首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Greenhouse gases are known to play an important role in global warming. In this study, we determined the effects of selected soil and climate variables on nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) emissions from a tropical grassland fertilized with chicken slurry, swine slurry, cattle slurry, and cattle compost. Cumulative N2O emissions did not differ between treatments and varied from 29.26 to 32.85 mg N m-2. Similarly, cumulative CH4 emissions were not significantly different among the treatments and ranged from 6.34 to 57.73 mg CH4 m-2. Slurry and compost application induced CO2 emissions that were significantly different from those in the control treatment. The CH4 conversion factors measured were 0.21%, 1.39%, 4.39%, and 5.07% for cattle compost, chicken slurry, swine slurry, and cattle slurry, respectively, differing from the recommendations of the Intergovernmental Panel on Climate Change (IPCC). The fraction of added N emitted as N2O was 0.39%, which was lower than the IPCC default value of 2%. Our findings suggest that N2O emissions could be mitigated by replacing synthetic fertilizer sources with either biofertilizer or compost. Our results indicate the following:N2O emission was mainly controlled by soil temperature, followed by soil moisture and then soil NH4+ content; CH4 fluxes were mainly controlled by soil moisture and chamber headspace temperature; and CO2 fluxes were mainly controlled by chamber headspace temperature and soil moisture.  相似文献   

2.
Emissions of nitrous oxide (N2O), a potent greenhouse gas, from agricultural soil have been recognized to be affected by nitrogen (N) application and temperature. Most of the previous studies were carried out to determine effects of temperature on N2O emissions at a fixed N application rate or those of N application rates at a specific temperature. Knowledge about the effects of different ammonium (NH4+) application rates and temperatures on N2O emissions from tropical agricultural soil and their interactions is limited. Five grams of air-dried sandy loam soil, collected in Central Vietnam, were adjusted to 0, 400, 800 and 1200 mg NH4-N kg–1 soil (abbreviated as 0 N, 400 N, 800 N and 1200 N, respectively) at 60% water holding capacity were aerobically incubated at 20°C, 25°C, 30°C or 35°C for 28 days. Mineral N contents and N2O emission rates were determined on days 1, 3, 5, 7, 14, 21 and 28. Cumulative N2O emissions for 28 days increased with increasing NH4+ application rates from 0 to 800 mg N kg–1 and then declined to 1200 mg N kg–1. Cumulative N2O emissions increased in the order of 35°C, 20°C, 30°C and 25°C. This lowest emission at 35°C occurred because N2O production was derived only from autotrophic nitrification while other N2O production processes, e.g., nitrifier denitrification and coupled nitrification-denitrification occurred at lower temperatures. More specifically, cumulative N2O emissions peaked at 800 N and 25°C, and the lowest emissions occurred at 1200 N and 35°C. In conclusion, N2O emissions were not exponentially correlated with NH4+ application rates or temperatures. Higher NH4+ application rates at higher temperatures suppressed N2O emissions.  相似文献   

3.
Recently, large areas of tropical peatland have been converted into agricultural fields. To be used for agricultural activities, peat soils need to be drained, limed and fertilized due to excess water, low nutrient content and high acidity. Water depth and amelioration have significant effects on greenhouse gas (GHG) production. Twenty-seven soil samples were collected from Jabiren, Central Kalimantan, Indonesia, in 2014 to examine the effect of water depth and amelioration on GHG emissions. Soil columns were formed in the peatland using polyvinyl chloride (PVC) pipe with a diameter of 21 cm and a length of 100 cm. The PVC pipe was inserted vertically into the soil to a depth of 100 cm and carefully pulled up with the soil inside after sealing the bottom. The treatments consisting of three static water depths (15, 35 and 55 cm from the soil surface) and three ameliorants (without ameliorant/control, biochar+compost and steel slag+compost) were arranged using a randomized block design with two factors and three replications. Fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from the soil columns were measured weekly. There was a linear relationship between water depth and CO2 emissions. No significant difference was observed in the CH4 emissions in response to water depth and amelioration. The ameliorations influenced the CO2 and N2O emissions from the peat soil. The application of biochar+compost enhanced the CO2 and N2O emissions but reduced the CH4 emission. Moreover, the application of steel slag+compost increased the emissions of all three gases. The highest CO2 and N2O emissions occurred in response to the biochar+compost treatment followed by the steel slag-compost treatment and without ameliorant. Soil pH, redox potential (Eh) and temperature influenced the CO2, CH4 and N2O fluxes. Experiments for monitoring water depth and amelioration should be developed using peat soil as well as peat soil–crop systems.  相似文献   

