首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Microbial‐based inoculants have been reported to stimulate plant growth and nutrient uptake. However, their effect may vary depending on the growth stage when evaluated or fertilizer applied. Thus, the objective of this study was to test the hypothesis that microbial‐based inoculants known to promote root growth and nutrient uptake will promote plant growth, enhance early root development, and increase nutrient concentrations of corn (Zea mays L.). Plants were evaluated at four different growth stages and in the presence of three different nitrogen (N) fertilizers. The microbial‐based treatments evaluated were: SoilBuilder™ (SB), a filtered metabolite extract of SoilBuilder™ (SBF), a mixture of four strains of plant growth‐promoting Bacillus spp (BM), and a water‐inoculated control. The experiment also included four fertilizer treatments: urea (U), urea‐ammonium nitrate (UAN), calcium‐ammonium nitrate (CAN), and an unfertilized control. Corn plants were evaluated at growth stages V2, V4, V6, and VT. Plant growth parameters for biomass, height, and SPAD readings were enhanced by the three microbial‐based treatments. A greater effect of microbial‐based treatments was observed when plants were evaluated at V6 and VT stages. Parameters of early root development such as total root length (TRL), root surface area (RSA), and length of fine roots were enhanced when microbial‐based treatments were applied. Concentrations of N, P, and K were also increased by microbial‐based treatments compared to the non‐inoculated control. Increases in plant N concentration due to microbial‐based treatments were on average 72% for CAN, 61% for UAN, 72% for urea, and 54% for the unfertilized control. Phosphorus concentration was increased most (138%) when BM was applied with CAN. In the same way, when CAN was present, K concentration was increased by 95% with BM and 65% when SB and SBF were applied. Overall, the results demonstrate that microbial‐based inoculants evaluated in this study can positively impact corn growth and nutrient concentration, especially during the late vegetative stages. Furthermore, the results indicate that the enhancement of nutrient concentrations (N, P, and K) in this case was related to the capacity of microbial‐based treatments to impact root morphology at early stages of corn growth.  相似文献   

2.
The capacity of plant growth-promoting rhizobacteria (PGPR) – Bacillus amyloliquefaciens GB03 (BamGB03), B. megaterium SNji (BmeSNji), and Azospirillum brasilense 65B (Abr65B) – to enhance growth and nutrient uptake in wheat was evaluated under different mineral N fertilizer rates, in sterile and non-sterile soils, and at different developmental stages. In gnotobiotic conditions, the three strains significantly increased plant biomass irrespective of the N rates. Under greenhouse conditions using non-sterile soil, growth promotion was generally highest at a moderate N rate, followed by a full N dose, while no significant effect was observed for the inoculants in the absence of N fertilizer. At 50N, plant biomass was most significantly increased in roots (up to +45% with Abr65B) at stem-elongation stage and in the ears (+19–23% according to the strains) at flowering stages. For some nutrients (N, P, Mn, and Cu), the biomass increases in roots and ears were paralleled with reduced nutrient concentrations in the same organs. Nevertheless, growth stimulation resulted in a higher total nutrient uptake and higher nutrient uptake efficiency. Furthermore, Abr65B and BmeSNji counteracted the reduction of root development caused by a high N supply. Therefore, combining PGPR with a proper cultivated system, N rate, and plant stage could enhance their biostimulant effects.  相似文献   

