首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Experiments were conducted between 2003 and 2008 to examine how N additions influence soil organic C (SOC) and its fractions in forests at different succession stages in the subtropical China. The succession stages included pine forest, pine and broadleaf mixed forest, and old‐growth monsoon evergreen broadleaf forest. Three levels of N (NH4NO3)‐addition treatments comprising control, low‐N (50 kg N ha–1 y–1), and medium‐N (100 kg N ha–1 y–1) were established. An additional treatment of high‐N (150 kg N ha–1 y–1) was established in the broadleaf mixed forest. Soil samples were obtained in July 2008 for analysis. Total organic C (TOC), particulate organic C (POC, > 53 μm), readily oxidizable organic C (ROC), nonreadily oxidizable organic C (NROC), microbial biomass C (MBC), and soil properties were analyzed. Nitrogen addition affected the TOC and its fractions significantly. Labile organic‐C fractions (POC and ROC) in the topsoil (0–10 cm) increased in all the three forests in response to the N‐addition treatments. NROC within the topsoil was higher in the medium‐N and high‐N treatments than in the controls. In the topsoil profiles of the broadleaf forest, N addition decreased MBC and increased TOC, while no significant effect on MBC and TOC occurred in the pine and mixed forests. Overall, elevated N deposition increased the availability of labile organic C (POC and ROC) and the accumulation of NROC within the topsoil irrespective of the forest succession stage, and might enhance the C‐storage capacity of the forest soils.  相似文献   

2.
Soil acid phosphomonoesterase activity(APA)plays a vital role in controlling phosphorus(P)cycling and reflecting the current degree of P limitation.Responses of soil APA to elevating nitrogen(N)deposition are important because of their potential applications in addressing the relationship between N and P in forest ecosystems.A study of responses of soil APA to simulated N deposition was conducted in three succession forests of subtropical China.The three forests include a Masson pine(Pinus massoniana)forest (MPF)-pioneer community,a coniferous and broad-leaved mixed forest(MF)-transition community and a monsoon evergreen broad-leaved forest(MEBF)-climax community.Four N treatments were designed for MEBF:control(without N added),low-N(50 kg N ha-1 year-1),and medium-N(100 kg N ha-1 year-1)and high-N(150 kg N ha-1 year-1),and only three N treatments(i.e.,control, low-N,medium-N)were established for MPF and MF.Results showed that soil APA was highest in MEBF,followed by MPF and MF.Soil APAs in both MPF and MF were not influenced by low-N treatments but depressed in medium-N treatments.However,soil APA in MEBF exhibited negative responses to high N additions,indicating that the environment of enhanced N depositions would reduce P supply for the mature forest ecosystem.Soil APA and its responses to N additions in subtropical forests were closely related to the succession stages in the forests.  相似文献   

3.
ABSTRACT

The forest–savanna transition zone, which contains nutrient-poor soils (Oxisols), is found throughout central Africa. To evaluate the effect of deforestation on soil phosphorus dynamics, which regulate the plant growth in this area, we quantified the relationship between phosphorus (P) and carbon (C) in different fractions and compared their relationship to forest and savanna (deforested vegetation) in eastern Cameroon. We analyzed the P, C, and nitrogen (N) contents of soil using the physical fractionation method (0.25–2.0 mm as macro-particulate organic matter [M-POM]; 0.053–0.25 mm as micro-POM; and <0.053 mm as Clay+silt) in different land management (young and old forests and annual and perennial grass savannas at 100-cm soil depth). We found larger soil P stock in forests (4.7–4.9 Mg P ha?1) than that in savannas (3.4–4.0 Mg P ha?1), though soil C and N stocks were similar between the vegetation. We also observed lower soil P stock in the active fraction (M-POM) with its higher C:P and lower C:N ratio in forest surface layer (0–10 cm), indicating that forests have lower available soil P. By using the regression analysis, we found a clear relationship between P and C in the stable fraction (Clay+silt) of the upper layer (0–40 cm) for each land management, and the coefficient of the regression was clearly different between the forest and savanna. It indicates that a more chemically complex organic P form of the stable fraction exists in forest soil than in savanna soil. These results indicate that the deforestation (savannazation) affect the active and stable P dynamics and it should cause the lower soil P stock of the upper layer in savanna than in forest.  相似文献   

