首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 2-year field experiment was conducted in central Greece (Platykampos, Larissa) to investigate productivity parameters of cotton under conditions of water stress. A Latin square split-plot design with three replications was used to evaluate the effect of three irrigation levels (250, 350, and 450 mm) and three fertilization rates (60, 110, and 160 kg N ha–1), where irrigation level was the whole-plot factor and the fertilizer was the split-plot factor. The results showed that irrigation level had no significant effect on soil chemical properties, but these only changed with fertilizer application. Concentration of soil nitrates increased in proportion to the amount of applied fertilizer in early July. The associated rise in electrical conductivity (EC) was not sufficiently high as to adversely affect salt-tolerant cotton. The soil acidity produced during formation of nitrate was evident by a soil pH decrease of 0.2 units in the high fertilizer application. A great decline of nitrate N and EC and a rise of pH in all treatments in early August indicated rapid N uptake by the crop during the late stage of vegetative growth. In contrast, cotton yield was not affected by the rate of fertilizer application but by the level of irrigation. This is the reason that correlations between soil properties and yield were insignificant in early July and August. It appears that there was sufficient N available to the crop from sources other than fertilizer N (soil-derived N and irrigation N). Preplant soil nitrates were greater than residual nitrates in the second growing season and indicated depletion of soil mineral N pools of the order of 36 kg N ha–1 in the 0- to 25-cm depth. Significant negative correlations between soil properties and cotton yield appeared only at the end of the season and indicated that depletion of soil mineral N increased with increasing crop N requirement or irrigation level.  相似文献   

2.
The sugarcane industry in Belize is one of the main economic drivers in the country and is therefore of crucial social and environmental importance. This study evaluated the degree of sustainability of commercial sugarcane production in Northern Belize by determining soil parameters (physical and chemical) in three soil layers (0–15, 15–30 and 30–50 cm) and crop profitability relative to years of sugarcane cultivation (4–25 years since land conversion). The parameters evaluated were organic matter (OM), total nitrogen (TN), cation exchange capacity (CEC), available phosphorus (P), potassium (K), pH, dry bulk density (DBD), porosity (?), and water-filled pore space (WFPS). Field interviews were conducted to document management practices, agricultural inputs, production costs, and yield. The results showed that OM and TN in all soil layers studied and CEC in the 30–50 cm layer decreased, and were negatively correlated, with years of sugarcane cultivation. This indicates that prolonged sugarcane cropping has detrimental effects on soil fertility. There was no clear pattern with years under sugarcane cultivation for P, pH, DBD, and K. Yield levels were maintained by intensification of cultivation, e.g. high inputs and regular replanting, providing short-term benefits at the expense of deterioration of soil fertility. The benefit to cost (B:C) ratio of sugarcane production in Northern Belize was marginal for American Sugar Refinery/Belize Sugar Industries (ASR/BSI), representative of intensive agriculture; and not profitable for small-scale farmers, 1.0 and 0.63 for plantation establishment and 1.2 and 1.0 average for the following six years of ratoon, respectively.  相似文献   

3.
Abstract

Measuring and mapping apparent soil electrical conductivity (ECa) is a potentially useful tool for delineating soil variability. The “Old Rotation,” the world's oldest continuous cotton (Gossypium hirsutum L.) experiment (ca. 1896), provides a valuable resource for evaluating soil spatial variability. The objectives of this study were to determine the relationship between soil chemical and physical properties and ECa in the Old Rotation, to determine spatial differences in these properties, and to relate differences in these properties to long‐term management effects. Soils at the site classified as fine, kaolinitic, thermic Typic Kanhapludults. Soil ECa was measured at 0–30‐ and 0–90‐cm depths (ECa‐30 and ECa‐90) using a Veris® 3100 direct contact sensor with georeferencing. Soils were grid sampled (288 points) at close intervals (1.5×3.0 m) for chemical properties and grid sampled (65 cells, 7.5×6.9 m) for soil texture. Soil organic carbon (SOC) and total nitrogen (N), extractable phosphorus (P), potassium (K), calcium (Ca), pH, buffer pH, and estimated cation exchange capacity (CECest) were measured at two depths (0–5‐ and 5–15‐cm). Soil ECa was highly spatially correlated. The ECa‐30 was more highly correlated with clay content (r=0.58, P≤0.01) and P(r=0.43, P≤0.01) than other soil properties. Total nitrogen and SOC had little or no relationship with ECa‐30. Cropping systems affected chemical properties in the Old Rotation, indicating crop rotation and cover crops are beneficial for soil productivity. The relatively poor relationship between soil chemical parameters and ECa suggest that mapping plant nutrients and SOC using ECa is problematic because of strong dependence on clay content.  相似文献   

