首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Knowledge of the distribution of soil organic matter (SOM) fractions is important in managing soils toward a sustainable agricultural system in a tropical environment. However, data on Histosols is limited. This study developed 19 profiles of Histosols and soils with high organic-matter content from different regions of Brazil. Soil organic matter was fractionated into fulvic acids (FAF), humic acids (HAF), and humin (HUM). The ratios HAF/FAF and AE (alkaline extract)/HUM were calculated. The objectives were to evaluate the method for SOM fractionating in Histosols and related soils and to correlate the distribution of organic fractions with other soil attributes. The humic fractions presented significant correlations with other soil attributes, the best being the correlation between FAF and nutrient level. The HAF and HUM presented high correlation with cationic exchange capacity, active acidity (H+) and pH. Humin and the alkaline extract absorbance measured at 380 nm and 465 nm and presented good correlation with total organic carbon.  相似文献   

2.
Specific features of organic matter, molecular composition and distribution of oxygen-containing nonspecific organic compounds (fatty acids, long-chain aliphatic alcohols, and ketones) were revealed in two peat soils on slopes of the Subpolar Urals: the eutrophic peat soil of the spring mire (Hemic Histosols) and the peat soil of a slope mire (Fibric Histosols). Compounds that can serve as molecular markers for some evolutionary stages of peats were determined for this area. Based on the data obtained, the most probable causes of differences in the composition of organic compounds in the peats studied were found to be the following: environmental conditions, water and mineral regime of bog, and differences in the composition of peat-forming plants.  相似文献   

3.
Phosphorus (P) sorption processes in soils contribute to important problems in agriculture: a deficiency of this plant nutrient and eutrophication in aquatic systems. Soil organic matter (SOM) plays a major role in sorption processes, but its influence on P sorption remains unclear and needs to be elucidated to improve the ability to effectively manage soil P. The aim of this research was to investigate the influence of SOM on P sorption. The study was conducted in sandy soil profiles and in topsoils before and after removal of SOM with H2O2. The results were interpreted with the Langmuir and Freundlich isotherms. Our results indicated that SOM affected P sorption in sandy soils, but that P sorption also depended on specific soil properties (e.g. values of the degree of P saturation (DPS), P sorption capacity (PSC) and pH) often related to land use. Removal of SOM decreased PSC in most of the topsoils tested; other soil properties became important in controlling P sorption. An increase in P desorption observed after SOM removal indicated that SOM was potentially that soil constituent which increased P binding and limited P leaching from these sandy soils.  相似文献   

4.
若尔盖高寒湿地土壤活性有机碳垂直分布特征   总被引:30,自引:0,他引:30  
对若尔盖高寒湿地沼泽土和泥炭土的有机碳(TOC)和活性有机碳(LC)沿土壤剖面的分布特征研究表明,沼泽土的有机碳和全氮(TN)古量整体上从表层向下呈现下降趋势.中间在16~18cm处出现一个升高点,与当时的有机质来源和沉积环境有关。泥炭土有机碳沿土壤剖面并没有呈现同样的下降趋势.而是从表层向下至22cm呈现升高趋势,22cm向下才呈现下降趋势。全氮含量与有机碳含量的分布特征不同。在表层o~10cm古量较高,向下含量减小。沼泽土活性有机碳沿土壤剖面整体呈现下降趋势,变化于2.4~13.6mg/g.变异系数较大。达到53.25%。泥炭土活性有机碳沿土壤剖面规律性不明显,变化于30-45mg/g,变异系数只有11.62%。沼泽土的活性有机碳占到总有机碳的3%~17%。变化较大;而泥炭土的活性有机碳占到总有机碳的7%~12%,变化较小。沼泽土和泥炭土的有机碳活度(L)最大值并不是出现在表层,而是在表层稍微向下的部分(8~10cm)。再向下有机碳活度呈现下降的趋势。  相似文献   

