首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
生物质炭修复重金属及有机物污染土壤的研究进展   总被引:11,自引:1,他引:10  
张小凯  何丽芝  陆扣萍  王海龙 《土壤》2013,45(6):970-977
生物质炭是生物质原料在完全或部分缺氧条件下高温热解后的固体产物,它具有丰富的孔隙结构和较高的碳含量。该物质具有巨大的表面积和较强的阳离子交换能力等特殊性质,对受污染土壤中的重金属和有机物都具有很强的吸附能力,有效地降低这些污染物的生物有效性和在环境中的迁移,对改善土壤环境具有重大意义。近年来我国土壤污染严重,利用生物质炭修复受污染土壤的技术得到了广泛的关注。本文简述了生物质炭修复土壤污染的基本原理,探讨了与其他修复方法相比存在的优势,阐述了国内外近年来利用生物质炭修复污染土壤的研究进展,最后展望了今后需要进一步研究的领域。  相似文献   

2.
In this study, biochar produced by pyrolysis of urban pruning wood (Bpw) and sewage sludge (Bss) were characterized and investigated as adsorbents for the removal of Cu(II), Pb(II), Zn(II), and As(V) from contaminated solutions. Both types of biochars showed different physical-chemical properties and metal(loid) content. In Bss, Cu, Zn, and Pb concentrations exceeded the upper limit of the common ranges in soils. However, when they were tested for their effect on soil invertebrates, neither of the biochar was expected to exert negative effects as long as the dose applied as an amendment was ≤?4.8 t ha?1. For an assessment of the effectiveness of biochar in the immobilization of metal(loid)s, three contaminated solutions with acidic pH and different pollutant concentrations were added to both types of biochar. Precipitation as oxy-hydroxides and the formation of complexes with active functional groups of the organic matter were the main mechanisms of metal(loid) fixation by the biochar, with increased precipitation and a rising pH. Both types of biochar were effective at immobilizing Pb and Cu, while Zn showed less effectiveness in this regard and As the least. The high P content of the biochar from sewage sludge favored Pb fixation, presumably forming complexes with phosphates, while competition between phosphate and arsenate ions decreased As adsorption by Fe compounds. The metal(loid)s immobilized by biochar from urban pruning wood were more bioavailable than those fixed by biochar from sewage sludge.  相似文献   

3.
刘冲  吴文成  刘晓文  南忠仁 《土壤》2016,48(4):641-647
生物质炭是生物质废弃物在限氧条件下热解产生的多孔、低密度的富碳材料。前体物质和热解条件在很大程度上决定了生物质炭的表面积和阳离子交换量,影响生物质炭将重金属污染物吸附到其表面的能力,从而影响重金属在农田土壤中的迁移。本文从生物质炭的前体物质种类及热解条件对生物质炭的特性、改良土壤以及修复重金属污染农田土壤的影响等方面进行综述,并提出生物质炭修复重金属污染农田土壤研究的未来发展趋势。  相似文献   

4.
The elevated presence of metal(loid)s in the environment significantly impacts ecosystems and human health and is generally largely due to industrial and mining activities. Thus, in the current study, we investigated and proposed an environmentally friendly method (phytomanagement) aimed at reducing the negative impacts associated with metal(loid) pollution through the use of soil amendments (biochar and compost) to permit Ailanthus altissima growth on a highly contaminated mining Technosol, with arsenic (As) and lead (Pb) contents of 539.06 and 11 453 mg kg-1, respectively. The objective was to examine the impacts of three biochars and compost on i) the physicochemical characteristics of soil, ii) metal(loid) immobilization in soil, and iii) A. altissima growth. We revealed that the application of biochar as a soil amendment improved soil conditions by increasing soil electrical conductivity, pH, and water-holding capacity. Moreover, concomitantly, we observed a large reduction (99%) in Pb mobility and availability following application of the hardwood biochar in combination with compost (HBCP). Thus, this combined soil amendment was most effective in promoting A. altissima growth. In addition, the HBCP treatment prevented As translocation in the upper parts of plants, although soil pore water As concentration was not diminished by amendment application.  相似文献   

5.
Long-term effectiveness of biochar for heavy metal stabilization depends upon biochar's sorptive property and recalcitrance in soil. To understand the role of carboxyl functional groups on heavy metal stabilization, cottonseed hull biochar and flax shive steam-activated biochar having a low O/C ratio (0.04-0.06) and high fixed carbon content (~80% dry weight basis) were oxidized using concentrated H(2)SO(4)/HNO(3) and 30% HNO(3). Oxidized and unoxidized biochars were characterized for O/C ratio, total acidity, pH, moisture, ash, volatile matter, and fixed carbon contents, Brunauer-Emmett-Teller surface area, and attenuated total reflectance Fourier transform infrared spectral features. Characterized biochars were amended (2%, 5%, 10%, and 20% in grams of biochar per gram of soil) on a sandy, slightly acidic (pH 6.27) heavy metal contaminated small arms range soil fraction (<250 μm) having low total organic carbon (0.518%) and low cation exchange capacity (0.95 cmol(c) kg(-1)). Oxidized biochars rich in carboxyl functional groups exhibited significantly greater Pb, Cu, and Zn stabilization ability compared to unoxidized biochars, especially in pH 4.9 acetate buffer (standard solution for the toxicity characteristic leaching procedure). Oppositely, only oxidized biochars caused desorption of Sb, indicating a counteracting impact of carboxyl functional groups on the solubility of anions and cations. The results suggested that appropriate selection of biochar oxidant will produce recalcitrant biochars rich in carboxyl functional groups for a long-term heavy metal stabilization strategy in contaminated soils.  相似文献   