4.
The fate of carbon (C) and nitrogen (N) belowground is important to current and future climate models as soils warm in northern latitudes. Currently, little is known about the sensitivity of microbial respiration to temperature changes at depths below 15 cm. We used whole-core (7.6 cm dia. × 90 cm) laboratory incubations to determine if temperature response quotients (Q10) for CO2 and N2O varied with depth for undisturbed prairie while plants were senescent and clipped at the surface. We collected intact soil cores from an undisturbed prairie in central North Dakota and uniformly subjected them to freezing (5 to ?15 °C) and thawing (?15 to 5 °C). We measured rates of CO2 and N2O emissions at 5 °C temperature increments at 0, 15, 30, 45, 60, and 75 cm depths. During freezing, active and sterilized core emissions occurred only between 0 and ?10 °C. During thawing, a simple first-order exponential model, E = αeβT, fit observed CO2 and N2O emissions (R2 = 0.91 and 0.99, respectively). Parameter estimates for β were not significantly different across depths for CO2 and for N2O (Q10 = 4.8 and 13.7, respectively). Parameter estimates for α (emissions when temperature is 0 °C) exponentially declined with depth for both gases for similar depth-response curves. Stepwise regressions of soil properties on α parameter estimates indicated emissions of CO2 and N2O at 0 °C during thawing were positively correlated (R2 > 0.6) with soil porosity. Results indicate pedogenic properties associated with depth may not necessarily influence temperature response curves during thawing but will affect emissions at 0 °C for both CO2 and N2O.  相似文献   

5.
For this century, an increasing frequency of extreme meteorological boundary conditions is expected, presumably resulting in a changing frequency of freezing and thawing of soils in higher‐elevation areas. Our current knowledge about the effects of these events on trace‐gas emissions from soils is scarce. In this study, the effects of freeze–thaw events on the fluxes of the trace gases CO2, N2O, and NO between soil and atmosphere were investigated in a laboratory experiment. Undisturbed soil columns were collected from a mature Norway spruce forest in the “Fichtelgebirge”, SE Germany. The influence of freezing temperatures (–3°C, –8°C, –13°C) on gas fluxes was studied during the thawing periods (+5°C) in three freeze–thaw cycles (FTCs) and compared to unfrozen controls (+5°C). Two different types of soil columns were examined in parallel—one consisting of O layer only (O columns) and one composed of O layer and mineral soil horizons (O+M columns)—to quantify the contribution of the organic layer and the top mineral soil to the production or consumption of these trace gases. During the thawing period, we observed increasing emissions of CO2, N2O, and NO from the spruce forest soil, but the cumulative emissions of these gases did mostly not exceed the level of the controls. The results show that the O layers were mainly involved in the gas production. Severe soil frost increased CO2 fluxes during soil thawing, whereas repetition of the freeze–thaw events decreased CO2 fluxes from the thawing soil. Fluxes of N2O and NO were neither influenced by freezing temperature nor by freeze–thaw repetition. Stable‐isotope analysis indicated that denitrification was mostly responsible for the N2O production in the FTC columns. Furthermore, isotope data demonstrated a consumption of N2O through microbial denitrification to N2. It was further shown, that production of N2O also occurred in the mineral horizons. The NO emissions were mainly driven by increasing soil temperature during thawing. In this freeze–thaw experiment up to 20 times higher NO than N2O fluxes were recorded. Our results suggest that topsoil thawing has little potential to increase the emissions of CO2, N2O, and NO in spruce forest soils.  相似文献   