3.
Introducing specific microorganisms into the soil ecological system is an important strategy for improving nutrient use efficiency. Two pot experiments were conducted in the greenhouse from December 3, 2012 to January 25, 2013 (Experiment 1) and March 11 to April 23, 2013 (Experiment 2) to evaluate the effect of nitrogen (N) source and inoculation with plant growth-promoting rhizobacteria (PGPR) on plant growth and N and phosphorus (P) uptake in tomato (Lycopersicon esculentum Mill.) grown on calcareous soils from South Florida, USA. Treatments included urea, controlled release urea (a controlled release fertilizer, CRF) each at low and high N rates and with or without inoculation of PGPR. A mixture of PGPR strains Bacillus amyloliquefaciens IN937a and Bacillus pumilus T4 was applied to the soil during growing periods of tomato. Treatments with PGPR inoculation increased plant height compared to treatments without PGPR in both experiments. Inoculation with PGPR increased shoot dry weight and shoot N uptake for the same N rate and N source. In both experiments, only at high N rate, CRF and urea treatments with PGPR had significantly (P < 0.05) greater shoot biomass than those without PGPR. Only at high N rate, CRF treatment with PGPR significantly increased shoot N uptake by 39.0% and 10.3% compared to that without PGPR in Experiments 1 and 2, respectively. Meanwhile, presence of PGPR in the soil increased shoot P uptake for all treatments in Experiment 1 and for most treatments in Experiment 2. In Experiment 1, only at low N rate, CRF treatment with PGPR significantly increased shoot P uptake compared with that without PGPR. In Experiment 2, a significant increase in shoot P uptake by inoculation of PGPR was only observed in CRF treatment at high N rate. Results from this study indicate that inoculation with PGPR may increase plant growth and N and P uptake by tomato grown on calcareous soils. However, the effect of PGPR varied and was influenced by many factors such as N source, N rate, and soil fertility. Further investigations are warranted to confirm the effect of PGPR under different soil conditions.  相似文献   

4.
Soil microorganisms play important roles in the plant-soil ecosystem, and plant growth-promoting rhizobacterium (PGPR) promotes plant growth through several mechanisms. To investigate the benefits of PGPR for root functions such as respiration, we used the plant model Cerasus sachalinensis Kom., in which root respiration provides a sensitive functional indicator to demonstrate the effect of soil sterilisation (SS) and inoculation with the PGPR Staphylococcus sciuri ss sciuri after SS on seedling root respiration and growth. Root respiration increased in the presence of PGPR inoculation alone, whereas Embden–Meyerhof–Parnas pathway activity decreased due to reduced phosphofructokinase and pyruvate kinase activities. Although cytochrome c oxidase activity decreased and alternative oxidase activity increased, only slight changes were observed in growth indicators such as seedling height. However, SS and PGPR inoculation after sterilisation reduced soil microbial biomass carbon and reduced root respiration. Pyruvate kinase activity as well as plant height and leaf number increased, thus promoting plant growth. Thus, we conclude that SS and PGPR inoculation altered enzymes activities, root respiration and plant growth of cherry rootstocks. The effects of microbial inoculation were altered by SS.  相似文献   

5.
Methods for determining midseason nitrogen (N) rates in corn have used the parameter normalized difference vegetation index (NDVI) and, in some cases, plant height. The objective of this study was to analyze the relationship of stalk diameter along with predictors of yield, including NDVI and plant height with grain yield. Five site-years of data were analyzed, where several rows of corn plants were selected, and yield from plants within the row was recorded individually. Measurements of stalk diameter, plant height, and NDVI were taken from growth stages V8–VT. Using a value of stalk diameter × plant height gave the best correlation with grain yield (r2 = 0.34, 0.55, 0.67; V8, V10, V12, growth stages respectively). This work showed that stalk diameter × plant height was positively correlated with by-plant corn grain yields, and this parameter could be used for refining midseason fertilizer N rates for growth stages V8–V12.  相似文献   

6.
Environmental conditions in the northern Great Plains can delay emergence, nitrogen (N) fixation and growth of soybean due to cool and wet soil conditions at planting. The objective was to evaluate the impact of low rates of N applied at planting on soybean N fixation and crop growth. A field experiment was established within corn soybean rotation using a split-plot design with four replications. Whole plots were no-tillage and conventional tillage and split plots were starter fertilizer. Nitrogen sources were ammonium nitrate or urea applied at four rates. The amount of plant N fixation increased with growth stage reaching a maximum fixation at the R5 growth stages. Plant ureide content decrease with increase N applied for all growth stages except R7. The increase in plant biomass contributed to an overall increase in yield indicating that in unfavorable environments application of N at planting can have a positive impact on soybean growth.  相似文献   