4.
Sustainable agricultural practices have been steadily increasing in the last couple of decades. These management practices frequently involve cover crops, less or no-tillage, and organic fertilization. In this study, we evaluated the effects of cropping systems,tillage and no-tillage, and the application of poultry litter(PL) on selected soil physicochemical properties and soil test nutrients. Soil samples were collected from the topmost surface(0–5 cm) and subsurface(5–10 cm) layers. The general effect trend was PL application no-tillage cover crop cropping type. There were more statistically significant(P ≤ 0.05) correlations between the 18 soil attributes at the topmost surface than at the subsurface. This could be due to the accumulation of external C inputs and nutrients by crop residues and PL application as well as the retaining effects of no-tillage on less mobile nutrient components. Because of their high mobility and volatile nature, total nitrogen(N), ammonia-N(NH_4~+-N), and nitrate-N(NO_3~--N) levels varied greatly(high standard deviations), showing no consistent patterns among the treatments. Compared to the soybean cropping system, corn, especially with the wheat cover crop, contributed more to the total carbon(C) and sulfur(S) in the topmost surface soils(0–5 cm). Poultry litter application greatly increased pH, cation exchange capacity(CEC), base saturation, magnesium(Mg), phosphorus(P), calcium(Ca),sodium(Na), potassium(K), manganese(Mn), copper(Cu), and zinc(Zn) in both soil layers. Contrast comparisons revealed that PL application had more of an effect on these soil chemical properties than no-tillage and cropping systems. These results will shed light on developing better nutrient management practices while reducing their runoff potentials.  相似文献   

5.
In the agricultural science, soil fertility and plant nutrition have played an important role during the 20th century in increasing crop yields. In the 21st century, importance of this field is still expanding due to the limitations of natural resources (land and water), sustainable agriculture, and concern about environmental pollution. In this context, increasing crop yields will be associated with rational use of chemical fertilizers, increasing use of organic sources of nutrients, recycling of plant available nutrients, and exploiting genetic potential of crop species or cultivars within species in efficient use of nutrients. Hence, in the future, increasing crop yields will be a challenge for agricultural and soil scientists. Conducting fertilizer field trials for adequate sources, methods, rates, timing of application along with crop species or genotypes within species, under different agroecological regions are necessary to generate data and their use for achieving maximum economic crop yields. The objective of this article is to present basic concepts and discuss methodology of soil fertility and plant nutrition research under field conditions.  相似文献   

6.
In modern agriculture, use of essential plant nutrients in adequate amounts and proper balance is one of the key components in increasing crop yields. Further, in developing crop production technologies, research work under field and controlled conditions is necessary to generate basic and applied information. In addition, research is very dynamic and complex due to variation in climatic, soil, and plant factors and their interactions. This demands that basic research information can only be obtained under controlled conditions to avoid or reduce effects of environmental factors on treatments. Hence, the objective of this article is to discuss basic principles and methodologies of research in soil fertility and mineral nutrition under controlled conditions. Topics discussed are soil and solution culture experimental techniques including, fertilizer application and planting, liming acid soils, experimental duration and observations, composition of nutrient solutions, preparation and sources of iron (Fe) in nutrient solutions, pH of nutrient solutions, and stable supply of nutrients in the solution culture.  相似文献   