4.
Riparian forests are assumed to play a crucial role in the global carbon cycle. However, little data are available on C stocks of floodplains in comparison to other terrestrial ecosystems. In this study, we quantified the C stocks of aboveground biomass and soils of riparian vegetation types at 76 sampling sites in the Donau‐Auen National Park in Austria. Based on our results and a remotely sensed vegetation map, we estimated total C stocks. Carbon stocks in soils (up to 354 t ha–1 within 1 m below surface) were huge compared to other terrestrial ecosystems. As expected, soils of different vegetation types showed different texture with a higher percentage of sandy soils at the softwood sites, while loamy soils prevailed at hardwood sites. Total C stocks of vegetation types were significantly different, but reflect differences in woody plant biomass rather than in soil C stocks. Mature hardwood and cottonwood forests proved to have significantly higher total C stocks (474 and 403 t ha–1, respectively) than young reforestations (217 t ha–1) and meadows (212 t ha–1). The C pools of softwood forests (356 t ha–1) ranged between those of hardwood/cottonwood forests and of reforestations/meadows. Our study proves the relevance of floodplains as possible C sinks, which should be increasingly taken into account for river management. Furthermore, we conclude that plant‐species distribution does not indicate the conditions of sedimentation and soil C sequestration over the time span of interest for the development of soil C stocks.  相似文献   

5.
Nowadays conventional stem-only harvest where logging residues are left on the site is often displaced by whole-tree harvest, in which logging residues are harvested for use as bioenergy. Logging residues consist of tree branches and tops of stems with needles. The aim of this study was to evaluate the effect of logging residue harvest on soil enzyme activities involved in C, N and P cycling, namely β-glucosidase, β-glucosaminidase, protease and acid phosphatase in relation to other soil characteristics (i.e. soil respiration, net N mineralization, microbial biomass C and N). Soil samples were taken from the humus layer of five study sites, differing in fertility, dominating tree species and time elapsed after treatment. The study sites were Norway spruce (Picea abies, (L.) Karst) and Scots pine (Pinus sylvestris L.) stands in different parts of Finland. Four of the study sites were single-tree experiments, where thinning was performed 4–5 years before this study and 3–4 different doses of logging residues (from 0 up to 37.5 Mg ha−1) were distributed on a circle around a single tree in 3 replicates. The last field experiment had been thinned twice, 23 and 13 years ago; the treatments in 3 replicates were whole-tree harvest and stem-only harvest. In the whole-tree harvest vs. stem-only harvest experiment, activities of β-glucosidase, β-glucosaminidase, acid phosphatase were similar in both treatments. In general, in the single-tree experiment with pine, enzymes raised the activity in response to increasing amount of logging residue. The pattern was less clear for the spruce single-tree experiment, but acid phosphatase and protease activities increased with the increase in amount of logging residue. In general, other soil characteristics were less affected than enzyme activities by logging residue removal; however, in some sites logging residues seemed to increase net C and N mineralization with increasing logging residue amount. Our results suggest that retaining logging residues on the site can increase soil enzyme activities and C and N mineralization.  相似文献   

6.
Many northern forests are limited by nitrogen (N) availability, slight changes in which can have profound effects on ecosystem function and the activity of ectomycorrhizal (EcM) fungi. Increasing N and phosphorus (P) availability, an analog to accelerated soil organic matter decomposition in a warming climate, could decrease plant dependency on EcM fungi and increase plant productivity as a result of greater carbon use efficiency. However, the impact of altered N and P availability on the growth and activity of EcM fungi in boreal forests remains poorly understood despite recognition of their importance to host plant nutrition and soil carbon sequestration. To address such uncertainty we examined above and belowground ecosystem properties in a boreal black spruce forest following five years of factorial N and P additions. By combining detailed soil, fungal, and plant δ15N measurements with in situ metrics of fungal biomass, growth, and activity, we found both expected and unexpected patterns. Soil nitrate isotope values became 15N enriched in response to both N and P additions; fungal biomass was repressed by N yet both biomass and growth were stimulated by P; and, black spruce dependency on EcM derived N increased slightly when N and P were added alone yet significantly declined when added in combination. These findings contradict predictions that N fertilization would increase plant P demands and P fertilization would further exacerbate plant N demands. As a result, the prediction that EcM fungi predictably respond to plant N limitation was not supported. These findings highlight P as an under appreciated mediator of the activity of denitrifying bacteria, EcM fungi, and the dynamics of N cycles in boreal forests. Further, use of δ15N values from bulk soils, plants, and fungi to understand how EcM systems respond to changing nutrient availabilities will often require additional ecological information.  相似文献   