5.
ABSTRACT

The precise assessment of soil organic matter (SOM) is required when studying soil pedology, chemistry, physics, and fertility. Besides, it is a key for evaluating soil quality, plant growth, and sustainable land management. This research aims to correlate the SOM resulted from loss-on-ignition (LOI) with those from wet combustion (Walkley–Black, WB). A total of 130 soil samples were collected from Egypt and analyzed using WB and LOI. In LOI, samples exposed to the combustion temperatures of 300, 375, 430, and 550°C for 2 and 4 hours. Using RStudio, simple linear regressions were conducted to estimate the most suitable temperature/time combinations. The results showed that applying lower temperatures (300 and 375°C) for 2 hours provided a strong correlation between LOI and WB with R2 of 93 and 94% for all dataset and sandy soils, respectively. For clay soils the respective R2 values at 300 and 375°C were 83 and 85%. The proposed combinations were valid to estimate SOM content for different soils with correlation up to 0.99 for sandy soils.  相似文献   

6.
Peatland soils are the most effective and important long-term terrestrial carbon (C) storages. To estimate potential C loss, a valid characterization of soil decomposability, in particular the labile fraction, is of great interest. One of the most labile fractions is hot-water-extractable organic matter (HWOM), often measured as hot-water-extractable carbon (Chwe) and nitrogen (Nhwe). Various studies describe different extraction procedures for mineral soils. Because of methodical differences, it is difficult to compare extracted HWOM amounts directly to each other. For peatland soils, few studies exist. The aim of the present study is the development of a standardized method for the hot-water extraction of peat materials. Therefore, we extracted HWOM in various replicates from different peats on the basis of a standardized extraction method for mineral soils (1 h extraction at 100 °C). We tested how differences in soil/water ratios, extract treatment (filtering vs. not filtering), and sample pretreatment (freeze drying vs. air drying) influence HWOM amounts. The results clearly illustrated the influence of changing soil/water ratios on HWOM amounts. Mean Chwe concentrations ranged between 8 and 34 g kg?1 whereas Nhwe ranged between 0.2 and 2.6 g kg?1. We recommend the extraction under soil/water ratios of 1/800 to provide sufficient volume of solvent for Chwe. If relative differences for Nhwe amounts are greater than 15 percent, samples should be extracted again under soil/water ratios greater than 1/300 to avoid analytical errors due to unintended dilution effects. Filtering of centrifuged and decanted extracts before analysis is not necessary. Peat material should be either air dried or freeze dried before extraction.  相似文献   

7.
The roles of fine-earth materials in the cation exchange capacity (CEC) of especially homogenous units of the kaolinitic and oxyhydroxidic tropical soils are still unclear. The CEC (pH 7) of some coarse-textured soils from southeastern Nigeria were related to their total sand, coarse sand (CS), fine sand (FS), silt, clay, and organic-matter (OM) contents before and after partitioning the dataset into topsoils and subsoils and into very-low-, low-, and moderate-/high-stability soils. The soil-layer categories showed similar CEC values; the stability categories did not. The CEC increased with decreasing CS but with increasing FS. Silt correlated negatively with the CEC, except in the moderate- to high-stability soils. Conversely, clay and OM generally impacted positively on the CEC. The best-fitting linear CEC function (R2, 68%) was attained with FS, clay, and OM with relative contributions of 26, 38, and 36%, respectively. However, more reliable models were attained after partitioning by soil layer (R2, 71–76%) and by soil stability (R2, 81–86%). Notably FS's contribution to CEC increased while clay's decreased with increasing soil stability. Clay alone satisfactorily modeled the CEC for the very-low-stability soils, whereas silt contributed more than OM to the CEC of the moderate- to high-stability soils. These results provide new evidence about the cation exchange behavior of FS, silt, and clay in structurally contrasting tropical soils.  相似文献   