7.
韦兰英    申卫军 《水土保持研究》2013,20(6):24-31,53
在退化的人工林中种植乡土树种是将退化人工林恢复为多样性更高的植物群落的有效措施之一,但是此类林分改造对土壤属性的影响研究较少。以南亚热带退化的豆科树种人工林以及在退化的豆科树种人工林中种植乡土树种10 a后的混交人工林为研究对象,比较两者植物群落结构、土壤微生物学属性和化学属性的差异,旨在为该区域退化人工林改造提供依据。结果表明,种植乡土树种后的林分具有较高的植物多样性。与未种植乡土树种的马占相思(Acacia mangium;AM)林相比,种植乡土树种后的马占相思林(NM)土壤微生物量碳(MBC)、基础呼吸(BR)、呼吸熵(qCO2)、土壤有机碳(TOC)和可溶性有机碳(DOC)显著下降;与未种植乡土树种的大叶相思(Acacia auriculiformis;AA)林相比,种植乡土树种的大叶相思林(NA)的土壤微生物学属性和化学属性无明显变化。种植乡土树种后,马占相思林和大叶相思林全氮(TN)和全磷(TP)无明显变化,但铵态氮和硝态氮均下降。这些结果表明,在退化的人工林中种植乡土树种对土壤微生物学和化学属性的影响取决于人工林类型,这一措施对土壤属性的影响仍需长期监测。  相似文献   

8.
[目的] 研究恢复年限对高寒金属矿山排土场植物多样性和土壤化学特性的影响,为深入探讨高寒矿山排土场植物演替趋势,优化高寒矿山排土场植物恢复工艺方法提供科学指导。[方法] 以青海省果洛藏族自治州德尔尼铜矿恢复期为1~12 a范围内的10个矿山排土场边坡为研究对象,通过样方法调查排土场植物物种组成和多样性特性,并进一步调查土壤化学特性,明确了排土场Patrick丰富度指数等4个α植物多样性指数以及全氮等8个土壤化学特性指标与恢复年限的关系。[结果] 随着恢复年限的增大,天然植物不断侵入,排土场植物的科、属、种数呈现出逐渐增加的趋势,各年限排土场物种组成和群落特征存在一定的差异性。排土场Patrick丰富度指数随着恢复年限的增大呈幂函数增长趋势;Shannon-Wiener多样性指数、Simpson多样性指数和Pielou均匀度指数随着恢复年限增大呈先增大后减小趋势,且均符合二次函数关系。随着排土场恢复年限的增大,土壤全氮、全磷、全钾、碱解氮和速效磷含量均呈先增大后减小趋势;速效钾和有机质含量呈幂函数增长趋势;pH值呈逐渐降低趋势。排土场植物4个多样性指数与土壤全氮、全磷、全钾、碱解氮、速效钾和有机质含量呈不同程度的正相关关系,而与速效磷和pH值呈负相关关系。[结论] 恢复期为12 a时,试验区排土场植物仍处于演替发展阶段,未达到稳定状态;排土场植物演替和土壤养分之间存在明显的相互作用;建议矿区排土场植物恢复选用高氮高磷低钾型缓释复合肥。  相似文献   

9.
Expansion of soybean [Glycine max (L.) Merrill] cultivated in Brazil to regions with low fertility soils gave rise to studies on the possibility of obtaining highly productive cultivars with high nutrient use efficiency. An experiment in greenhouse conditions was conducted to assess phosphorus (P) use efficiency (PUE) by 13 soybean genotypes. The genotypes were grown in an Ustoxix Quartzipsamment with two P rates [0 (no P application) and 150 mg P kg?1], whose source was monoammonium phosphate (MAP, P2O5 44%). Shoot dry weight (SDW), grain yield (GY), grain harvest index (GHI), relative yield (RY), and physiological components (photosynthetic rate, stomatal conductance, respiratory rate, and internal CO2 concentration) were influenced by soybean genotypes and P rates. Genotypes BMX Apolo RR, BRS 360RR, BRS 378RR, CD 219RR, DM 2302RR, TMG 7161RR, and Vtop RR were classified as non-efficient and non-responsive to P application, while BMX Potência RR, Vmax RR, FPS Solar RR, NA 5909RR, TMG 1066RR, and M 6210 IPRO were classified as efficient and responsive. Phosphorus application increased the values of physiological components, which was not observed for N, K, Ca, Mg, and S concentration in the leaves and grains. Soybean genotypes selection for increased P efficiency could help growers overcome the problem of soybean cultivation on new areas or degraded pastures.  相似文献   