7.
Elevated atmospheric inputs of NH4+ and NO3 have caused N saturation of many forest ecosystems in Central Europe, but the fate of deposited N that is not bounded by trees remains largely unknown. It is expected that an increase of NO3 leaching from forest soils may harm the quality of groundwater in many regions. The objective of this study was to analyze the input and output of NH4+ and NO3 at 57 sites with mature forest stands in Germany. These long‐term study sites are part of the European Level II program and comprise 17 beech, 14 spruce, 17 pine, and 9 oak stands. The chloride balance method was used to calculate seepage fluxes and inorganic N leaching below the rooting zone for the period from 1996 to 2001. Nitrogen input by throughfall was significantly different among most forest types, and was in the order: spruce > beech/oak > pine. These differences can be largely explained by the amount of precipitation and, thus, it mirrors the regional and climatic distribution of these forest types in Germany. Mean long‐term N output with seepage was log‐normal distributed, and ranged between 0 and 26.5 kg N ha–1 yr–1, whereby 29 % of the sites released more than 5 kg N ha–1 yr –1. Leaching of inorganic N was only significantly lower in the pine stands (P < 0.05) compared with leaching rates of the spruce stands. Median N output : input ratio ranged between 0.04 and 0.11 for the beech, oak, and pine stands, while the input : output ratio of the spruce stands was 0.24, suggesting a higher risk of NO3 leaching in spruce forests. Following log‐transformation of the data, N input explained 38 % of the variance in N output. The stratification of the data by the C : N ratio of the O horizon or the top mineral soil revealed that forests soils with a C : N ratio < 25 released significantly more NO3 (median of 4.6 kg N ha–1 yr–1) than forests with a C : N ratio > 25 (median of 0.8 kg N ha–1 yr–1). The stratification improved the correlation between N input and N output for sites with C : N ratios < 25 (r2 = 0.47) while the correlation for sites with C : N ratios > 25 was weaker (r = 0.21) compared with the complete data set. Our results suggest that NO3 leaching may increase in soils with wide C : N ratios when N deposition remains on a high level and that the potential to store inorganic N decreases with C : N ratios in the O horizons becoming more narrow.  相似文献   

8.
Projected future decreases in snow cover associated with global warming in alpine ecosystems could affect soil biochemical cycling. To address the objectives how an altered snow removal could affect soil microbial biomass and enzyme activity related to soil carbon and nitrogen cycling and pools, plastic film coverage and returning of melt snow water were applied to simulate the absence of snow cover in a Tibetan alpine forest of western China. Soil temperature and moisture, nutrient availability, microbial biomass and enzyme activity were measured at different periods (before snow cover, early snow cover, deep snow cover, snow cover melting and early growing season) over the entire 2009/2010 winter. Snow removal increased the daily variation of soil temperature, frequency of freeze–thaw cycle, soil frost depth, and advanced the dates of soil freezing and melting, and the peak release of inorganic N. Snow removal significantly decreased soil gravimetric water, ammonium and inorganic N, and activity of soil invertase and urease, but increased soil nitrate, dissolve organic C (DOC) and N (DON), and soil microbial biomass C (MBC) and N (MBN). Our results suggest that a decreased snow cover associated with global warming may advance the timing of soil freezing and thawing as well as the peak of releases of nutrients, leading to an enhanced nutrient leaching before plant become active. These results demonstrate that an absence of snow cover under global warming scenarios will alter soil microbial activities and hence element biogeochemical cycling in alpine forest ecosystems.  相似文献   