7.
玉米叶片SPAD值、全氮及硝态氮含量的品种间变异   总被引:11,自引:2,他引:9  
研究比较两种土壤肥力条件下,4个春玉米品种在喇叭口期至成熟期间叶片SPAD值、全氮及硝态氮含量的变异程度、及其与氮素积累和产量形成的关系,以期为不同品种植株的氮素营养测试指标的优化提供依据。结果表明,叶片SPAD值与产量、吸氮量及生物量呈显著相关,该值主要受氮肥水平影响,并因土壤肥力而变异。从喇叭口期至灌浆期间平均变异幅度为17.7%,但品种间变异很小,平均仅为4.3%。说明利用SPAD值诊断玉米氮素营养时,其诊断指标不需要因品种而调整,但需要因不同肥力而调整。在新立城低肥力条件下,喇叭口期(V12)和抽雄期(VT)的SPAD临界值指标分别为46.1和57.8;在德惠高肥力条件下,两个时期的SPAD值临界值较为接近,分别为59.9和60.3。植株叶片硝态氮含量在土壤肥力间及品种间变异均较大,变异幅度分别为43.1%和29.3%,且与产量、吸氮量及生物量的相关性均较差,不适于在大面积范围内单独作为玉米氮素营养状况的评价指标。  相似文献   

8.
Greenhouse studies were conducted to evaluate the influence of nitrogen (N) sources [urea + ?N-(n-butyl) thiophosphoric triamide, NBPT (urease inhibitor) and polymer-coated urea (PCU)] and rates on soybean root characteristics, nodule formation, and biomass production on two soil types (silt loam and clay) commonly cropped to soybean in Mississippi. About 15% less belowground biomass was produced in clay soil than in silt loam soil directly corresponding to all other root parameters including root length, root area, root diameter, and nodule number. Pooled across N rates, N additions resulted in 19% and 52% decrease in belowground biomass and number of nodules, respectively, across soils compared to soybean receiving no N. The N rate was the most critical factor as it influenced all root growth parameters. Number of nodules were 24% greater with PCU than urea + NBPT. Nitrogen additions and clay soil negatively impacted soybean root growth, nodulation, and belowground biomass production.

Abbreviations: Polymer-coated urea, PCU; N-(n-butyl) thiophosphoric triamide, NBPT  相似文献   

9.
Nutrient requirements o£ plants during their various phases of growth are affected by several internal and external factors. The changes in rate of uptake by root with age are an important factor to meet the increasing plant demand for nutrients. Nutrient culture experiments were carried out under controlled greenhouse conditions with corn (Zea Mays L.) and alfalfa (Medicago sativa L.) to investigate the relationship of stage of growth to changes in plant parameters and nutrient uptake properties. With advancement of age. both plant species increased their ambient growth medium pH towards neutrality. With increasing age in alfalfa there was very little change in observed S:R ratio and root growth rate. On the other hand in corn plants the S:R ratio increased and growth rate for root and shoot decreased with age. Alfalfa contained higher concentrations of N, K, Na, and Ca than corn; while ion concentrations in both crops decreased with plant age. At all stages of growth, alfalfa absorbed less nutrients than corn. The rates of nutrient influx, In in both the crops showed various degrees of correlation with age and rate of shoot growth. In corn. In for ions reached a maximum at 25 days growth; whereas, in alfalfa, In reached maximum at 30 days of growth. The differences in influx rates for different ions in the two species are probably due to the difference in development of shoot and root parameters and shoot demand for the ions.  相似文献   