10.
ABSTRACT

Field experiments were conducted for two consecutive years to evaluate the influence of cow dung and rice husk application rates on soil chemical properties and nutrient composition of cocoyam cormels. The treatments comprised four rates each of cow dung and rice husk (0, 10, 20, and 30 t/ha) arranged as a factorial experiment using randomized complete block design with three replicates. The treatments were incorporated into the soil 2 weeks before planting of cocoyam each year. After 2 years of cropping, soil samples were collected from the respective plots and analyzed so also cocoyam cormels. Cow dung application positively and significantly (P < .05) affected soil pH, organic matter (OM), and the soil nutrients (r = 0.95, 0.98, and 0.94–1.00, respectively) while rice husk application significantly and positively influenced soil OM, nitrogen and phosphorus (r = 0.98, 0.95, and 0.98, respectively). Aside potassium content that was enhanced, cow dung application did not significantly affect the nutrient composition of the cocoyam cormels. However, 30 t/ha of applied rice husk caused significant reduction in crude protein and fiber contents but significant increase in carbohydrate. There was negative and significant correlation between rice husk and the cormels crude protein (r = ?0.97). A total of 20 t/ha each of the organic fertilizers was found to be optimum for improving soil fertility and invariably yield without compromising the nutrient content of the cocoyam cormels.  相似文献   

11.
The main aim of this research work is to prepare an enriched compost using rice straw mixed with rock phosphate, waste mica and Aspergillus awamori and to study their effect on changes in microbial properties in soils with and without chemical fertilizers under wheat-soybean rotation. Data revealed that significant increase in microbial biomass carbon (MBC), dehydrogenase activity, phosphatase activities, and microbial biomass phosphorus (MBP) in soil were maintained in enriched compost than ordinary compost after both the crops. Significant increase in MBC, dehydrogenase activity, phosphatase activities, and MBP were found in surface soil. The maximum microbial activities were observed in the treatment receiving 50% recommended dose of fertilizer (RDF) + enriched compost at 5 t ha?1 indicating that integrated use of chemical fertilizers and enriched compost significantly improved the biological properties of soil under wheat–soybean rotation thereby enhanced soil fertility and crop production.  相似文献   

12.
ABSTRACT

Red acid soil is generally distributed in humid tropical areas under high rainfall. The main constraint is usually the extremely low pH of the soil due to the very intensive leaching of the bases from the soil. At the same time, however, the soluble micro elements, such as iron, are high. This can cause plant toxicity. The liming of acidic soils is normally performed to reduce the iron toxicity as the first step toward providing a balanced nutrition for cultivated plants. The objective of this study is to determine the effects of liming on the soil pH, on the decrease of iron in the soil and on the growth of the pineapple. The research was done in the Greenhouse of the Research and Development Department, PT Great Giant Pineapple, Lampung, Indonesia, from November 2015 to April 2016. The design of the experiment was arranged as a completely randomized design with seven treatments and three replications, consisting of: No dolomite (D0), dolomite 1 t ha?1 (D1), dolomite 2 t ha?1 (D2), dolomite 3 t ha?1 (D3), dolomite 4 t ha?1 (D4), dolomite 5 t ha?1 (D5) with added Fe-EDTA and for the control treatment, no dolomite and no Fe-EDTA (C0). The results showed that an increase in the dolomite dose can increase the pH, potassium (K), calcium (Ca) and magnesium (Mg) in the soil and can decrease the iron (Fe) in the soil significantly. Increasing the pH, K, Ca and Mg and decreasing the Fe in the soil were seen to influence the growth of the pineapple. In particular, the leaf area of the pineapple plant increased considerably. The other parameters also increased, but not significantly.  相似文献   