9.
The sink of CO2 and the C budget of forest biomes of the Former Soviet Union (FSU) were assessed with two distinct methods: (1) ecosystem/ecoregional, and (2) forest statistical data. The ecosystem/ecoregional method was based on the integration of ecoregions (defined with a GIS analysis of several maps) with soil/vegetation C data bases. The forest statistical approach was based on data on growing stock, annual increment of timber, and FSU yield tables. Applying the ecosystem/ecoregional method, the area of forest biomes in the FSU was estimated at 1426.1 Mha (106 ha); forest ecosystems comprised 799.9 Mha, non-forest ecosystems and arable land comprised 506.1 and 119.9 Mha, respectively. The FSU forested area was 28% of the global area of closed forests. Forest phytomass (i.e., live plant mass), mortmass (i.e., coarse woody debris), total forest plant mass, and net increment in vegetation (NIV) were estimated at 57.9 t C ha?1, 15.5 t C ha?1, 73.4 t C ha?1, and 1.0 t C ha?1 yr?1, respectively. The 799.9 Mha area of forest ecosystems calculated in the ecosystem/ecoregional method was close to the 814.2 Mha reported in the FSU forest statistical data. Based on forest statistical data forest phytomass was estimated at 62.7 t C ha?1, mortmass at 37.6 t C ha?1; thus the total forest plant mass C pool was 100.3 t C ha?1. The NIV was estimated at 1.1 t C ha?1 yr?1. These estimates compared well with the estimates for phytomass, total forest plant mass, and NIV obtained from the ecosystem/ecoregional method. Mortmass estimated from the forest statistical data method exceeded the estimate based on the ecosystem/ecoregional method by a factor of 2.4. The ecosystem/ecoregional method allowed the estimation of litter, soil organic matter, NPP (net primary productivity), foliage formation, total and stable soil organic matter accumulation, and peat accumulation (13.9 t C ha?1, 125.0 t C ha?1, 3.1 t C ha?1 yr?1, 1.4 t C ha?1 yr?1, 0.11, and 0.056 t C ha?1 yr?1, respectively). Based on an average value of NEP (net ecosystem productivity) from the two methods, and following a consideration of anthropogenic influences, FSU forests were estimated to be a net sink of approximately 0.5 Gt C yr?1 of atmospheric C.  相似文献   

10.
Temperate forests dominated by Quercus spp. cover large parts of Central Mexico and rural communities depend on these forests for wood and charcoal. The impacts of charcoal production on selected chemical properties including C and N dynamics, and populations of ammonifiers, nitrifiers and denitrifiers were investigated on surface soils (0–15 cm) collected during the dry and rainy season of these forests. Organic C was halved in soil at the kiln sites compared to undisturbed forest soil. Concentrations of exchangeable Ca2+, K+ and Mg2+ increased >1.6 times at kiln sites and pH increased from 4.5 in undisturbed soil to 7.0 at kiln sites. The kiln sites had 1.3 times and 2.4 times lower microbial biomass C and N, respectively, than undisturbed forest sites during the rainy season. Although the effect of charcoal production on NH4+, NO2? and NO3? concentrations was small, the ammonifying, nitrifying and denitrifiers were 16 times lower at the kiln sites than in the undisturbed forest soil. This research found that the charcoal production had a negative effect on the cultivable microorganisms involved in N cycling and the soil microbial biomass C and N compared to undisturbed forest soil. Differences in inorganic N dynamics were more affected by seasonality, i.e. precipitation, than by charcoal production.  相似文献   