8.
土壤溶解性有机碳四种测定方法的对比和转换   总被引:4,自引:0,他引:4  
盛浩  宋迪思  王翠红  周萍  张杨珠 《土壤》2015,47(6):1049-1053
针对土壤溶解性有机碳(DOC)不同测定方法之间可比性较差的问题,应用TOC仪法、容量法、紫外分光光度法和比色法分别测定了中亚热带丘陵山地6个土属共46个新鲜土壤样品的DOC含量。结果表明:参照TOC仪法测得的DOC数据,容量法一致性地低估20%~67%;比色法测定DOC含量较低的底土时(200 mg/kg)仅低估7%~27%,但在分析DOC含量较高的表土(600 mg/kg)时最不敏感,低估达53%~93%;紫外分光光度法在DOC含量较高时也存在一定的低估,但在DOC含量较低时高估65%~189%。4种方法测得的DOC数据均呈极显著正相关关系(P0.01)。统计分析获得的线性或指数方程可应用于将容量法、紫外分光光度法和比色法的测定结果向TOC仪法的数据转换,而且有必要针对表土和底土使用不同的转换方程或参数,这些经验转换方程的建立有助于增强不同研究结果之间DOC数据的可比性,也有利于推动土壤DOC测定标准的完善。  相似文献   

9.
Summary Loss-on-ignition (LOI) and the organic C content have been used to estimate soil organic matter. Organic matter is often estimated from organic C by applying a factor of 1.724. Several authors have examined the relationship between LOI, used as an estimate of organic matter, and C by simple linear regressions. In the present study, this approach was examined in relation to two sets of data. LOI overestimates organic matter in soils with significant proportions of clay minerals because of bound water, and correcting for bound water gives some LOI: C ratios of less than 1. It is concluded that differences in the nature of the organic matter in different soils and horizons make the simple regression approach unsuitable. More attention needs to be paid to studies of the nature of the organic matter.  相似文献   

10.
Tropical subsoils contain large reservoirs of carbon (C), most of which is stored in soil organic matter (SOM). Subsoil OM is thought to be particularly stable against microbial decomposition due to various mechanisms and its position in the soil profile, potentially representing a long-term C sink. However, few experiments have explicitly investigated SOM stability and microbial activity across several orders of magnitude of soil C concentrations as a function of soil depth. The objective of this study was to evaluate the biological stability of SOM in the upper 1.4 m of tropical forest soil profiles. We did so by measuring CO2 evolution during a 90-day laboratory incubation experiment on a sample set that was previously characterized for C and nutrient concentrations and microbial biomass. We concurrently measured the energy content of SOM using differential scanning calorimetry (DSC) as an index of the energy available for microbial metabolism, with the hypothesis that the biological stability of SOM would be inversely related to the energy contained within it. Cumulative CO2 evolution, mean respiration rates, and the energy density of SOM (energy released during combustion normalized to soil C) all declined with soil depth (P < 0.01). Biological indices of C stability were well correlated with measures of SOM energy. There was no change in the mean respiration rate as a function of depth when normalized to soil C, and a trend toward increased respiration per-unit microbial biomass (P = 0.07). While reduced microbial respiration in subsoils suggests an increase in the biological stability of SOM, we suggest this is driven principally by concurrent declines in energy availability as measured by DSC and the size of the microbial biomass pool. On a per-unit biomass basis, subsoil OM may be as prone to decomposition and destabilization as surface SOM.  相似文献   