13.
为探明自全国第二次土地普查(1982年)以来,经多年耕种后新疆南疆耕地土壤的养分含量及分布特征,以具有南疆自然生态条件典型性的新疆产棉大区阿克苏地区为代表,通过野外调查取样和室内分析方法,对该地区耕地土壤大量元素(有机质、全氮、碱解氮、有效磷、速效钾)及微量元素(有效铜、铁、锌、锰)进行测定,并结合新疆本地土壤养分分级相关指标对测定结果进行分析。结果表明,与1982年比,阿克苏地区农田土壤养分含量有较大改善,该地区平均有机质含量13.56 g·kg-1,全氮0.68 g·kg-1,碱解氮、有效磷、速效钾分别为62.30、13.90和145.00 mg·kg-1,其中,有机质与1982年持平,碱解氮、有效磷含量分别较当年高74.50%和385.86%,速效钾含量以年平均2.20 mg·kg-1的速率降低;总体表现为磷富、钾足、氮素含量偏低,有机质为中等水平,微量元素中有效锰含量为中等偏下水平,有效铜、铁及锌均处于不同程度的富足状态。综上,建议针对目前土壤上述营养元素含量水平及变化趋势,加强配方平衡施肥方案的落实,并通过合理灌溉改善氮等可溶性肥料因渗漏而造成含量不足的局面,同时防止土壤盐渍化发生。本研究结果为阿克苏地区今后农业生产土壤培肥、科学施肥提供了理论依据。  相似文献   

14.
ABSTRACT

Evaluation of the relationships between nutritional patterns and farms’ age with the behavior of saffron (Crocus sativus L.) daughter corms based on farmers’ management (on-farm) can be crucial in improving saffron sustainable yield. Furthermore, in commercial saffron production, especially in small farms, the purchased water and fertilizers are the basis of sustainable saffron profitability, hence, recognizing the relationships between economic water use efficiency (EWUE) and economic fertilizer use efficiency (EFUE) can be important. An on-farm experiment was conducted on a large scale based on farmers’ management in Torbat Heydarieh, Iran. The farms’ age (1–6 years old) and fertilizers management approaches (organic, mineral and integrated) were considered as the first and second factors, respectively. Large-sized daughter corms number and weight and corms N and P content increased with increasing farms’ age from 1 to 4 years old. However, these parameters decreased with increasing farms’ age from 4 to 6 years old. Irrespective of saffron farms’ age, the minimum large-sized daughter corms number and weight were observed when mineral fertilizer management was practiced. By contrast, the maximum values were related to integrated fertilizer management. In each type of fertilizer management, EWUE and EFUE (based on large-sized daughter corms monetary value) increased with increasing farms age from 1 to 4 years. However, increase in farms age from 4 to 6 years caused a significant reduction in mentioned indices. Overall, if high-quality saffron corm production is needed, corms should be harvested in the fourth year to gain the maximum yield and profit.  相似文献   

