首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A substantial deficit of protein sources for livestock and expected changes in agro-climatic conditions are two challenges for European agriculture. Both can be addressed by introducing more autumn-sown legumes into Central European farming systems. Therefore, a three-year field experiment was conducted under Pannonian climate conditions in eastern Austria in which several winter faba bean varieties from different European countries were compared to a spring faba bean variety. Winter faba bean was susceptible to frost damage. Best overwintering was observed with the German variety Hiverna and the French variety Diva. Regarding overwintering, the first winter allowed for a clear differentiation between varieties, in the second winter, severe frost caused loss of almost all winter faba bean plants and in the third winter, which was mild, most varieties showed good overwintering. Grain yield of winter faba bean was mainly determined by variations of plants m?2 (i.e. by overwintering) whereas compensatory mechanisms between yield components had a minor influence on yield formation. No grain yield advantage could be observed for winter faba bean varieties compared to the spring faba bean variety even in the year with good overwintering. Regarding yield components, winter faba bean had generally more shoots plant?1 and a higher thousand kernel weight but spring faba bean tended to have more pods shoot?1 and grains shoot?1 whereas pods plant?1, grains plant?1 and grains pod?1 generally did not differ. In conclusion, limited winter hardiness together with the minor influence of compensatory mechanisms between yield components on yield formation are serious constraints for increasing the cultivation of winter faba bean in Central Europe.  相似文献   

2.
The aim of the experiments was to evaluate a selection of faba bean (Vicia faba L.) var. minor varieties for further production improvement on the basis of their productivity and phenotype characteristics under the short season of the Northern European environmental conditions. The varieties evaluated were: Bauska, Favel, Fuego, Gloria, Jõgeva, Lielplatones, Priekulu and Priekulu viettejas. The highest and most stable average yield for 2015–2016 years was recorded in Bauska and Priekulu, with 3.77 and 3.64?t/ha, respectively. The incidence of chocolate spot and rust was in low to middling. Plant average height for 2015–2016 years was greatest in Bauska, Lielplatones and Priekulu vietejas, with 107.4, 110.7 and 110.0?cm, respectively. Resistance to lodging was best in Bauska and Fuego. From these yield and phenotype characteristics results we conclude that Lielplatones is the most suitable faba bean var. minor varieties for breeding in Northern European conditions, because of the following characteristics: middle yielding, quite high content of protein, very small seeds, low susceptibility to chocolate spot, good resistance to lodging. Thus almost every tested variety had some very good characteristics, which may also be valuable for the breeding of new varieties.  相似文献   

3.
Introducing autumn-sown legumes into Central European farming systems could be beneficial for addressing two challenges for European agriculture, i.e., the substantial deficit of protein sources for livestock and expected changes in agroclimatic conditions. Therefore, a two-year field experiment was conucted under Pannonian climate conditions in eastern Austria to assess nitrogen (N) yield and N fixation of several winter faba bean varieties from different European countries as compared to a spring faba bean. Winter wheat was used as a reference crop for estimating atmospheric N fixation. Winter faba beans were susceptible to frost damage especially in the harder of the two winters. Winter faba bean varieties could not achieve a higher grain yield and a higher grain N yield than the spring faba bean but had a higher grain N concentration (except for one variety). Grain yield and grain N yield of faba beans were severely impaired by drought in one year (with a mean of varieties of 8.3 g N m?2, winter wheat: 6.4 g N m?2); in the other year, grain N yield of faba beans considerably surpassed that of winter wheat (with a mean of varieties of 21.5 g N m?2, winter wheat: 8.8 g N m?2). After harvest, faba beans left higher nitrate residues in the soil, especially in the subsoil, and higher amounts of N in above-ground residues compared to winter wheat. Faba beans showed high N fixation under optimum conditions (with a mean of varieties of 21.9 g N m?2) whereas drought considerably impaired N fixation (with a mean of varieties of 6.3 g N m?2; with no differences between autumn- and spring-sown faba beans). In conclusion, growing winter faba bean varieties in eastern Austria did not result in higher grain yield, grain N yield, and N fixation compared to growing a spring faba bean.  相似文献   