10.
Abstract

Foliar applications of fertilizer phosphorus (P) could improve use efficiency by minimizing soil applications. Nine experiments were conducted in 2002 and 2003 to determine foliar P rates and appropriate growth stages for application. Treatments comprised of 10 factorial combinations of three foliar P application timings and four rates of foliar P. Foliar application times were V4 (collar of fourth leaf visible), V8 (collar of eighth leaf visible), and VT (last branch of the tassel completely visible but silks not yet emerged) corn growth stages. Foliar P rates were 0, 2, 4, and 8 kg ha?1. Foliar P applied at the VT growth stage improved grain and forage P concentration, which was reflected in increased grain yield in some of the experiments. A foliar P rate of 8 kg ha?1 improved yield to some extent and forage and grain P concentration more than the smaller rates. The results suggest that foliar P could be used as an efficient P‐management tool in corn when applied at the appropriate growth stage and rate.  相似文献   

11.
The process of improving crop management inputs by use of remote sensing devices is a new technology. This study presents the use of the normalized-difference vegetative index (NDVI) combined with the coefficient of variation (CV) to predict plant populations in corn (Zea mays L.) over different growth stages and different locations. About 76 plots were selected from the two sites to conduct this research. The results showed that we were not able to reliably predict plant population at lately growth stages because the canopy covered the soil with overlapping leaves. However, at early growth stages, the results suggest that as the corn plant emerged from the soil, the biomass per unit area was small and the sensor technology application for prediction of plant population was possible. Further studies may be designed based on this observation to investigate the possibility at early growth stages such as V2 and V3.  相似文献   

12.
Formation of ridges during row cultivation creates microsites that could enhance spatial heterogeneity of soil properties, such as organic C, and thereby influence soil microbial communities. A study was conducted during 2003 near Shelton, NE, on a corn (Zea mays L.) field mapped using apparent electrical conductivity (ECa). New ridges were built each year with a row cultivator when corn reached the V3–V4 growth stage. Cultivation increased labile C fractions and soil microbial biomass in the row position for all ECa classes. Canonical discrimination analysis showed no clear differences in relative abundance of specific microbial groups among ECa classes or between row and furrow position, except for enhanced mycorrhizal biomass in the row. Microbial biomass responded strongly to changes in C redistribution, but was not accompanied by a significant change in the abundance of specific microbial groups. Labile C fractions (coarse and fine particulate organic matter) and crop residues in diverse stages of decomposition are associated with diverse microbial groups. Thus, row cultivation for weed control creates a biologically enhanced root zone that may improve early season performance of corn.  相似文献   

13.
为了探究玉米-大豆间作对大豆生长策略、光合荧光特性及产量的影响,以大豆品种中黄39为试材,采用玉米-大豆带状间作和大豆净作2种不同的种植模式,研究间作下大豆的形态、物质分配及光合荧光参数的变化规律。结果表明,间作大豆植株的株高在四节期(V4期)、始荚期(R3期)和鼓粒期(R6期)分别比净作增加22.47%、47.33%和32.72%。在V4期,间作大豆除株高显著高于净作外,大豆茎粗、主茎节数、茎叶柄生物量和叶绿素含量在净作和间作下均差异不显著。在R3和R6期,间作大豆植株的茎、柄生物量显著增加,但叶生物量、叶绿素a含量、叶绿素总含量及净光合速率(Pn)显著低于净作大豆。对于叶绿素荧光参数,间作大豆叶片非光化学淬灭系数(NPQ)在V4、R3和R6期分别显著高出净作大豆12.2%、5.04%和7.2%,而间作大豆叶片的PSII实际的光化学量子效率(F'q/F'm)、光化学淬灭系数(q P)和PSII反应中心潜在的激发能捕获效率(F_v/F_m)与净作大豆相比差异不显著。在产量构成因素中,间作大豆的单株荚数、单株粒数、百粒重及单株产量均显著低于净作,分别降低27.78%、12.33%、20.72%。间作下玉米对大豆生育后期的生长、光合特性的影响直接导致大豆产量及构成因素的下降。因此,在玉米-大豆带状间作种植模式下,要提高间作大豆产量,需降低大豆生育后期玉米荫蔽程度。本研究结果为间作大豆栽培及高产提供了一定的依据。  相似文献   