11.
Abstract

The objective of the paper was to analyse the implications of the origin of peat (muck) soil substrate, the current type of land use and the state of anthropogenic soil development for the topsoil properties of fens. Chemical and biological properties of peat soils of the Rhin-Havelluch lowland and the Uckermark rural landscape were analyzed. The unit water content according to Ohde and the ash content were utilized to characterize the anthropogenic development status of peat topsoils. Several chemical properties were significantly influenced by soil substrate, in particular by the proportion and kind of the mineral component. The substrate was associated with the hydrological type of mire and the soil development state. TOC/N ratio and microbial activity were increased in cases of high lime spring mires and moorshified low ash peat. The proportion of easily soluble organic carbon increased, whereas the sulphur content decreased with the soil development state. The nitrogen content and the proportions of oxalate soluble iron and aluminium reached maxima in the moorshified state. The type of land use (grassland, forest) significantly influenced the topsoil pH and the proportion of oxalate soluble phosphorus. Soils under forest were clearly determined by topsoil acidification.  相似文献   

12.
Peatlands are an important component of the global carbon cycle because they comprise huge amounts of terrestrial carbon (C). Different conditions during peat formation and secondary peat decomposition affect the quantity and composition of soil organic matter (SOM) in peats. There are few comparative studies on the chemical composition of SOM in temperate peatland soil. This study investigates compositional changes of SOM functional groups in peats and corresponding peat‐forming plants by Fourier transform infrared (FTIR) spectroscopy. Three plant samples and 29 peat samples were taken from seven temperate peatland sites with different genesis and land‐use intensity. Site‐specific differences, such as genesis of the peat, were found to be reflected in the FTIR spectra. In general, there was more variation in FTIR spectra in samples from fens than in those from bogs and peat‐forming plants. The samples from fens have a smaller C–H absorption band than those from bogs and plants, which reflects greater biochemical activity in the minerotrophic than ombrotrophic environments. In addition to peat genesis, drainage and secondary peat decomposition also affect SOM composition substantially. The larger amounts of aliphatic compounds in undrained peats could be explained by selective preservation caused by anaerobic conditions. With increasing drainage of the sites, there was a decrease in the C–H absorption that was accompanied by a relative increase in C=O absorption. These changes in absorption intensities reflect the enhanced aerobic decomposition and mineralization that accompanies drainage and land‐use intensity. However, the ‘degree of peat decomposition’, a diagnostic tool used in the field, is not reflected by OM composition determined by FTIR spectroscopy. Our results contribute to further understanding of changes in SOM composition during peat formation and processes of secondary decomposition caused by drainage.  相似文献   

13.
Reliable measurement of soil organic matter (SOM) contents is crucial to assessment of soil health, productive longevity and the effects of climate change. In this study, the loss‐on‐ignition (LOI) method has been used to determine the SOM of dried soil samples with a wide range of clay, sand and silt contents from the Agricultural Laboratory Proficiency (ALP) program. Regressions of ALP participant data against LOI measurements at 350–650°C indicate that the extent of SOM oxidation depends more on the ignition temperature and time than on the sample compositions. Thus, LOI data from ignition at 350–550°C for 12 h relative to ignition at 650°C for 12 h converge at 650°C and the average coefficient of variance decreases to ≈ 4% at 650°C. Also examined are regressions of soil organic C from direct dry combustion as standards with LOI measured at 360°C for 2 h, LOI measured at 650°C for 12 h and with the Walkley‐Black procedure used in the ALP program.  相似文献   

14.
Weathering and initial soil formation was investigated on 5 sites of lignite ash disposal differing in age (5 to 30 years) and methods of disposal (landfills and sluicing to settling ponds). Soils developed on lignite ash derived substrates were characterized by low bulk densities (< 0.85 g cm—3), high contents of gypsum (maximum 27%) and calcium carbonate (maximum 46%), high pH values (7—9), very high contents of organic carbon (about 20%), and high contents of ammonium oxalate soluble Si, Al, and Fe containing compounds. These features depended on the constitution of the lignite and the burning conditions. As the substrates were initially in disequilibrium with their environmental surroundings, they were subjected to rapid weathering. Typical features were the depletion of gypsum and decarbonatization in the topsoils of the profiles. Furthermore, pedogenic organic carbon became enriched by ruderal vegetation despite low contents of plant available P and K and high pH values. The C : N ratios increased with profile depth, which indicated the input of pedogenic OM with low C : N ratios into topsoils and the predominance of lignite with a wide C : N ratio (> 100) in subsoils.  相似文献   