4.
Intercropping can improve yield and nitrogen use efficiency in organic vegetable production by pairing crops with complementary resource use. An intercrop field experiment was conducted to determine yield, root growth and nitrogen (N) dynamics using faba bean (Vicia faba L.) grown as a vegetable and pointed cabbage (Brassica oleracea var. capitata cv. conica). Both crops were grown in monocropping (MC) and intercropping systems (IC). Minirhizotrons were used to measure root growth. Yield of pointed cabbage per metre row was 28% higher under the IC system than under MC, whereas faba bean yield as fresh seeds did not differ. The land equivalent ratio was 1.06, showing that improved yield under IC resulted from efficient land resource use. Even though MC cabbage had the highest aboveground biomass, total N accumulation was higher under IC and MC faba bean systems. Both root frequency and intensity were greater under IC faba bean rows compared with MC faba bean because of the presence of cabbage roots in faba bean rows. Monocropped cabbage had the highest root intensity and the lowest amount of soil mineral N in the 0–1.5 m depth after harvest. Monocropped cabbage was efficient in assimilating N, whereas MC faba bean was efficient in exporting N as harvestable yield. The nitrogen use efficiency using the IC system (75%) was higher than growing faba bean (44%) and cabbage (65%) alone. Thus, faba bean as an intercrop in organic cabbage production systems improves land and N use efficiency by complementary root growth.  相似文献   

5.
The main objective of this study was to investigate the performance of faba bean landraces originating from different regions of Greece under both organic and conventional farming systems focusing mainly on yield, biological nitrogen fixation (BNF), and competitiveness to weeds. Faba bean exhibited a high ability to fix nitrogen from the atmosphere, as indicated by the percentage of N2 derived from the atmosphere which exceeded 75% in all evaluated varieties, and the total amount of biologically fixed N up to full anthesis, which fluctuated from 118.5 to 193.9?kg?ha?1 in the various cropping systems and cultivars. The weed density was appreciably higher in the organic plots, without significant differences among the faba bean cultivars, while wild mustard and corn poppy were the most competitive weeds. The application of inorganic starter fertiliser in the conventionally-treated plots had no negative effect on biologically-fixed nitrogen by faba bean plants, while the herbicide pendimethalin had no negative impact on the nodulation process. Protein concentrations in faba bean cultivars fluctuated from 27.3% to 31.4%. The evaluated landraces could be utilised in breeding programmes due to their earliness, and their high performance in terms of protein content, BNF ability, and productivity.  相似文献   

6.
The use of phosphorus (P)‐efficient legumes is a prerequisite for sustainable intensification of low‐input agro‐ecosystems. A study was undertaken in a farmer's field in the tropical highlands of Ethiopia to assess the agronomic performance, P acquisition efficiency (PAE), and P utilization efficiency (PUE) of six improved faba bean varieties (Vicia faba L. var. CS‐20DK, Degaga, Gebelcho, Moti, Obse, Walki) without and with P application. Varieties showed significant variations in PUE, but P application had no significant effect on PUE. Variety Moti demonstrated highest PUE of 272 kg grain kg?1 P, which was 1.6‐fold higher than the lowest PUE (164 kg grain kg?1 P) of Gebelcho. PUE was significantly and positively correlated with grain yield (r = 0.542) and negatively correlated with shoot PAE (r = –0.541), indicating that PUE is important for grain yield. The results demonstrate that variations in grain and biomass yield of faba beans were largely due to differences in PUE and not due to PAE. Therefore, we argue that genetic resources of faba bean varieties showing optimal agronomic performance and high PUE in low‐input agro‐ecosystems should be better explored. Introduction of such varieties in low‐input cereal‐based cropping systems could improve and enhance P use efficiency at the system level.  相似文献   