14.
In order to study the effect of water deficit stress (WDS), plant growth promoting rhizobacteria (PGPR)-enriched and non-enriched vermicompost tea(VT) and vermiwash(V) on the growth and nutrients uptakes of maize, a greenhouse experiment was conducted. The two-factor experiment was set up in a completely randomized design with three replications. The factors included: 1) liquid organic fertilizers (LOFs) with five levels (control, VT, V, vermicompost tea enriched with bacterium (VTB) and vermiwash enriched with bacterium (VB)) and 2) WDS with three levels (Field Capacity (FC), 80% FC and 60% FC(. At each irrigation interval, the volume of the used LOFs was equivalent to 60% of the volume of water required for 60% FC. At 60% FC, shoot dry matter (SDW), shoot N, P, Zn, Cu, and Fe uptake significantly decreased compared with those of FC and 80% FC, whereas shoot K uptake significantly increased. At all WDS levels, application of LOFs led to increase in SDW and shoot nutrients uptake. The highest amount of studied traits was obtained in VTB and VT treatments. Generally, VT treatments were more effective than V. Furthermore, PGPR-enriched LOFs were more effective than non-enriched ones. Application of LOFs may be considered as a practical approach for amplifying drought tolerance and reducing the risk of water scarcity in maize cultivation.  相似文献   

15.
植物根系构型即根系在其生长介质中的生长与分布,包括根系长度、根系分支和根系生物量等,能够将植物固定在土壤中并有效吸收水分和矿质养分,直接影响植物的生长和发育。根系构型受多种因素的影响,包括土壤水分、养分和根际微生物,传统方式主要依靠化学肥料增加土壤养分进而改善根系生长,但是化学肥料会对环境造成危害,根际微生物作为植物的“第二基因组”,能够改善初生根、侧根和根毛的发育,促进植物的生长和根际养分吸收,近年来基因组学−代谢组学、基因组学−转录组学等多组学关联技术的应用揭示了微生物的促生机制,为微生物菌剂的开发提供了新思路。基于该领域的研究现状,本文阐述了根际微生物(AMF、PGPR、根瘤菌)对根构型的调控机制包括激素调控、固氮、溶磷、释放挥发性有机化合物四个方面,并描述它们通过这四种机制增加植物根系长度、根系分支,促进根毛发育的调控效应,基于上述结论,植物根际微生物可以有效改善根系生长,但实际应用效果还有待研究,量化不同机制的相对贡献率以及提高微生物菌剂在实际应用中的稳定性是后续研究的重点。  相似文献   

16.
Understanding critical management practices during seed development would help to improved crop production as climate patterns change. This study focused on the interactive effect of soil fertility with harvesting stages, on hybrid maize yield under two different agro-ecological locations during the 2014/2015 and 2015/2016 summer seasons in KwaZulu-Natal, South Africa. The 2015/2016 season was drier than that of 2014/2015. The field trials were split plots design, where varying fertility levels (main plot) and harvesting stages (sub plots) were replicated four times. The interaction was determined by variables of plant growth, physiology and yield parameters. The plant growth and physiological parameters measured were significantly influenced (< 0.001) by the interaction of fertility levels across days after planting and silking. The interactions of soil fertility levels with harvesting stages had significant effects (P < 0.05) on all yield components during the wetter 2014/2015 season, as well as on seed yield, harvest index, thousand seed weight and total biomass in the drier 2015/2016 season. Optimal fertilization improved maize yield at each stage of harvesting. This study showed that harvesting stress-free optimally-fertilized maize at dent stage maximized yield potential than allowing it to reach physiological maturity under stressful conditions.  相似文献   