6.
In-field management practices of corn cob and residue mix (CRM) as a feedstock source for ethanol production can have potential effects on soil greenhouse gas (GHG) emissions. The objective of this study was to investigate the effects of CRM piles, storage in-field, and subsequent removal on soil CO2 and N2O emissions. The study was conducted in 2010–2012 at the Iowa State University, Agronomy Research Farm located near Ames, Iowa (42.0°′N; 93.8°′W). The soil type at the site is Canisteo silty clay loam (fine-loamy, mixed, superactive, calcareous, mesic Typic Endoaquolls). The treatments for CRM consisted of control (no CRM applied and no residue removed after harvest), early spring complete removal (CR) of CRM after application of 7.5 cm depth of CRM in the fall, 2.5 cm, and 7.5 cm depth of CRM over two tillage systems of no-till (NT) and conventional tillage (CT) and three N rates (0, 180, and 270 kg N ha−1) of 32% liquid UAN (NH4NO3) in a randomized complete block design with split–split arrangements. The findings of the study suggest that soil CO2 and N2O emissions were affected by tillage, CRM treatments, and N rates. Most N2O and CO2 emissions peaks occurred as soil moisture or temperature increased with increase precipitation or air temperature. However, soil CO2 emissions were increased as the CRM amount increased. On the other hand, soil N2O emissions increased with high level of CRM as N rate increased. Also, it was observed that NT with 7.5 cm CRM produced higher CO2 emissions in drought condition as compared to CT. Additionally, no differences in N2O emissions were observed due to tillage system. In general, dry soil conditions caused a reduction in both CO2 and N2O emissions across all tillage, CRM treatments, and N rates.  相似文献   

7.
Biologically derived emissions of carbon dioxide (CO2) and nitrous oxide (N2O) at 0 °C vary with soil depth during soil thawing. Micro-site soil properties, especially those which influence porosity and substrate availability, also vary with depth and may help explain gas emissions. Intact soil cores collected to a depth of 80 cm from an undisturbed prairie Mollisol in central North Dakota were uniformly subjected to distinct temperature steps during a simulated soil thaw (−15 to 5 °C) and sampled for CO2 and N2O emissions throughout the soil profile. Emission data were fit to a first order exponential equation (E = αeβT). Cores were then analyzed in 10 cm depth increments for micro-site properties including root length and mass, aggregation, and organic substrate availability (available, aggregate-protected and mineral-bound pools). Both CO2 and N2O emissions at 0 °C declined exponentially with depth. Emissions of CO2 and N2O at 0 °C were strongly related to root length (R2 = 0.80 and 0.76, respectively), root mass (R2 = 0.56 and 0.74), large macroaggregate mass (R2 = 0.63 and 0.54), and aggregate-protected organic matter (R2 > 0.57), while available organic matter was related to CO2 (R2 > 0.60) and not N2O. When CO2 and N2O emissions were normalized by available and aggregate-protected carbon pools, respectively, nutrient use efficiency increased significantly with depth. Results suggest CO2 and N2O emissions are (1) positively influenced by the rhizosphere and (2) differentially affected by substrate pool or location. CO2 emissions were more positively affected by available substrate, while N2O emissions were more positively affected by less labile, aggregate-protected substrate.  相似文献   

8.
Given high mineralization rates of soil organic matter addition of organic fertilizers such as compost and manure is a particularly important component of soil fertility management under irrigated subtropical conditions as in Oman. However, such applications are often accompanied by high leaching and volatilization losses of N. Two experiments were therefore conducted to quantify the effects of additions of activated charcoal and tannin either to compost in the field or directly to the soil. In the compost experiment, activated charcoal and tannins were added to compost made from goat manure and plant material at a rate of either 0.5 t activated charcoal ha?1, 0.8 t tannin extract ha?1, or 0.6 t activated charcoal and tannin ha?1 in a mixed application. Subsequently, emissions of CO2, N2O, and NH3 volatilization were determined for 69 d of composting. The results were verified in a 20‐d soil incubation experiment in which C and N emissions from a soil amended with goat manure (equivalent to 135 kg N ha?1) and additional amendments of either 3 t activated charcoal ha?1, or 2 t tannin extract ha?1, or the sum of both additives were determined. While activated charcoal failed to affect the measured parameters, both experiments showed that peaks of gaseous CO2 and N emission were reduced and/or occurred at different times when tannin was applied to compost and soil. Application of tannins to compost reduced cumulative gaseous C emissions by 40% and of N by 36% compared with the non‐amended compost. Tannins applied directly to the soil reduced emission of N2O by 17% and volatilization of NH3 by 51% compared to the control. However, emissions of all gases increased in compost amended with activated charcoal, and the organic C concentration of the activated charcoal amended soil increased significantly compared to the control. Based on these results, tannins appear to be a promising amendment to reduce gaseous emissions from composts, particularly under subtropical conditions.  相似文献   