7.
蚕豆枯萎病是土传病害,其发生与蚕豆根系分泌物有密切关系。本文以3个枯萎病不同抗性蚕豆品种——‘89-147’(高抗)、‘8363’(中抗)和‘云豆324’(感病)为材料,通过水培试验收集根系分泌物,测定根系分泌物对镰刀菌孢子萌发和菌丝生长的影响,分析对枯萎病表现出不同抗性的蚕豆品种根系分泌物中糖、氨基酸和有机酸的含量,分离鉴定了根系分泌物中氨基酸和有机酸的组分。结果表明,抗病品种的根系分泌物抑制了尖孢镰刀菌的孢子萌发和菌丝生长,在加入5 mL中抗品种根系分泌物时,显著促进尖孢镰刀菌孢子萌发,但对菌丝生长无显著影响;而在加入1 mL感病品种根系分泌物时,就能显著促进尖孢镰刀菌孢子萌发和菌丝生长。不同抗性蚕豆品种根系分泌物中氨基酸总量和总糖含量随抗性的降低而升高,有机酸分泌总量则随蚕豆品种对枯萎病的抗性增加而升高。感病品种和中抗品种中检出15种氨基酸,而高抗品种中检出14种,组氨酸只存在于中抗品种中,脯氨酸仅在感病品种中检出,3个蚕豆品种根系分泌物中均未检出精氨酸。蚕豆根系分泌物中天门冬氨酸、谷氨酸、苯丙氨酸、酪氨酸和亮氨酸含量高,可能会促进枯萎病的发生,而蛋氨酸、赖氨酸和丝氨酸含量高可能抑制枯萎病发生。酒石酸仅在抗病品种中存在,根系分泌物中有机酸种类丰富,有助于提高蚕豆对枯萎病的抗性。蚕豆对枯萎病的抗性不同,根分泌物对镰刀菌孢子萌发和菌丝生长的影响也不同,而这种抗病性差异与蚕豆根系分泌物中糖、氨基酸、有机酸的含量和组分密切相关。  相似文献   

8.
The selection of varieties or species of plants with higher nutrient uptake efficiency and nutrient concentration for biofortification of food crops is a key tool to reduce malnutrition. Soybean (Glycine max L. Merr) is one of the most important food crops, because it is consumed directly or indirectly, in the form of seeds, processed (milk and/or derivatives), or used as a protein component of animal feed worldwide. In order to select plants with higher nutrients concentration in seeds, 24 soybean varieties for tropical and subtropical conditions and different general features were assessed. There was great variability in photosynthesis rate, chlorophyll content, seed yield (SY), and concentration and uptake of nutrients by seeds between the varieties. Not genetically modified (NGM) crops showed higher nitrogen (N), cooper (Cu), and manganese (Mn) concentration and higher N, potassium (K), Cu, iron (Fe), Mn, and zinc (Zn) uptake, while for genetically modified (GM) crops only calcium (Ca) concentrations were higher. Varieties BRS 284 and BMX Magna RR showed the highest nutrients concentrations in the group with the highest nutrient efficiency. The genetic variability observed among the varieties regarding uptake and translocation of nutrients into seeds allows selecting more promising materials to be used in the biofortification of nutrients in soybean seeds.  相似文献   

9.
Leguminous crops are significantly involved in the global symbiotic biological N2 Fixation (BNF), an eco‐friendly process in the agriculture system. Biochar is considered as a vital amendment in improving growth and quality of crops and soils. Few investigations have been conducted to determine the combination effect of biochar with microelements on growth of legumes and soil properties. This study was designed to study the effect of soybean straw‐derived biochar (SSDB) with or without microelements on soil microbial and chemical properties, growth, yield, and seed chemical composition of faba bean (Vicia faba L.). Results revealed that dehydrogenase (DHA) and phosphatase (P‐ase) activities were markedly improved with the increase of SSDB rates under addition of microelements and their highest values were recorded after 90 d. Significant increases were noticed in nodulation activities, nodulation numbers (30.1–72.8), concentrations of N (1.62–1.93%), P (0.15–0.21%), and K (0.53–0.67%), and seed chemical constituents due to the addition of SSDB in the presence of microelements. Moreover, the combination of biochar with microelements caused significant changes in microbial counts. Overall, this investigation shows the potential and role of SSDB in enhancing the growth quality of faba bean seeds as well as an improvement of soil characteristics.  相似文献   