15.
Cover crops are important components of copping systems due to their beneficial effects on soil physical, chemical, and biological properties. A greenhouse experiment was conducted to evaluate influence of phosphorus (P) fertilization on nutrient-use efficiency of 14 tropical cover crops. The P levels tested were 0 (low), 100 (medium), and 200 (high) mg kg?1 of soil. The cover crops tested were Crotalaria breviflora, Crotalaria breviflora, Crotalaria spectabilis Roth, Crotalaria ochroleuca G. Don, Crotalaria juncea L., Crotalaria mucronata, Calapogonium mucunoides, Pueraria phaseoloides Roxb., Pueraria phaseoloides Roxb., Cajanus cajan L. Millspaugh, Dolichos lablab L., Mucuna deeringiana (Bort) Merr., Mucuna cinereum L., and Canavalia ensiformis L. DC. Agronomic efficiency (shoot dry weight per unit P applied), physiological efficiency (shoot dry weight per unit of nutrient uptake), and apparent recovery efficiency (nutrient uptake in the shoot per unit nutrient applied) were significantly varied among cover crops. Agronomic efficiency decreased with increasing P levels. Overall, physiological efficiency of nutrient uptake was in the order of P > sulfur (S) > magnesium (Mg) > calcium (Ca) > potassium (K) > nitrogen (N). Similarly, apparent recovery efficiency was in the order of N > K > Ca > Mg > P > S. Different recovery efficiency in cover crops can be useful in selecting cover crops with high recovery efficiency, which may be beneficial to succeeding crops in the cropping systems. The P × cover crops interactions were significant for soil extractable Ca2+, P, cation exchange capacity (CEC), Ca saturation, Ca/K ratio, and K/Mg ratio, indicating that cover crops change these soil property differently under different P levels. Thus, cover crops selection for different P levels is an important strategy for using cover crops in cropping systems in Brazilian Oxisols. Optimal values of soil pH, soil Ca and Mg contents, hydrogen (H) + aluminum (Al), P, CEC, base saturation, Ca saturation, Mg saturation, and K saturation were established for tropical cover crops grown on an Oxisol.  相似文献   

16.
Abstract

The mineral and organic fertilizations on lettuce (Lactuca sativa L.) cultivation were investigated to understand the correlations between soil physical and mechanical indexes and boron (B) dynamic (adsorption, desorption, fractions) in soil. The fertilization with compost (derived by wine‐producing residues) and integrated fertilization (compost plus ammonium nitrate) increased the soil workability, as do the extent of aggregation, the water retention, and the cation exchange of the soil. The physical (colloids index, Ic) and mechanical (shear resistance, τ) properties showed a significantly higher value in compost and integrated fertilization plots. The biomass application to the soil influences the sorption B behavior, which is related to the soil shear strength and the compaction susceptibility; the Langmuir maximum adsorption for B was positively related with plastic deformation (De) and dry bulk density (Db) and negatively related to water infiltration (Wi), τ, and compressibility index (Cs).

The B desorption was not modified by the variation on soil mechanical resistance; no correlation was found between B desorption index and physical–mechanical parameters of the soil. The B fractions, not readily available for plants, occluded in aluminium (Al) and iron (Fe) oxyhydroxides (Ox‐B) and organically bound (OM‐B), were negatively correlated with colloid index (Ic), Wi, τ, and moisture content (U), and were positively correlated with De, Db, and compressibility index (Cp, related to organic‐matter content of the soil).  相似文献   

17.
Low availability of phosphorus (P) in Turkish soils is a significant problem of agricultural production depending on carbonates in slightly weathered and iron/aluminum oxides in highly weathered soils. Thus, crop-based P fertilization along with inherited nature of P partition can lead to changes in the amounts and geochemical fractions of phosphorus. For this reason, horizon-based surface samples were taken from 16 soil series that belong to four orders with different pedotransfer functions. The geochemical phosphorus fractions were sequentially extracted by sodium bicarbonate (NaHCO3), sodium hydroxide (NaOH), citrate-dithionite-bicarbonate buffer system (CBD), hydrochloric acid (HCl), and aqua-regia. Results indicated that weathering sequence was inversely related to plant available P fractions. The fertilizer P was possibly converted to HCl-extractable (Ca-Pi) fraction in calcareous soils through NaOH-Po and NaHCO3-Po fractions whereas it accumulated in the CBD-P fraction in relatively weathered soils. The carbonates and Al/Fe oxides were most significant constituents in P partitioning as consequences of parent material and weathering chronosequence.  相似文献   