9.
The effects of compost application on soil carbon sequestration potential and carbon budget of a tropical sandy soil was studied. Greenhouse gas emissions from soil surface and agricultural inputs (fertiliser and fossil fuel uses) were evaluated. The origin of soil organic carbon was identified by using stable carbon isotope. The CO2, CH4 and N2O emissions from soil were estimated in hill evergreen forest (NF) plot as reference, and in the corn cultivation plots with compost application rate at 30 Mg ha−1 y−1 (LC), and at 50 Mg ha−1 y−1 (HC). The total C emissions from soil surface were 8·54, 10·14 and 9·86 Mg C ha−1 y−1 for NF, HC and LC soils, respectively. Total N2O emissions from HC and LC plots (2·56 and 3·47 kg N2O ha−1 y−1) were significantly higher than from the NF plot (1·47 kg N2O ha−1 y−1). Total CO2 emissions from fuel uses of fertiliser, irrigation and machinery were about 10 per cent of total CO2 emissions. For soil carbon storage, since 1983, it has been increased significantly (12 Mg ha−1) under the application of 50 Mg ha−1 y−1 of compost but not with 30 Mg ha−1 y−1. The net C budget when balancing out carbon inputs and outputs from soil for NF, HC and LC soils were +3·24, −2·50 and +2·07 Mg C ha−1 y−1, respectively. Stable isotope of carbon (δ13C value) indicates that most of the increased soil carbon is derived from the compost inputs and/or corn biomass. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.

Purpose

Ecosystem restorations can impact carbon dioxide (CO2) and nitrous oxide (N2O) emissions which are important greenhouse gasses. Alpine meadows are degraded worldwide, but restorations are increasing. Because their soils represent large carbon (C) and nitrogen (N) pools, they may produce significant amounts of CO2 and N2O depending on the plant species used in restorations. In addition, warming and N deposition may impact soil CO2 and N2O emissions from restored meadows.

Materials and methods

We collected soils from degraded meadows and plots restored using three different plant species at Wugong Mountain (Jiangxi, China). We measured CO2 and N2O emissions when soils were incubated at different temperatures (15, 25 or 35 °C) and levels of N addition (control vs. 4 g m?2) to understand their responses to warming and N deposition.

Results and discussion

Dissolved organic C was higher in restored plots (especially with Fimbristylis dichotoma) compared to non-restored bare soils, and their soil inorganic N was lower. CO2 emission rates were increased by vegetation restorations, decreased by N deposition, and increased by warming. CO2 emission rates were similar for the three grass species at 15 and 25 °C, but they were lower with Miscanthus floridulus at 35 °C. Soils from F. dichotoma and Carex chinensis plots had higher N2O emissions than degraded or M. floridulus plots, especially at 25 °C.

Conclusions

These results show that the effects of restorations on soil greenhouse gas emissions depended on plant species. In addition, these differences varied with temperature suggesting that future climate should be considered when choosing plant species in restorations to predict soil CO2 and N2O emissions and global warming potential.
  相似文献   