10.
张杰  杨希娟  党斌  张文刚  兰佳佳 《核农学报》2021,35(8):1848-1857
为了提高蚕豆加工副产物的综合利用率,筛选天然多酚抑菌剂的功能原料,本试验以5种不同颜色蚕豆种皮为研究对象,比较不同颜色蚕豆种皮中酚类物质的含量、组成及抑菌活性的差异,初步探讨蚕豆种皮中发挥抑菌活性的多酚物质种类。结果表明,5种不同颜色蚕豆种皮中总酚含量为165.94~8 487.62 mg·100g-1,总黄酮含量为11.26~209.01 mg·100g-1,花色苷含量为1.08~65.64 mg·100g-1。紫红蚕豆种皮总酚、花色苷含量最高,黑蚕豆总黄酮含量最高。没食子酸和原儿茶酸为蚕豆种皮中的主要酚酸物质,儿茶素、杨梅素、根皮素及槲皮素为主要的黄酮类物质,矢车菊素、矢车菊素-3-葡萄糖苷、飞燕草素和飞燕草素-3-葡萄糖苷为主要花色苷类物质,且深色蚕豆种皮具有较的高酚类物质含量。抑菌活性结果表明,深色蚕豆种皮对大肠杆菌和沙门氏菌的抑制能力较强,且总酚、总黄酮含量与沙门氏菌抑菌活性呈显著正相关(P<0.05),而花色苷含量与大肠杆菌抑菌活性呈显著正相关(P<0.05),没食子酸及矢车菊素是发挥抑菌作用的主要物质。综上,深色蚕豆种皮含有丰富的酚类化合物,且具有较高的抑菌活性,本研究为蚕豆种皮综合加工利用提供了一定的理论基础。  相似文献   

11.
蚕豆根分泌物对紫色土有效养分及微生物数量的影响   总被引:3,自引:0,他引:3  
为培育紫色土肥力和合理利用蚕豆资源,本研究首先通过溶液培养法收集到蚕豆根系分泌物后,并通过真空旋转蒸发仪得到浓缩液,然后通过室内土壤培养试验,即分别在3种60 g紫色土(酸性紫色土、碱性紫色土和中性紫色土)添加2个水平[6 m L(低量)和12 m L(高量)]的蚕豆根系分泌物浓缩液,并置于25℃恒温箱中黑暗培养15 d,从而探索蚕豆根系分泌物对不同紫色土有效养分和微生物数量的影响。结果表明:在3种紫色土上,与对照相比,添加低量和高量蚕豆根系分泌物浓缩液后,土壤碱解氮含量和p H均显著降低;而土壤有效磷、速效钾、有效铁、有效锌含量和微生物数量均显著增加,且此趋势随根系分泌物浓缩液添加量增加而增强。与其他两种紫色土相比,酸性紫色土添加蚕豆根系分泌物浓缩液对于土壤碱解氮含量和p H的降低效应最明显,对土壤中细菌和真菌数量增加效应更为显著,与对照相比,增幅分别为-32.00%、-4.51%、3.51倍和9.00倍。与其他两种紫色土相比,碱性紫色土添加高量蚕豆根系分泌物浓缩液对土壤有效磷、速效钾、有效锌和有效铁含量活化效应最强,分别是对照的4.48倍、2.04倍、147.10%和128.00%。在中性紫色土上,添加高量蚕豆根系分泌物浓缩液对以上土壤有效养分和土壤微生物数量的影响介于酸性紫色土和碱性紫色土之间。总之,蚕豆根系分泌物对不同紫色土土壤有效养分(土壤碱解氮和p H除外)和土壤微生物活性有不同促进效应,这对于紫色土肥力培育有深远影响。  相似文献   

12.
  【目的】  探明小麦/蚕豆间作下作物籽粒淀粉和蛋白质含量的变化特征及其对氮肥施用的响应。  【方法】  小麦/蚕豆间作田间试验于2019和2020年在云南昆明进行,供试小麦品种为云麦52 (Triticum aestivum L.),蚕豆品种为玉溪大粒豆(Vicia faba L.)。种植模式包括小麦单作、蚕豆单作、小麦蚕豆间作。每个种植模式均设4个施氮水平,小麦分别为N 0、90、180、270 kg/hm2,蚕豆分别为N 0、45、90、135 kg/hm2。成熟期测定了小麦和蚕豆籽粒淀粉和蛋白质含量。  【结果】  随着氮肥施用量的增加,单作、间作小麦籽粒的淀粉含量均显著降低。在4个施氮水平下,2019和2020年间作小麦较单作小麦籽粒总淀粉含量分别提高了10%和22%,支链淀粉含量分别提高了5%和18%,直链淀粉含量分别提高了18%和28%。间作蚕豆相较于单作蚕豆显著降低了籽粒支链、直链和总淀粉含量,且年际间变异较大。2019和2020年间作小麦籽粒总蛋白含量较单作小麦分别提高了5%和6%,醇溶蛋白含量分别提高了9%和15%;蚕豆间作也较单作提高了两年的蚕豆籽粒球蛋白含量和2019年的醇溶蛋白含量,但对蚕豆籽粒总蛋白及其它蛋白组分含量无明显影响。  【结论】  小麦蚕豆间作有利于提高小麦籽粒蛋白质和淀粉含量,而对蚕豆籽粒蛋白质含量几乎无影响,因此,间作是一种具有品质优势的种植模式。  相似文献   

