量和土壤表观硝化率均显著降低24%和66%~68%,与CP和DCD处理存在显著差异 (P < 0.05);苗期CP + DMPP和CP + DCD硝化抑制率高达23.9%~24.3%,显著高于CP和DCD (P < 0.05)。【结论】在黑土中,氯化铵中添加硝化抑制剂组合的硝化抑制率显著高于添加单一抑制剂,能够有效减缓土壤中铵态氮向硝态氮的转化,减少土壤中氮素损失,降低环境污染。CP + DMPP组合玉米的氮肥吸收利用率显著高于CP + DCD组合。氮肥增效剂HFJ显著增加玉米的氮素吸收量,提高氮肥利用率,从而使玉米获得高产并获得较高的收获指数和经济系数。因此,综合考虑产量和抑制硝化作用等因素,黑土区氯化铵作为玉米生产用氮肥时,建议首选添加氮肥增效剂HFJ来保证作物的高产和氮肥高利用率,也可以添加硝化抑制剂组合CP + DMPP,或者CP + DCD制备稳定性氯化铵来提高氯化铵的增产效果和氮肥利用率,减少氮素损失,降低环境污染。  相似文献   

16.
DMPP对菜地土壤氮素淋失的影响研究   总被引:10,自引:1,他引:10  
采用小粉土和青紫泥原状土柱种植青菜,研究了尿素添加DMPP(3.4-二甲基吡啶磷酸盐)硝化抑制剂对土壤氮素淋失的影响。结果表明.在60天内,与常规尿素相比,小粉土和青紫泥DMPP处理硝态氮的累积淋失量分别降低66.8%和69.4%,氨氮淋失量提高9.7%和6.7%,无机氮降低59.1%和63.0%;蔬菜收获后,土壤0~15cm层无机氮增高34.1%和28.2%,土壤中氮素纵向迁移降低。可见,DMPP抑制剂施入土壤具有显著的氨氧化抑制作用,延缓蔬菜地土壤氨氮向硝态氮的转化,减轻氮素向水体迁移的风险。使用硝化抑制剂DMPP,由于土壤对氨氮的强吸附特性.迁移总量低,不会对地下水造成污染的风险。  相似文献   

17.
Li  Jie  Wang  Shuai  Luo  Jiafa  Zhang  Lili  Wu  Zhijie  Lindsey  Stuart 《Journal of Soils and Sediments》2021,21(2):1089-1098
Purpose

Paddy fields are an important source of nitrous oxide (N2O) emission. The application of biochar or the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) to paddy soils have been proposed as technologies to mitigate N2O emissions, but their mechanisms remain poorly understood.

Methods

An experiment was undertaken to study the combined and individual effects of biochar and DMPP on N2O emission from a paddy field. Changes in soil microbial community composition were investigated. Four fertilized treatments were established as follows: fertilizer only, biochar, DMPP, and biochar combined with DMPP; along with an unfertilized control.

Results

The application of biochar and/or DMPP decreased N2O emission by 18.9–39.6% compared with fertilizer only. The combination of biochar and DMPP exhibited higher efficiency at suppressing N2O emission than biochar alone but not as effective as DMPP alone. Biochar promoted the growth of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), while DMPP suppressed AOB and increased AOA. Applying biochar with DMPP reduced the impact of DMPP on AOB. The nirS-/nirK- denitrifiers were decreased and nosZ-N2O reducers were increased by DMPP and the combination of DMPP and biochar. The abundance of the nirK gene was increased by biochar at the elongation and heading stages of rice development. Compared with fertilizer only, the application of biochar and/or DMPP promoted the abundance of nosZ genes.

Conclusion

These results suggest that applying biochar and/or DMPP to rice paddy fields is a promising strategy to reduce N2O emissions by regulating the dynamics of ammonia oxidizers and N2O reducers.