11.
This study investigated the maturity and gaseous emissions from vermicomposing with agricultural waste. A vermicomposting treatment (inoculated Eisenia fetida) was conducted over a 50-day period, taking tomato stems as the processing object and using cow dung as the nutrient substrate. A thermophilic composting treatment without earthworm inoculation was operated as a control treatment. During the experiment, maturity indexes such as temperature, pH, C/N ratio, and germination index (GI) were determined and continuous measurements of earthworm biomass and CH4, N2O, and NH3 emissions were carried out. The results showed that the temperature during vermicomposting was suitable for earthworm survival, and the earthworm biomass increased from 10.0 to 63.1 kg m?3. Vermicomposting took less time on average to reach the compost maturity standard (GI 80%), and reached a higher GI (132%) in the compost product compared with the thermophilic composting treatment. Moreover, the decrease of the C/N ratio in vermicompost indicated stabilization of the waste. The activities of earthworms played a positive role in reducing gaseous emissions in vermicompost, resulting in less emissions of NH3 (12.3% NH3-N of initial nitrogen) and total greenhouse gases (8.1 kg CO2-eq/t DM) than those from thermophilic compost (24.9% NH3-N of initial nitrogen, 22.8 kg CO2-eq/t DM). Therefore, it can be concluded that vermicomposting can shorten the period required to reach compost maturity, can obtain better maturity compost, and at the same time reduce gaseous emissions. As an added advantage, the earthworms after processing could have commercial uses.  相似文献   

12.
水分含量对水葫芦渣堆肥进程及温室气体排放的影响   总被引:2,自引:0,他引:2  
水葫芦经挤压处理后,容积减小、干物质含量提高,利于堆肥生产,但目前缺乏相关堆肥条件的研究。本文通过水稻秸秆与水葫芦渣以不同比例混合来调节堆体水分,探讨在65%、70%、75%、80%水分条件下堆肥效果及环境影响,以获得堆肥的最优水分条件。本试验为静态堆肥,动态监测堆体温度、pH值、碳氮养分和温室气体。结果表明,水分对堆体pH、胡敏酸(堆肥7 d)、富里酸无显著影响,对温度、水溶性碳、胡敏酸(堆肥50 d)、凯氏氮、硝态氮、铵态氮影响显著。其中75%水分处理升温能力最佳,堆肥6 d即达最高堆温(53.4℃);50 d时其凯氏氮、硝态氮、铵态氮显著高于65%和70%的水分处理(P<0.05);75%水分处理堆肥50 d与7 d相比,凯氏氮降低最多(21.1%),硝态氮增加最多(434%),铵态氮降低幅度最小(14.1%)。水分对CH4的产生无显著影响;但高水分促进CO2和N2O排放,75%水分处理的CO2排放能量最高,是其他处理的1.9~2.5倍,80%水分处理的N2O排放通量最高,是其他处理的3.9~23.1倍。综合考虑,水稻秸秆与水葫芦渣混合堆肥,堆体水分为75%较为适宜,能兼顾堆肥效率、品质和环境效益。  相似文献   

13.
Information about the mineralization rate of compost at various temperatures is a precondition to optimize mineral N fertilization and to minimize N losses in compost‐amended soils. Objectives were to quantify the influence of the temperature on the mineralization rate and leaching of dissolved organic carbon (DOC) and nitrogen (DON), NO3, and NH4+ from a fresh (C : N = 15.4) and a mature (C : N = 9.2) organic household waste compost. Compost samples were mixed with quartz sand to ensure aerobic conditions, incubated at 5, 10, 15, 20, and 25°C and irrigated weekly for 112 days. For the fresh compost, cumulative CO2 evolution after 112 days ranged from 36% of the initial C content at 5°C to 54% at 25°C. The CO2 evolution was only small in the experiments with mature compost (1 to 6% of the initial C content). The data were described satisfactorily by a combined first‐order (fresh compost) or a first‐order kinetic model (mature compost). For the fresh compost, cumulative DOC production was negatively related to the temperature, probably due to leaching of some of the partly metabolized easily degradable fractions at lower temperatures. The production ratios of DOC : CO2‐C decreased with increasing temperature from 0.094 at 5°C to 0.038 at 25°C for the fresh and from 1.55 at 5°C to 0.26 at 25°C for the mature compost. In the experiments with fresh compost, net release of NO3 occurred after a time lag which depended on the temperature. Cumulative net release of NO3 after 112 days ranged from 1.8% of the initial N content at 5°C to 14.3% at 25°C. Approximately 10% of the initial N content of the mature compost was released as NO3 after 14 days at all temperatures. The DOC : DON ratios in the experiments using fresh compost ranged from 11.5 to 15.7 and no temperature dependency was observed. For the mature compost, DOC : DON ratios were slightly smaller (7.4 to 8.9). The DON : (NH4+ + NO3) ratio decreased with increasing temperature from 0.91 at 5°C to 0.19 at 25°C for the fresh compost and from 0.21 at 5°C to 0.12 at 25°C for the mature compost. The results of the dynamics of C and N mineralization of fresh and mature compost can be used to assess the appropriate application (timing and amount) of compost to soils.  相似文献   