11.
During recent decades, forest ecosystems have been exposed to high levels of atmospheric pollution, and it has been argued that this affects the composition and activity of decomposer communities and, subsequently, ecosystem functioning. To investigate the effects of atmospheric pollution on protozoa and microflora, a new experimental design was used. Undisturbed soil columns, originating from six coniferous forests across Europe and representing different stages of soil acidification, were transferred to two Scots pine forests (Fontainebleau and Wekerom) with different levels of N and S deposition (NH4 +-N=4.90 and 42.50?kg ha–1 year–1; SO4 S=10.90 and 30.40?kg ha–1 year–1, respectively). The number of protozoa, microbial biomass C and microbial activity were estimated in the organic layer (Of) of the transferred soils at the two host sites after 21 months of incubation. The experiment aimed at answering two questions: (1) Do changes in environmental conditions, studied by transferring soils from one site to another, affect protozoa and microbial communities and, if so, (2) how important are changes in both N and S deposition in explaining the effects of soil transfer on protozoa and microbial communities? The interaction between protozoa and microbial communities was addressed with regard to these changes in environmental conditions. No effect of enhanced N or S deposition on protozoan numbers and microbial biomass C, basal respiration and caloric quotient was revealed. Reciprocal transfer of various soil columns resulted in lower abundance and activity of protozoa and microbes. This reduction could not be explained by differences in N and S deposition, but by differences in microclimate and adaptation. In some cases, protozoa correlated with pH, C/N ratio, P and S content and leached mineral N.  相似文献   

12.
We lack an understanding of nitrogen (N) cycles in tropical forests of Africa, although the environmental conditions in this region, such as soil type, vegetation, and climate, are distinct when compared with other tropical forests. Herein, we simultaneously quantified N fluxes through precipitation, throughfall, and 0-, 15-, and 30-cm soil solutions, as well as litterfall, in two forests with different soil acidity (Ultisols at the MV village (exchangeable Al3+ in 0–30 cm, 126 kmolc ha–1) and Oxisols at the AD village (exchangeable Al3+ in 0–30 cm, 59.8 kmolc ha–1)) over 2 years in Cameroon. The N fluxes to the O horizon via litterfall plus throughfall were similar for both sites (MV and AD, 243 and 273 kg N ha–1 yr–1, respectively). Those values were remarkably large relative to other tropical forests, reflecting the dominance of legumes in this region. The total dissolved N flux from the O horizon at the MV was 28 kg N ha–1 yr–1, while it was 127 kg N ha–1 yr–1 mainly as NO3-N (~80%) at the AD. The distinctly different pattern of N cycles could be caused by stronger soil acidity at the MV, which was considered to promote a superficial root mat formation in the O horizon despite the marked dry season (fine root biomass in the O horizon and its proportion to the 1-m-soil profile: 1.5 Mg ha–1 and 31% at the MV; 0.3 Mg ha–1 and 9% at the AD). Combined with the published data for N fluxes in tropical forests, we have shown that Oxisols, in combination with N-fixing species, have large N fluxes from the O horizon; meanwhile, Ultisols do not have large fluxes because of plant uptake through the root mat in the O horizon. Consequently, our results suggest that soil type can be a major factor influencing the pattern of N fluxes from the O horizon via the effects of soil acidity, thereby determining the contrasting plant–soil N cycles in the tropical forests of Africa.  相似文献   

13.
The effects of a range of fertilizer applications and of repeated low-intensity prescribed fires on microbial biomass C and N, and in situ N mineralization were studied in an acid soil under subalpine Eucalyptus pauciflora forest near Canberra, Australia. Fertilizer treatments (N, P, N+P, line + P, sucrose + P), and P in particular, tended to lower biomass N. The fertilizer effects were greatest in spring and smaller in summer and late actumn. Low-intensity prescribed fire lowered biomass N at a soil depth of 0–5 cm with the effect being greater in the most frequently burnt soils. No interactions between fire treatments, season, and depth were significant. Only the lime + P and N+P treatments significantly affected soil microbial biomass C contents. The N+P treatment increased biomass C only at 0–2.5 cm in depth, but the soil depth of entire 0–10 cm had much higher (>doubled) biomass C values in the line + P treatment. Frequent (two or three times a year) burning reduced microbial boomass C, but the reverse was true in soils under forest burn at intervals of 7 years. Soil N mineralization was increased by the addition of N and P (alone or in combination), line + P, and sucrose + P to the soil. The same was true for the ratio of N mineralization to biomass N. Soil N mineralization was retarded by repeated fire treatments, especially the more frequent fire treatment where rates were only about half those measured in unburnt soils. There was no relationship between microbial biomass N (kg N ha-1) and the field rates of soil N mineralization (kg N ha-1 month-1). The results suggest that although soil microbial biomass N represents a distinct pool of N, it is not a useful measure of N turnover.  相似文献   