  相似文献   

18.
几种新型氮肥对叶菜硝酸盐累积和土壤硝态氮淋洗的影响   总被引:3,自引:0,他引:3  
应用土柱模拟试验的方法,研究了在高肥力菜田土壤条件下,施用几种新型氮肥对两茬叶菜硝酸盐积累和土壤硝态氮淋洗的影响。结果表明,在高肥力菜田土壤上,施用几种新型氮肥都未能明显提高第一茬油菜的生物量,硫硝铵(A SN)却降低了生物量,而第二茬菠菜不施肥处理生物量下降。尿素+硝化抑制剂DM PP(En tec46)、尿素+硝化抑制剂DCD(U+DCD)和有机无机复混肥(OIF)3种氮肥显著降低了油菜硝酸盐含量。尿素+玉米秸秆(U+M S)和硫硝铵+硝化抑制剂DM PP(En tec26)减少了土壤NO3^--N的向下淋洗,而尿素+保水剂(U+SAP)增加土壤NO3^--N的向下淋洗。  相似文献   

19.
Nitrogen (N) loss by ammonia (NH3) volatilization is the main factor for poor efficiency of urea fertilizer applied to the soil surface. Losses can be suppressed by addition of zeolite minerals to urea fertilizer. The objective of this study was to evaluate ammonia volatilization from soil and dry-matter yield and nitrogen levels of Italian ryegrass. A greenhouse experiment was carried out with the treatments of urea, urea incorporated into soil, urea + urease inhibitor, urea + zeolite, ammonium nitrate, and unfertilized treatment. Ammonia was captured by a foam absorber with a polytetrafluoroethylene tape. There were few differences between zeolite and urease inhibitor amendments concerning NH3 volatilization from urea. Results indicate that zeolite minerals have the potential to improve the N-use efficiency and contributed to increasing N uptake. Zeolite and urea mixture reduced 50% the losses by volatilization observed with urea.  相似文献   

20.
Urea fertilizer‐induced N2O emissions from soils might be reduced by the addition of urease and nitrification inhibitors. Here, we investigated the effect of urea granule (2–3 mm) added with a new urease inhibitor, a nitrification inhibitor, and with a combined urease inhibitor and nitrification inhibitor on N2O emissions. For comparison, the urea granules supplied with or without inhibitors were also used to prepare corresponding supergranules. The pot experiments without vegetation were conducted with a loess soil at (20 ± 2)°C and 67% water‐filled pore space. Urea was added at a dose of 86 kg N ha–1 by surface application, by soil mixing of prills (<1 mm) and granules, and by point‐placement of supergranules (10 mm) at 5 cm soil depth. A second experiment was conducted with spring wheat grown for 70 d in a greenhouse. The second experiment included the application of urea prills and granules mixed with soil, the point‐placement of supergranules and the addition of the urease inhibitor, and the combined urease plus nitrification inhibitors at 88 kg N ha–1. In both experiments, maximum emissions of N2O appeared within 2 weeks after fertilization. In the pot experiments, N2O emissions after surface application of urea were less (0.45% to 0.48% of total fertilization) than from the application followed by mixing of the soil (0.54% to 1.14%). The N2O emissions from the point‐placed‐supergranule treatment amounted to 0.64% of total fertilization. In the pot experiment, the addition of the combined urease plus nitrification inhibitors, nitrification inhibitor, and urease inhibitor reduced N2O emissions by 79% to 87%, 81% to 83%, and 15% to 46%, respectively, at any size of urea application. Also, the N2O emissions from the surface application of the urease‐inhibitor treatment exceeded those of the granules mixed with soil and the point‐placed‐supergranule treatments receiving no inhibitors by 32% to 40%. In the wheat growth experiment, the N2O losses were generally smaller, ranging from 0.16% to 0.27% of the total fertilization, than in the pot experiment, and the application of the urease inhibitor and the combined urease plus nitrification inhibitors decreased N2O emissions by 23% to 59%. The point‐placed urea supergranule without inhibitors delayed N2O emissions up to 7 weeks but resulted in slightly higher emissions than application of the urease inhibitor and the urease plus nitrification inhibitors under cropped conditions. Our results imply that the application of urea fertilizer added with the combined urease and nitrification inhibitors can substantially reduce N2O emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号