14.
Abstract

We studied the effect of crop residues with various C:N ratios on N2O emissions from soil. We set up five experimental plots with four types of crop residues, onion leaf (OL), soybean stem and leaf (SSL), rice straw (RS) and wheat straw (WS), and no residue (NR) on Gray Lowland soil in Mikasa, Hokkaido, Japan. The C:N ratios of these crop residues were 11.6, 14.5, 62.3, and 110, respectively. Based on the results of a questionnaire survey of farmer practices, we determined appropriate application rates: 108, 168, 110, 141 and 0 g C m?2 and 9.3, 11.6, 1.76, 1.28 and 0 g N m?2, respectively. We measured N2O, CO2 and NO fluxes using a closed chamber method. At the same time, we measured soil temperature at a depth of 5 cm, water-filled pore space (WFPS), and the concentrations of soil NH+ 4-N, NO? 3-N and water-soluble organic carbon (WSOC). Significant peaks of N2O and CO2 emissions came from OL and SSL just after application, but there were no emissions from RS, WS or NR. There was a significant relationship between N2O and CO2 emissions in each treatment except WS, and correlations between CO2 flux and temperature in RS, soil NH+ 4-N and N2O flux in SSL and NR, soil NH+ 4-N and CO2 flux in SSL, and WSOC and CO2 flux in WS. The ratio of N2O-N/NO-N increased to approximately 100 in OL and SSL as N2O emissions increased. Cumulative N2O and CO2 emissions increased as the C:N ratio decreased, but not significantly. The ratio of N2O emission to applied N ranged from ?0.43% to 0.86%, and was significantly correlated with C:N ratio (y = ?0.59 ln [x] + 2.30, r 2 = 0.99, P < 0.01). The ratio of CO2 emissions to applied C ranged from ?5.8% to 45% and was also correlated with C:N ratio, but not significantly (r 2 = 0.78, P = 0.11).  相似文献   

15.
Agricultural intensification has led to the use of very high inputs of nitrogen fertilizers into cultivated land. As a consequence of this, nitrous oxide (N2O) emissions have increased significantly. Nowadays, the challenge is to mitigate these emissions in order to reduce global warming. Addition of nitrification inhibitors (NI) to fertilizers can reduce the losses of N2O to the atmosphere, but field studies have shown that their efficiency varies depending greatly on the environmental conditions. Soil water content and temperature are key factors controlling N2O emissions from soils and they seem to be also key parameters responsible for the variation in nitrification inhibitors efficiency. We present a laboratory study aimed at evaluating the effectiveness of the nitrification inhibitor 3,4-dimethylpyrazol phosphate (DMPP) at three different temperatures (10, 15 and 20 °C) and three soil water contents (40%, 60% and 80% of WFPS) on N2O emissions following the application of 1.2 mg N kg−1 dry soil (equivalent to 140 kg N ha−1). Also the CO2 and CH4 emissions were followed to see the possible side effects of DMPP on the overall microbial activities. Nitrogen was applied either as ammonium sulfate nitrate (ASN) or as ENTEC 26 (ASN + DMPP). The application of ENTEC 26 was effective reducing N2O losses up to the levels of an unfertilized control treatment in all conditions. Nevertheless, the percentage of reduction induced by DMPP in the ENTEC treatment with respect to the ASN varied from 3% to 45% depending on temperature and soil water content conditions. At 40% of WFPS, when nitrification is expected to be the main process producing N2O, the increase of N2O emissions in ASN together with temperature provoked an increase in DMPP efficiency reducing these emissions from 17% up to 42%. Contrarily, at 80% of WFPS, when denitrification is expected to be the main source of N2O, emissions after ASN application decreased with temperature, which induced a decrease from 45% to 23% in the efficiency of DMPP reducing N2O losses. Overall, the results obtained in this study suggest that DMPP performance regarding N2O emissions reduction would be the best in cold and wet conditions. Neither CO2 emissions nor CH4 emissions were affected by the use of DMPP at the different soil water contents and temperatures.  相似文献   