14.
亚热带气候环境条件下不同森林类型的土壤CO2通量的研究   总被引:1,自引:0,他引:1  
The flux of carbon dioxide(CO2) from soil surface presents an important component of carbon(C) cycle in terrestrial ecosystems and is controlled by a number of biotic and abiotic factors. In order to better understand characteristics of soil CO2 flux(FCO2) in subtropical forests,soil FCO2 rates were quantified in five adjacent forest types(camphor tree forest,Masson pine forest,mixed camphor tree and Masson pine forest,Chinese sweet gum forest,and slash pine forest) at the Tianjiling National Park in Changsha,Hunan Province,in subtropical China,from January to December 2010. The influences of soil temperature(Tsoil),volumetric soil water content(θsoil),soil pH,soil organic carbon(SOC) and soil C/nitrogen(N) ratio on soil FCO2 rates were also investigated. The annual mean soil FCO2 rate varied with the forest types. The soil FCO2 rate was the highest in the camphor tree forest(3.53 ± 0.51 μmol m-2s-1),followed by,in order,the mixed,Masson pine,Chinese sweet gum,and slash pine forests(1.53 ± 0.25 μmol m-2 s1). Soil FCO2 rates from the five forest types followed a similar seasonal pattern with the maximum values occurring in summer(July and August) and the minimum values during winter(December and January). Soil FCO2 rates were correlated to Tsoiland θsoil,but the relationships were only significant for Tsoil. No correlations were found between soil FCO2 rates and other selected soil properties,such as soil pH,SOC,and C/N ratio,in the examined forest types. Our results indicated that soil FCO2 rates were much higher in the evergreen broadleaved forest than coniferous forest under the same microclimatic environment in the study region.  相似文献   

15.
Alpine grasslands with a high soil organic carbon(SOC)storage on the Tibetan Plateau are experiencing rapid climate warming and anthropogenic nitrogen(N)deposition;this is expected to substantially increase the soil N availability,which may impact carbon(C)cycling.However,little is known regarding how N enrichment influences soil microbial communities and functions relative to C cycling in this region.We conducted a 4-year field experiment on an alpine grassland to evaluate the effects of four different rates of N addition(0,25,50,and 100 kg N ha^-1 year^-1)on the abundance and community structure(phospholipid fatty acids,PLFAs)of microbes,enzyme activities,and community level physiological profiles(CLPP)in soil.We found that N addition increased the microbial biomass C(MBC)and N(MBN),along with an increased abundance of bacterial PLFAs,especially Gram-negative bacterial PLFAs,with a decreasing ratio of Gram-positive to Gram-negative bacteria.The N addition also stimulated the growth of fungi,especially arbuscular mycorrhizal fungi,reducing the ratio of fungi to bacteria.Microbial functional diversity and activity of enzymes involved in C cycling(β-1,4-glucosidase and phenol oxidase)and N cycling(β-1,4-N-acetyl-glucosaminidase and leucine aminopeptidase)increased after N addition,resulting in a loss of SOC.A meta-analysis showed that the soil C/N ratio was a key factor in the response of oxidase activity to N amendment,suggesting that the responses of soil microbial functions,which are linked to C turnover relative to N input,primarily depended upon the soil C/N ratio.Overall,our findings highlight that N addition has a positive influence on microbial communities and their associated functions,which may reduce soil C storage in alpine grasslands under global change scenarios.  相似文献   