15.
Abstract

This study was developed on 52 soil profiles, 61 surface diagnostic horizons, and 26 subsurface diagnostic horizons classified according to the Soil Taxonomy and Brazilian Soil Classification System (SiBCS) as Mollisols (Chernossolos), Spodosols (Espodossolos), Entisols (Gleissolos), Oxisols (Latossolos), and Histosols (Organossolos). The objective was to quantify the carbon (C) in organic matter fractions and to correlate it with soil chemical attributes. Soil organic matter was fractionated into fulvic acids (C‐FAF), humic acids (C‐HAF), and humin (C‐HUM), and the ratios C‐HAF/C‐FAF and AE (alkaline extract)/C‐HUM were calculated. Humin was the predominant fraction in Mollisols and Oxisols, which showed values of AE/C‐HUM and C‐HAF/C‐FAF lower than 1.0. The humin fraction was also predominant in surface horizons of Spodosols and Entisols, whereas a higher content of C‐FAF and C‐FAH was observed in the subsurface horizons, with values higher than 1.5 for the AE/C‐HUM ratio. C‐HAF was predominant in the Histosols, and C‐HAF/C‐FAF ratio values were higher than 2.0. The highest correlation values with soil attributes were observed for C‐HAF, C‐HUM, and total organic C with pH, sum of bases, and cation exchange capacity. The differences in humic substances distribution was a useful parameter to characterize soil orders in the Brazilian soil classification system and to understand pedogenic processes.  相似文献   

16.
Conversion of natural forest to agricultural land use has significantly lowered the soil organic matter (SOM) content in sandy soils of northeast Thailand. This paper reviews the findings of comparative studies on contents of SOM pools (labile, i.e. microbial biomass and particulate organic matter—POM and stable, i.e. humic substance) and related soil aggregate formation, in natural forest plots and cultivated fields (monocrops of cassava, sugarcane and rice) in sites representative of northeast Thailand from the viewpoints of terrain (i.e. undulating), soils (sandy) and land use and discusses the restoration of SOM and fertility (nitrogen) in these degraded soils. Monocultural agriculture brings about the degradation of all SOM pools and associated soil aggregation as compared to the forest system because of decreased organic inputs and more frequent soil disturbance. The build‐up of SOM was achieved through the continuous recycling of organic residues produced within the system. Low‐quality residues contributed the largest SOM build‐up in whole and fractionated SOM pools, including POM and humic substance. However, to restore N fertility, high quality residues, (i.e. with low C/N ratios, lignin and polyphenols) were also needed. Timing of N release to meet crop demand was achieved by employing a mixture of high and low quality residues. Selection of appropriate residues for N sources was affected by environmental factors, notably soil moisture regimes, which differed in upland field and lowland paddy subsystems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Peat soils with a gradient of naturally high Cd and Zn (up to 190 and 70,000,mg/kg, respectively) were sampled at several depths from a wetland overlying Zn-rich dolomitic bedrock. Total concentrations of Zn, Cd and S were generally much higher in the seasonally water-saturated subsoils than at the surface. Leaching studies with intact soil columns showed the subsoils generally have a greater tendency to release Zn, Cd and S than the topsoils. Zn and Cd leaching were correlated to sulfate dissolution, with 6 successive leaching events removing up to 4% and 13% of the total Zn and S, respectively, from the most metal-rich subsoils. Relative leaching losses were less from the surface soils, not exceeding 1% and 3% of total Zn and S. Because Zn was relatively more soluble and extractable by 0.01,M CaCl2 than Cd, Zn/Cd ratios in column leachates and field-sampled groundwater were higher than the soil Zn/Cd ratios. Consequently, the potential for loss of Zn from the soil by leaching was higher than that of Cd, particularly from the subsoil. Nevertheless, some soil layers of the profile were enriched in total Zn relative to Cd, indicated by Zn/Cd ratios well above that of the Cd-rich sphalerite in the parent dolomitic rock. This enrichment may be explained by historical migration and re-immobilization of Zn as sulfides. The low solubility of Cd in the peats despite high total Cd suggests preferential immobilization of this metal by organic sulfur or sulfide.  相似文献   