16.
The objective of this study was to examine the effects of soil moisture, irrigation pattern, and temperature on gaseous and leaching losses of carbon (C) and nitrogen (N) from soils amended with biogas slurry (BS). Undisturbed soil cores were amended with BS (33 kg N ha−1) and incubated at 13.5°C and 23.5°C under continuous irrigation (2 mm day−1) or cycles of strong irrigation and partial drying (every 6 weeks, 1 week with 12 mm day−1). During the 6 weeks after BS application, on average, 30% and 3.8% of the C and N applied with BS were emitted as carbon dioxide (CO2) and nitrous oxide (N2O), respectively. Across all treatments, a temperature increase of 10°C increased N2O and CO2 emissions by a factor of 3.7 and 1.7, respectively. The irrigation pattern strongly affected the temporal production of CO2 and N2O but had no significant effect on the cumulative production. Nitrogen was predominantly lost in the form of nitrate (NO3). On average, 16% of the N applied was lost as NO3. Nitrate leaching was significantly increased at the higher temperature (P < 0.01), while the irrigation pattern had no effect (P = 0.63). Our results show that the C and N turnovers were strongly affected by BS application and soil temperature whereas irrigation pattern had only minor effects. A considerable proportion of the C and N in BS were readily available for soil microorganisms.  相似文献   

17.

Purpose

The effects of commercial compost fertilizer application on trace gas emissions are not well understood due to a lack of field experiments. The objective of this study was to evaluate the emissions of methane (CH4) and nitrous oxide (N2O) along with grain yield from a rice paddy as affected by different organic–inorganic mixed fertilizer (OIMF) treatments.

Materials and methods

A field experiment was initiated in 2006 with chemical compound fertilizer (CF) and three OIMF amendments including pig manure compost (PMC), Chinese medicine residue compost (CMC), and rapeseed cake compost (RCC), from a rice paddy in southeast China. The emissions of CH4 and N2O were simultaneously measured using the static opaque chamber method over the entire rice growing season in 2011. Soil biotic parameters were measured in soil collected after the rice was harvested in 2011.

Results and discussion

Relative to the control, the OIMF treatments significantly increased CH4 emissions by 56–99 %, mainly due to exogenous organic substrate input, whereas no difference was observed in the CF treatment. The N2O emissions were stimulated substantially by an average of 40 % due to nitrogen fertilization compared with the control. Consecutive OIMF application tended to increase the grain yield, making it marginally higher than that of the CF treatment (7 %, P?=?0.06). Compared with the control, the CF treatment slightly decreased the global warming potential and greenhouse gas (GHG) intensity, while they were remarkably increased in the OIMF treatments. Over the 5-year period of 2006–2011, the annual soil carbon sequestration rate was estimated to be 1.19 t C ha?1 year?1 for the control and 1.73–1.98 t C ha?1 year?1 for the fertilized treatments.

Conclusions

Our results suggest that despite the beneficial effects of increasing both grain yield and soil organic matter, OIMF application such as PMC, CMC, and RCC may be responsible for increased global warming due mainly to the stimulated CH4 emissions. This effect should be thus taken into account when balancing agricultural production and GHG mitigation.  相似文献   