16.
Boreal forests are an important source of wood products, and fertilizers could be used to improve forest yields, especially in nutrient poor regions of the boreal zone. With climate change, fire frequencies may increase, resulting in a larger fraction of the boreal landscape present in early-successional stages. Since most fertilization studies have focused on mature boreal forests, the response of burned boreal ecosystems to increased nutrient availability is unclear. Therefore, we used a nitrogen (N) fertilization experiment to test how C cycling in a recently-burned boreal ecosystem would respond to increased N availability. We hypothesized that fertilization would increase rates of decomposition, soil respiration, and the activity of extracellular enzymes involved in C cycling, thereby reducing soil C stocks. In line with our hypothesis, litter mass loss increased significantly and activities of cellulose- and chitin-degrading enzymes increased by 45-61% with N addition. We also observed a significant decline in C concentrations in the organic soil horizon from 19.5 ± 0.7% to 13.5 ± 0.6%, and there was a trend toward lower total soil C stocks in the fertilized plots. Contrary to our hypothesis, mean soil respiration over three growing seasons declined by 31% from 78.3 ± 6.5 mg CO2-C m−2 h−1 to 54.4 ± 4.1 mg CO2-C m−2 h−1. These changes occurred despite a 2.5-fold increase in aboveground net primary productivity with N, and were accompanied by significant shifts in the structure of the fungal community, which was dominated by Ascomycota. Our results show that the C cycle in early-successional boreal ecosystems is highly responsive to N addition. Fertilization results in an initial loss of soil C followed by depletion of soil C substrates and development of a distinct and active fungal community. Total microbial biomass declines and respiration rates do not keep pace with plant inputs. These patterns suggest that N fertilization could transiently reduce but then increase ecosystem C storage in boreal regions experiencing more frequent fires.  相似文献   

17.
SW Sweden has very acidic forest soils because of deposition ofair-borne pollutants. Large-scale liming and fertilization have been proposed as countermeasures against a possible future development of forest decline. To test the effects of suggested treatments, liming (3 or 6 t ha1) and fertilization with easily soluble PK (25 or 50 kg P, 80 or 160 kg K ha1) or N(20 kg N ha1 annually in the form of NH4 NO3) were applied in different combinations in four experiments in 30–60 yr-old Picea abies forests in SW Sweden. Four yearsafter the initial application of the fertilizers, samples were taken from the O-horizon and the two uppermost 5 cm thick layersof the mineral soil. Their pH(H2O) and easily extractable Ca, Mg, K, P and inorganic N contents were analyzed. Samples werealso incubated to estimate net N mineralization and potential nitrification rates. Liming increased the pH by 0.6–1 unit in the O-horizon, and by 0.1 unit in the mineral soil. The Ca + Mg content increased by 15–25 kmolc ha1 (4–8 foldincrease) in the O-horizon of the limed plots, while an increaseof 5 kmolc ha1 (two-fold increase) was observed in theuppermost 5 cm of the mineral soil. Liming did not affect extractable P, K or inorganic N contents. Net N mineralization and potential nitrification rates in the O-horizon were enhanced 1.5- and 6-fold, respectively, by liming, but it had no apparenteffect in the mineral soil. N fertilization caused a slight increase (1.5 kg ha1) in the content of inorganic N, buthad no effects on the other variables measured. The amount ofextractable P was raised by 16 kg ha1 in plots given the high P dose (50 kg ha1), but no other effects of PK fertilization were detected.  相似文献   

18.
Nitrogen mineralisation in soils of various forest sites (pine plantation, natural and thinned oak) at Uluda? University campus in Bursa, Turkey was investigated continuously over a year by the field incubation method. Net nitrogen mineralisation and nitrification rates varied depending on sampling dates. Although nitrogen mineralisation and nitrification rates increased in the spring and summer months, there was no seasonal variation in the soils of the examined forests. Annual net nitrate (NO3?–N) accumulation in the upper soil layer (0–5 cm) was higher in Oak I and Oak II (14 kg ha y?1 and 12 kg ha y?1) than in the pine plantation (8 kg ha y?1). While annual net NO3?–N accumulation (0–5 cm) varied between the oak forests (possibly due to forest management practices), annual net Nmin values were similar in these forests. No significant correlation was found between the examined soil parameters and net nitrification and mineralisation rates in the soils (P > 0.05). These results indicate that tree species and forest management practices play important roles in N cycling in forest ecosystems.  相似文献   