13.
Since autumn-sown faba beans possess several advantages including higher seed yield over the spring cultivars, the study was aimed to screen and select cold tolerant accessions of faba beans (Vicia faba L.) and compare these to wild species in the highland of the west Mediterranean region, Turkey. A total of 114 accessions of Vicia species including 109 accessions of faba bean, three accessions of narbon bean (V. narbonensis L.) and two accessions of V. montbretii Fisch. et C.A. Mey. were screened for cold tolerance at seedling stage in two successive years, 2005–2006 and 2006–2007 growth seasons. Accessions were evaluated for cold tolerance using a 1 (Highly cold tolerant)-5 (Highly cold susceptible) visual scale. Considerable variation was found for cold tolerance and some agronomical characteristics in faba beans. Wild relatives of faba bean were found to be more tolerant to cold than those of cultivated faba beans. Although some pigmented accessions were free from freezing damage at −9.6°C without snow cover, accessions with white flowers were damaged. The proposed screening technique could easily be used to evaluate many faba bean accessions for cold tolerance. To increase yield, it was concluded that the cold tolerant accessions with high yield could be grown as autumn-sown crop in the target environment.  相似文献   

14.
This study was initiated to evaluate the effect of locally isolated Rhizobium on nodulation and yield of faba bean at Haramaya, Ethiopia for three consecutive years. Ten treatments comprising of eight effective isolates of rhizobia, uninoculated, and N-fertilized (20 kg N ha?1) were laid out in a randomized complete block design with three replications. The result of the experiment indicated that all inoculation treatments increased nodule number and dry weight over the control check in all cropping seasons. The result, however, showed the non-significant effect of Rhizobium inoculation on shoot length, number of tiller per plant and 100 seed weight in all cropping season. Inoculating Haramaya University Faba Bean Rhizobium (HUFBR)-15 in 2011 and National Soil Faba Bean Rhizobium (NSFBR)-30 in 2012 and 2013 gave the highest grain yields (4330, 5267 and 4608 kg ha?1), respectively. These records were 75%, 48%, and 5% over the uninoculated treatment of respective years. Over the season, NSCBR-30 inoculation resulted in the highest nodulation and grain yield production as compared to the other treatments. In general, isolates from central Ethiopia were better than those isolated from eastern Ethiopia and Tropical Agricultural Legume (TAL)-1035 in enhancing faba bean production at Haramaya site. Therefore, NSFBR-30 is recommended as a candidate isolate for faba bean biofertilizer production in eastern Ethiopia soils.  相似文献   

15.
以宁夏新垦的淡灰钙土为对象,研究了蚕豆/玉米间作系统不同施氮水平下土壤活性有机碳、氮的时空变异特征。结果表明:新垦淡灰钙土土壤微生物量碳、氮(SMBC、SMBN)及可溶性有机碳、氮(SOC、SON)等活性有机碳、氮含量较低;随着施氮量的增加土壤SMBC含量显著增加;玉米收获期土壤SMBC、SMBN含量显著高于蚕豆收获期;土壤SMBC、SMBN含量空间变异为:蚕豆行间(F-F)含量最高,玉米行(M)、玉米行间(M-M)最低。与不施氮相比,施氮显著提高了蚕豆收获期土壤SOC、SON含量,而玉米收获期各施氮水平间土壤SOC和SON含量无明显差异;土壤SOC、SON的空间变异为:玉米行间>蚕豆行间、蚕豆行(F)、蚕豆与玉米行间(F-M)>玉米行。玉米收获期土壤SMBC及SMBN含量的显著增加,说明土壤微生物对矿质氮的固持对于新垦土壤肥力的提高具有重要作用。  相似文献   