18.
In situ field measurements as well as targeted laboratory studies have shown that freeze–thaw cycles (FTCs) affect soil trace gas fluxes. However, most of past laboratory studies adjusted soil moisture before soil freezing, thereby neglecting that snow cover or water from melting snow may modify effects of FTCs on soil trace gas fluxes. In the present laboratory study with a typical semi-arid grassland soil, three different soil moisture levels (32 %, 41 %, and 50 % WFPS) were established (a) prior to soil freezing or (b) by adding fresh snow to the soil surface after freezing to simulate field conditions and the effect of the melting snow on CO2, CH4, and N2O fluxes during FTCs more realistically. Our results showed that adjusting soil moisture by watering before soil freezing resulted in significantly different cumulative fluxes of CH4, CO2, and N2O throughout three FTCs as compared to the snow cover treatment, especially at a relatively high soil moisture level of 50 % WFPS. An increase of N2O emissions was observed during thawing for both treatments. However, in the watering treatment, this increase was highest in the first thawing cycle and decreased in successive cycles, while in the snow cover treatment, a repetition of the FTCs resulted in a further increase of N2O emissions. These differences might be partly due to the different soil water dynamics during FTCs in the two treatments. CO2 emissions were a function of soil moisture, with emissions being largest at 50 % WFPS and smallest at 32 % WFPS. The largest N2O emissions were observed at WFPS values around 50 %, whereas there were only small or negligible N2O emissions from soil with relatively low soil water content, which indicates that a threshold value of soil moisture might exist that triggers N2O peaks during thawing.  相似文献   

19.
The objective of the present study was to evaluate the impact of the treatment of slurry liquid fraction (LF) acidified to pH 5.5 (ALF) on nitrification and denitrification processes after soil application. The impact of such treatment was compared with that of untreated LF, LF treated with a nitrification inhibitor (3,4-Dimethylpyrazole phosphate (DMPP)) (LF + DMPP). An incubation was conducted using the denitrification incubation system (DENIS/gas-flow-core technique) at a constant temperature of 20 °C and lasted for 32 days in order to follow nitrogen dynamics and gaseous emissions (N2O, NO, CO2) from soil. Inhibition of ammonium nitrification and nitrate accumulation was evident in both LF + DMPP and ALF at the top soil (0–3.75 cm) and those effects were stronger in the LF + DMPP. Denitrification was the main source of N2O emissions from soils amended with treated and untreated LF. Compared to the untreated LF, the ALF significantly reduced the total N lost as N2O from 0.10% to 0.05% of the applied N whereas the DMPP reduced the total N lost as N2O from 0.10% to 0.07%. Relative to the untreated LF, the ALF reduced the total N lost as NO emissions from 0.03% to 0.02% of the applied N whereas DMPP addition led to a stronger decrease from 0.03% to 0.01%. Both, ALF and LF + DMPP had no impact on CO2 emissions relative to the untreated LF. The ALF reduced CO2 emissions by 19% relative to the LF + DMPP. Our results demonstrate that slurry acidification affect not only nitrification but also the denitrification process. This suggests that slurry acidification is a valid technique to minimize N emissions.  相似文献   

20.
Soil temperature plays an important role in organic matter decomposition, thus likely to affect ammonia and gaseous emission from land application of manure. An incubation experiment was conducted to quantify ammonia and greenhouse gas (GHG) (N2O, CO2 and CH4) emissions from manure and urea applied at 215?kg N ha?1 to Fargo-Ryan silty clay soil. Soil (250?g) amended with solid beef manure (SM), straw-bedded solid beef manure (BM), urea only (UO), and control (CT) were incubated at 5, 10, 15, and 25 °C for 31 days at constant 60% water holding capacity (WHC). The cumulative GHGs and NH3 emission generally increased with temperature and highest emission observed at 25 °C. Across temperature levels, 0.11–1.3% and 0.1–0.7% of the total N was lost as N2O and NH3, respectively. Cumulative CO2 emission from manure was higher than UO and CT at all temperatures (P?<?0.05). Methane accounted for <0.1% of the total C (CO2?+?CH4) emission across temperatures. The Q10 values (temperature sensitivity coefficient) derived from Arrhenius and exponential models ranged 1.5–3.7 for N2O, 1.4–6.4 for CO2, 1.6–5.8 for CH4, and 1.4–5.0 for NH3. Our results demonstrated that temperature significantly influences NH3 and GHG emissions irrespective of soil amendment but the magnitude of emission varied with soil nutrient availability and substrate quality. Overall, the highest temperature resulted in the highest emission of NH3 and GHGs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号