19.
Soil heterotrophic respiration and its temperature sensitivity are affected by various climatic and environmental factors.However,little is known about the combined effects of concurrent climatic and environmental changes,such as climatic warming,changing precipitation regimes,and increasing nitrogen(N)deposition.Therefore,in this study,we investigated the individual and combined effects of warming,wetting,and N addition on soil heterotrophic respiration and temperature sensitivity.We incubated soils collected from a temperate forest in South Korea for 60 d at two temperature levels(15 and 20℃,representing the annual mean temperature of the study site and 5℃warming,respectively),three moisture levels(10%,28%,and 50%water-filled pore space(WFPS),representing dry,moist,and wet conditions,respectively),and two N levels(without N and with N addition equivalent to 50 kg N ha-1year-1).On day 30,soils were distributed across five different temperatures(10,15,20,25,and 30℃)for 24 h to determine short-term changes in temperature sensitivity(Q10,change in respiration with 10℃increase in temperature)of soil heterotrophic respiration.After completing the incubation on day 60,we measured substrate-induced respiration(SIR)by adding six labile substrates to the three types of treatments.Wetting treatment(increase from 28%to 50%WFPS)reduced SIR by 40.8%(3.77 to 2.23μg CO2-C g-1h-1),but warming(increase from 15 to 20℃)and N addition increased SIR by 47.7%(3.77 to 5.57μg CO2-C g-1h-1)and 42.0%(3.77 to 5.35μg CO2-C g-1h-1),respectively.A combination of any two treatments did not affect SIR,but the combination of three treatments reduced SIR by 42.4%(3.70 to 2.20μg CO2-C g-1h-1).Wetting treatment increased Q10by 25.0%(2.4 to 3.0).However,warming and N addition reduced Q10by 37.5%(2.4 to 1.5)and 16.7%(2.4 to 2.0),respectively.Warming coupled with wetting did not significantly change Q10,while warming coupled with N addition reduced Q10by 33.3%(2.4 to 1.6).The combination of three treatments increased Q10by 12.5%(2.4 to 2.7).Our results demonstrated that among the three factors,soil moisture is the most important one controlling SIR and Q10.The results suggest that the effect of warming on SIR and Q10can be modified significantly by rainfall variability and elevated N availability.Therefore,this study emphasizes that concurrent climatic and environmental changes,such as increasing rainfall variability and N deposition,should be considered when predicting changes induced by warming in soil respiration and its temperature sensitivity.  相似文献   

20.
Organic agricultural systems rely on organic amendments to achieve crop fertility requirements, and weed control must be achieved without synthetic herbicides. Our objective was to determine the crop yield and soil quality as affected by a transition from grass to dryland organic agriculture in the Central Great Plains of North America. This study evaluated three beef feedlot compost(BFC)treatments in 2010–2015 following biennial application rates: 0(control), 22.9, and 108.7 t ha~(-1) on two dryland organic cropping systems: a wheat(Triticum aestivum)-fallow(WF) rotation harvested for grain and a triticale(Triticosecale)/pea(Pisum sativum)-fallow(T/P-F) rotation harvested for forage. The triticale + pea biomass responded positively to the 108.7-t ha~(-1) BFC treatment,but not the 22.9-t ha~(-1) BFC treatment. The wheat biomass was not affected by BFC addition, but biomass N content increased.Beef feedlot compost input did not increase wheat grain yields, but had a positive effect on wheat grain Zn content. Soil total C and N contents increased with the rate of 108.7 t ha~(-1) BFC after three applications, but not with 22.9 t ha~(-1) BFC. Soil enzyme activities associated with N and C cycling responded positively to the 108.7-t ha~(-1) BFC treatment. Saturated salts were high in the soil receiving 108.7 t ha~(-1) of BFC, but did not affect crop yields. These results showed that BFC was effective in enhancing forage yields, wheat grain quality, and soil C and N, as well as specific microbial enzymes important for nutrient cycling. However, the large rates of BFC necessary to elicit these positive responses did not increase grain yields, and resulted in an excessive buildup of soil P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号