16.
  【目的】   丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF) 有利于作物对养分的吸收。在镉、铅污染的土壤中,作物常将镉、铅积累在秸秆中,随着秸秆的还田而释放回土壤。探究前茬蚕豆秸秆还田和丛枝菌根真菌 单施或联合施用对土壤肥力、后茬玉米的矿质养分与镉、铅吸收的影响,为AMF 在调控污染农田轮作体系矿质养分与镉铅累积的生态功能提供新认识。   【方法】   采用四室隔板分室系统进行蚕豆秸秆降解试验,供试土壤和蚕豆秸秆均来源于云南省会泽铅锌矿区污染区,土壤全镉和铅含量分别为4.5和269.0 mg/kg,蚕豆秸秆镉和铅含量分别为1.9和10.9 mg/kg。将蚕豆秸秆粉碎至粒径0.5~2.0 mm装入尼龙袋中,埋于土壤内进行腐解培养试验。玉米盆栽试验设4个处理:污染土壤对照 (CK)、接种AMF菌根 (AMF)、添加蚕豆秸秆 (SI)、接种AMF菌根同时添加蚕豆秸秆 (SI+AMF)。分析AMF对蚕豆秸秆降解、矿质养分 (N、P、K) 与镉铅释放、土壤速效养分含量、玉米生长、矿质营养和镉铅吸收的影响。   【结果】   接种AMF显著提高蚕豆秸秆的降解量、矿质养分和镉铅释放量,促进蚕豆秸秆降解。与AMF处理相比,AMF+SI处理玉米根系的AMF侵染率提高了12%。SI处理显著增加土壤速效养分含量和玉米植株钾含量,降低玉米根部的镉含量,但对玉米株高和生物量没有显著影响。接种AMF、SI+AMF处理显著提高土壤速效氮、磷、钾含量,增加玉米氮、磷、钾含量与吸收量,显著提高玉米株高和生物量,同时显著降低土壤有效态镉、铅含量和玉米植株镉、铅含量。双因素分析表明,接种AMF和添加秸秆对土壤速效氮、磷、钾含量影响显著,但接种AMF对植株矿质元素吸收量、土壤有效态镉、铅含量和植株镉、铅含量作用显著,接种AMF与添加秸秆对各测定指标没有显著的交互作用。   【结论】   AMF能促进前茬秸秆降解、养分和镉铅的释放。接种AMF在提高土壤氮、磷、钾养分含量,降低有效态镉、铅含量,提高玉米对氮、磷、钾的吸收,降低镉和铅在玉米植株内的积累量等方面,均显示出良好的应用前景。虽然接种AMF与秸秆还田没有表现出显著的交互作用,但秸秆还田可增加AMF在玉米根部的侵染率,因此,在使用AMF菌剂时应考虑秸秆还田。  相似文献   

17.
新开垦土壤上构建玉米/蚕豆-根瘤菌高效固氮模式   总被引:5,自引:1,他引:4  
为了在新开垦土壤上构建高效种植模式,本文采用温室盆栽和大田试验相结合的方法,选用4种根瘤菌接种方式(保水剂拌种、清水拌种、三叶期灌根和种子丸衣化)接种4种不同蚕豆根瘤菌(NM353、CCBAU、G254和QH258),分析接菌后新开垦土壤上玉米/蚕豆间作体系的生产潜力、地上部氮素吸收和结瘤特性以及生物固氮等方面的优势,拟为该体系筛选出高效的根瘤菌及其接种技术。结果表明:接种NM353后,玉米/蚕豆间作体系中蚕豆籽粒产量比单作平均增加152.84%,而玉米保持相对稳产;以保水剂拌种的方式接种NM353的间作蚕豆地上部氮素积累量最高,蚕豆结瘤数、瘤重、固氮比例和固氮量均高于本试验中其他3种方式接种的根瘤菌。在盛花期和盛花鼓粒期,接种NM353蚕豆的固氮比例比接种CCBAU的分别高19.1%和11.1%,在各个生育时期两者固氮量之间差异均达显著水平;接种NM353与接种其他菌种间固氮量和固氮比例差异更显著。因此,在新开垦土壤上,用保水剂拌种的方式对间作蚕豆接种NM353根瘤菌,构建玉米/蚕豆-根瘤菌高效固氮体系,为新开垦土壤合理开发利用的可持续发展模式。  相似文献   