18.
The objectives of the present study were to make a physical, physicochemical, and biological characterization of compost obtained from crop residues of horticultural plants grown in greenhouses and to assess the physical and chemical responses of a soil tested after the applications of this organic amendment. The compost showed a high percentage of inorganic material because the source of this compost includes not only crop residues but also soil; for this reason, it had high coarseness index (CI), electrical conductivity (EC), and pH. The application of the organic amendment to a soil with reduced bulk density (BD) increased the percentage of particles with large diameters, as well as increased the nutritional status and organic matter (OM). However, nitrogen and potassium levels in soil were low. Compost addition provoked an increase in soil EC, which restricts its use to salt-tolerant plants.  相似文献   

19.
Plant growth experiments were conducted to reveal the mechanism by which organic matter (OM) and soil flooding enhance phosphorus (P) bioavailability for rice. It was postulated that reductive dissolution of iron‐(III) [Fe(III)] oxyhydroxides in soil releases occluded phosphate ions (PO4), i.e., PO4 that is not isotopically exchangeable in the original soil prior to flooding. Rice was grown in P‐deficient soil treated with factorial combinations of addition of mineral P (0, 50 mg P kg?1), OM (0, ≈ 20.5 g OM kg?1 as cattle manure +/– rice straw) and water treatments (flooded vs. non‐flooded). The OM was either freshly added just before flooding or incubated moist in soil for 6 months prior to flooding; nitrogen and potassium were added in all treatments. The soil exchangeable P was labeled with 33PO4 prior to flooding. The plant accessible P in soil, the so‐called L‐value, was determined from the 33P/31P ratio in the plants. The L‐values were inconsistently affected by flooding in contrast with the starting hypothesis. The OM and P addition to soil clearly increased the L‐value and, surprisingly, the increase due to OM application was larger than the total P addition to soil. An additional isotope exchange study in a soil extract (E‐value) at the end of the experiment showed that the E‐value increased less than the total P addition with OM. This suggests that plants preferentially take up unlabeled P from the OM in the rhizosphere compared to labeled labile inorganic P. The effects of soil flooding on P bioavailability is unlikely related to an increase of the quantity of bio‐accessible P in soil (L‐value) but is likely explained by differences in P mobility in soil.  相似文献   

20.
A pot experiment was conducted in sandy clay loam saline-sodic soil to assess the effects of farm yard manure (FYM), municipal solid waste (MSW) composts and gypsum application on nitrate leaching, soil chemical properties and crop productivity under rice-wheat cropping system. It also aims at establishing the correlation between soil phsico-chemical properties and yield response using principle component analysis and Pearson correlation analysis. The MSW was decomposed aerobically, an-aerobically and co-composted. Maximum nitrate leaching was observed during rice (75.9 mg L?1) and wheat (37.2 mg L?1) with an-aerobically decomposed MSW as compared with control treatment. Results revealed a decrease in soil pH (?6.95% and ?8.77%), electrical conductivity (EC) (?48.13% and ?51.04%), calcium carbonate (CaCO3) (?40.30% and ?48.96%), and sodium adsorption ratio (SAR) (?40.27% and ?45.98%) with an-aerobically decomposed MSW compost during rice and wheat, respectively. In this treatment, organic matter (OM) (93.55% and 121.51%) and cation exchange capacity (CEC) (19.31% and 31.79%) were the highest as compared with control treatment during rice and wheat, respectively. Rice and wheat growth were significantly (p≤ 0.05) increased by an-aerobically decomposed MSW followed by co-compost, aerobically decomposed MSW, FYM, gypsum and control. Furthermore, Pearson correlation coefficients predicted significant positive correlation of yield with soil OM, and CEC while inverse relationship was observed with EC, pH, CaCO3, and nitrogen use efficiency. Soil amelioration with organic and gypsum amendments was further confirmed with principal component analysis. This study has proved an-aerobically decomposed MSW as an effective solution for MSW disposal, thereby improving soil chemical properties and crop productivity from sandy clay loam saline-sodic soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号