18.
Phosphorus (P) forms were sequentially extracted from peat derived soils (Eutric Histosols and Gleysols) at eight sites in Saxony‐Anhalt (Germany) to disclose general differences in P pools between mineral and organic soils and to investigate effects of peat humification and oxidation in conjunction with land use and soil management on the P status of soils. Overall 29 samples providing a wide variety of basic chemical properties were subjected to the Hedley fractionation. The Histosol topsoils contained more total P (Pt) (1345 ± 666 mg kg—1) than the Gleysol topsoils (648 ± 237 mg kg—1). The predominant extractable fractions were H2SO4‐P (36—63 % of Pt) in calcareous and NaOH‐Po (0—46 % of Pt) in non‐calcareous Histosols. These soils had large pools of residual P (13—93 % of Pt). Larger contents and proportions of Po and of labile P fractions generally distinguished organic from mineral soils. Regression analyses indicated that poorly crystalline pedogenic oxides and organic matter were binding partners for extractable and non‐extractable P. Intensive management that promotes peat humification and oxidation results in disproportional enrichments of labile P fractions (resin‐P, NaHCO3‐Pi, and NaHCO3‐Po). These changes in P chemistry must be considered for a sustainable management of landscapes with Histosols and associated peat derived soils.  相似文献   

19.
The objective of this study was to analyze the relationship between soil organic carbon content, determined by dry combustion (%OCLECO) and the Walkley–Black method (%OCWB), and loss on ignition (LOI). Soil samples were collected from noncalcareous O and A1 horizons within a tropical cloud forest. Linear regression equations were developed to estimate organic carbon from LOI. The applicability of the predictive equations was evaluated by comparison of measured and predicted organic carbon data for independent soil samples. The results showed that the LOI method produced a better linear relationship with the %OCLECO (R 2 = 0.96, P < 0.001) than with the %OCWB (R 2 = 0.88, P <0.001) method. These results also showed that %OCWB and %OCLECO prediction equations underestimate and overestimate soil organic carbon by 0.74% and 0.56%, respectively. This study suggests that LOI may be a good estimator of soil organic carbon for noncalcareous O and A1 horizons in a tropical cloud forest.  相似文献   

20.
Soil organic matter (SOM) is an important index of soil quality because of its relationship with crop yield. The application of organic matter to soil is a significant method for increasing SOM. Different organic materials have varying effects in increasing SOM. This study investigates the effects of combining different sources of organic matter (i.e., compost, leguminous green manure, and peat) with a chemical nitrogen (N) fertilizer on the growth and N accumulation in corn and rice plants. This study examines seven treatments, including a no-fertilization check and a conventional chemical fertilizer treatment. Shoots of corn and rice were sampled at the tasseling (panicle initiation for rice) and maturity stages. The biomass yield was measured and the total N was analyzed. At the maturity stage, the soil samples were collected to determine the chemical properties. The results showed that a small percentage of the N in the compost and peat, after their application, was available to the crop during the growth season; the production of biomass and N absorption among rice and corn plants was minimal compared to that treated with chemical N fertilizer. The application of compost and peat resulted in SOM accumulation, particularly with peat. However, the application of compost combined with chemical fertilizer not only produced sufficient nutrients for crop growth but also resulted in an accumulation of SOM, which is vital for enhancing the soil quality. Most of the N in green manure (GM) was mineralized shortly after application, causing excessive growth of rice and corn plants during the early stage, but reducing their reproductive growth and grain yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号