18.
S. PAL  P. MARSCHNER 《土壤圈》2016,26(5):643-651
Crop yields in sandy soils can be increased by addition of clay-rich soil, but little is known about the effect of clay addition on nutrient availability after addition of plant residues with different C/N ratios. A loamy sandy soil(7% clay) was amended with a clay-rich subsoil(73% clay) at low to high rates to achieve soil mixtures of 12%, 22%, and 30% clay, as compared to a control(sandy soil alone) with no clay addition. The sandy-clay soil mixtures were amended with finely ground plant residues at 10 g kg~(-1): mature wheat(Triticum aestivum L.) straw with a C/N ratio of 68, mature faba bean(Vicia faba L.) straw with a C/N ratio of 39, or their mixtures with different proportions(0%–100%, weight percentage) of each straw. Soil respiration was measured over days 0–45 and microbial biomass C(MBC), available N, and p H on days 0, 15, 30, and 45. Cumulative respiration was not clearly related to the C/N ratio of the residues or their mixtures, but C use efficiency(cumulative respiration per unit of MBC on day 15) was greater with faba bean than with wheat and the differences among the residue mixtures were smaller at the highest clay addition rate. The MBC concentration was lowest in sole wheat and higher in residue mixtures with 50% of wheat and faba bean in the mixture or more faba bean. Soil N availability and soil p H were lower for the soil mixtures of 22% and 30% clay compared to the sandy soil alone. It could be concluded that soil cumulative respiration and MBC concentration were mainly influenced by residue addition, whereas available N and p H were influenced by clay addition to the sandy soil studied.  相似文献   

19.
Abstract

The copper (Cu) requirement of four crop species was measured in a glasshouse experiment using yield of dried shoots and Cu content (Cu concentration multiplied by yield of dried shoots) of 62 day old plants grown in two different alkaline soils. The species compared were faba bean (Vicia faba L. cv. Fiord), chickpea (Cicer arietinum L. cv. Tyson), lentil (Lens culinaris Medik cv. Digger), and spring wheat (Triticum aestivum L. cv. Stretton). The comparative Cu requirement of the species was determined from yields of dried shoots when no Cu fertilizer was applied, the amount of applied Cu required to produce the same percentage of the maximum (relative) yield of dried shoots, and the Cu content of dried shoots. The concentration of Cu in youngest tissue and in dried shoots was used to determine critical concentrations of Cu in tissue associated with 90% of the maximum yield. Faba bean used indigenous soil Cu more effectively than wheat, followed by chickpea and then lentil. As measured using both shoot yield and Cu content in shoots, the Cu requirement was lowest for faba bean, and increased in the order faba bean < wheat < chickpea < lentil. Copper concentration in dried youngest tissue and in dried shoots increased with an increase in the amount of added Cu. The critical Cu concentration in the youngest tissue was (mg Cu/kg): 4.6 for lentil, 2.6 for chickpea, 1.5 for wheat, and 2.8 for faba bean; corresponding values for dried shoots (mg Cu/kg) were 6.3 for lentil, 3.3 for chickpea, 2.8 for wheat, and 3.0 for faba bean.  相似文献   

20.
Little information is available on phosphorus (P) uptake and rhizosphere processes in maize (Zea mays L.), faba bean (Vicia faba L.), and white lupin (Lupinus albus L.) when intercropped or grown alone in acidic soil. We studied P uptake and soil pH, carboxylate concentration, and microbial community structure in the rhizosphere of maize, faba bean, and white lupin in an acidic soil with 0–250 mg P (kg−1 soil) as KH2PO4 (KP) or FePO4 (FeP) with species grown alone or intercropped. All plant species increased the pH compared to unplanted control, particularly faba bean. High KP supply (>100 mg P kg−1) significantly increased carboxylate concentration in the rhizosphere of maize. The carboxylate composition of the rhizosphere soil of maize and white lupin was significantly affected by P form (KP or FeP), whereas, this was not the case for faba bean. In maize, the carboxylate composition of the rhizosphere soil differed significantly between intercropping and monocropping. Yield and P uptake were similar in monocropping and intercropping. Monocropped faba bean had a greater concentration of phospholipid fatty acids in the rhizosphere than that in intercropping. Intercropping changed the microbial community structure in faba bean but not in the other corps. The results show that P supply and P form, as well as intercropping can affect carboxylate concentration and microbial community composition in the rhizosphere, but that the effect is plant species-specific. In contrast to previous studies in alkaline soils, intercropping of maize with legumes did not result in increased maize growth suggesting that the legumes did not increase P availability to maize in this acidic soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号