17.
接种耐酸根瘤菌和施钙对酸性土上紫花苜蓿生长的影响   总被引:2,自引:0,他引:2  
采用裂区设计法研究了重庆缙云山酸性土上施钙与接种耐酸根瘤菌对紫花苜蓿生长和品质的影响。结果发现:接种耐酸苜蓿根瘤菌对苜蓿植株瘤重、根鲜重、株高、植株上部鲜重、全氮含量和酸性土壤中根瘤菌数量的提高影响显著;施Ca2+ 5 mmol/L与10 mmol/L处理与不施Ca2+处理相比,能显著增加植株根鲜重、株高和地上部鲜重,也能显著增加瘤重;瘤重与植株地上部鲜重、根鲜重和株高呈极显著相关关系,与植株全氮含量呈显著相关关系,说明良好的结瘤性能能够提高酸性土上紫花苜蓿的产量和品质。  相似文献   

18.
Root-associated plant growth promoting rhizobacteria (PGPR) interact with the plant roots and influence plant health and soil fertility. Plant growth promoting rhizobacteria play an important role in plant growth by exerting various mechanisms such as biological nitrogen fixation, growth hormone production, phosphate solubilization, siderophore production, hydrolytic enzyme production, antagonistic activity against fungal pathogens etc. Hence, these are employed as inoculants for biofertilizer and biocontrol activities. This review summarizes various mechanisms of PGPR and their potential for use as inoculants. It shows that their use is a worthwhile approach for exploring disease management in conjunction with other strategies.  相似文献   

19.
小麦和玉米叶面标记尿素态15N的吸收和运输   总被引:13,自引:0,他引:13  
以15N标记的尿素作为叶面施肥和根系后期追肥的N肥品种,分别采用土培与砂培研究小麦与玉米拔节后至灌浆初期不同生育期、不同N、P和K肥叶面配施后作物对叶面N肥利用效率、叶面施用N肥的分配及对全株N、P和K养分状况的影响。无论是小麦还是玉米叶片均能有效地吸收N素并将其迅速转移。玉米拔节期下位叶(第5叶)施肥,植株吸收的15N转移到根部的比例平均为9.0%,而中位叶(第8叶)处理,分配到根系的比例仅为2.4%。叶面施用尿素态氮肥的N在小麦地上部的回收率一般在54.5%~68.9%,在玉米全株体内的回收率可达59.9%~75.3%。随生育期推迟,两种作物叶片吸收N的回收利用率均明显提高。与单施氮肥相比,N,P和K肥配施均有提高氮素回收率和改善作物地上部N素营养的作用,尤以中位叶(第8叶)配施尿素+KH2PO4的效果最佳,表明植物的叶面营养仍应注意平衡供应和适宜的施用时期与施肥部位。叶面大量元素营养不仅改善了所施肥料成分中相应元素的营养状况,同时也促进了对其他两种成分的吸收,并且提高了N、P转运到籽粒中去的比例。玉米吐丝期根系追施的尿素态N有56%积累在籽粒中,而叶面施肥所利用的N分配在籽粒中的比例为70%。  相似文献   

20.
聚天冬氨酸尿素对土壤微生物量碳、氮的影响   总被引:3,自引:0,他引:3  
土壤微生物量碳、氮是植物营养与土壤肥力的主要参数之一。采用对聚天冬氨酸、普通尿素及聚天冬氨酸尿素肥料培养实验、小麦盆栽方法,研究了普通尿素及聚天冬氨酸尿素对土壤微生物量碳、氮的影响。培养试验结果表明:聚天冬氨酸在培养早期能促进土壤微生物量碳、氮增加,聚天冬氨酸尿素处理比普通尿素处理对土壤微生物量碳、氮的作用更有效,前45 d,普通尿素处理的土壤微生物量氮降幅达21.87 mg.kg-1,而聚天冬氨酸尿素处理的土壤微生物量氮仅降低4.8 mg.kg-1;盆栽条件下,三叶期聚天冬氨酸尿素处理比普通尿素处理的土壤微生物量氮差值最高达12.57 mg.kg-1,成熟期差值为2.85 mg.kg-1,抽穗期、成熟期的聚天冬氨酸尿素处理比普通尿素处理土壤微生物量碳分别低16.12和14.81 mg.kg-1。说明聚天冬氨酸尿素的碱解氮易被聚天冬氨酸吸附,养分持效时间更长,比尿素具有一定增效作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号