6.
Sorption and degradation are the primary processes controlling the efficacy and runoff contamination risk of agrochemicals. Considering the longevity of biochar in agroecosystems, biochar soil amendment must be carefully evaluated on the basis of the target agrochemical and soil types to achieve agricultural (minimum impact on efficacy) and environmental (minimum runoff contamination) benefits. In this study, sorption-desorption isotherms and kinetics of triazine (deisopropylatrazine) and organophosphorus (malathion, parathion, and diazinon) pesticides were first investigated on various soil types ranging from clayey, acidic Puerto Rican forest soil (PR) to heavy metal contaminated small arms range (SAR) soils of sandy and peaty nature. On PR, malathion sorption did not reach equilibrium during the 3 week study. Comparison of solution-phase molar phosphorus and agrochemical concentrations suggested that degradation products of organophosphorus pesticides were bound on soil surfaces. The degree of sorption on different soils showed the following increasing trend: deisopropylatrazine < malathion < diazinon < parathion. While sorption of deisopropylatrazine on SAR soils was not affected by diazinon or malathion, deisopropylatrazine suppressed the sorption of diazinon and malathion. Deisopropylatrazine irreversibly sorbed on biochars, and greater sorption was observed with higher Brunauer-Emmett-Teller surface area of biochar (4.7-2061 mg g(-1)). The results suggested the utility of biochar for remediation of sites where concentrations of highly stable and mobile agrochemicals exceed the water-quality benchmarks.  相似文献   

7.
Engineered biochars are promising candidates in a wide range of environmental applications, including soil fertility improvement, contaminant immobilization, wastewater treatment and in situ carbon sequestration. This review provides a systematic classification of these novel biochar composites and identifies the promising future trends in composite research and application. It is proposed that metals, minerals, layered double hydroxides, carbonaceous nanomaterials and microorganisms enhance the performances of biochars via distinct mechanisms. In this review, four novel trends are identified and assessed critically. Firstly, facile synthesis methods, in particular ball milling and co-pyrolysis, have emerged as popular composite fabrication strategies that are suitable for large-scale applications. Secondly, biochar modification with green materials, such as natural clay minerals and microorganisms, align well with the on-going green and sustainable remediation (GSR) movement. Furthermore, new applications in soil health improvement and climate change mitigation support the realization of United Nation's Sustainable Development Goals (SDGs). Finally, the importance of field studies is getting more attention, since evidence of field success is critically needed before large-scale applications.  相似文献   

8.
As a waste-derived soil amendment with a long history, biochar has received extensive attention for its capability to improve soil fertility/health; remove or immobilize contaminants in soil, water and air; and mitigate climate change. With the aim of producing engineered biochars with excellent performances, new trends in biochar pyrolytic production and modification strategies have emerged. This review critically summarizes novel pyrolysis methods (e.g., microwave-assisted pyrolysis, co-pyrolysis and wet pyrolysis) and modification approaches (e.g., mineral modification, photocatalytic modification, electrochemical modification) with a focus on (a) the mechanisms involved in environmental remediation processes including soil immobilization, contaminant adsorption and catalytic oxidation; (b) effects of feedstock and pyrolysis conditions on physicochemical properties; (c) sustainability considerations in novel modification and pyrolysis strategies; and (d) the feasibility of extrapolating the results from wastewater treatment to soil remediation. It is argued that in order to achieve the maximum net environmental benefits, ‘greener’ modification methods are warranted, and the risks associated with pyrolysis of contaminated feedstock in soil amendment and contaminant sorption can be minimized through various novel approaches (e.g., co-pyrolysis). Furthermore, novel pyrolysis methods can be combined with emerging modification strategies to synthesize more ‘effective’ biochars. Considering the similar aims of modification (e.g., increase surface area, introduce oxygen-containing functional groups, increase aromaticity), the applicability of several novel approaches could in future can be expanded from contaminant adsorption/degradation in aqueous media to soil remediation/fertility improvement.  相似文献   

9.
生物炭修复重金属污染农田土壤的机制及应用研究进展   总被引:14,自引:8,他引:6  
将生物质转化为生物炭并用于重金属污染农田土壤修复中,是有效利用生物质资源、保障粮食安全的有效途径之一。然而,生物炭的应用效率受其特性和土壤环境影响极大。该研究综述了生物炭特性,并探讨了生物质和热解温度对其影响规律,阐明了生物炭对重金属的直接固定作用,以及通过影响土壤p H值、阳离子交换量(Cation Exchange Capacity,CEC)、矿物组分和有机质等,进而间接固定重金属的作用机制。同时,该文系统总结了国内外生物炭在田间试验中的应用,从土壤重金属迁移性和生物有效性、作物累积重金属和作物产量等3个方面阐明了生物炭的应用效果和作用规律。针对田间试验条件区别于室内试验的特殊性,探讨了生物炭施撒方式及用量、施肥等田间管理和气候环境等现场条件对生物炭应用的影响,并对今后完善生物炭在土壤修复中作用机制、扩大研究尺度和长期土壤监测等方面研究进行了展望。  相似文献   

10.
利用土壤改良剂固定污染土壤中铅、镉的研究进展   总被引:21,自引:0,他引:21  
Since the inception of industrial revolution, metal refining plants using pyrometallurgical processes have generated the prodigious emissions of lead (Pb) and cadmium (Cd). As the core target of such pollutants, a large number of soils are nowadays contaminated over widespread areas, posing a great threat to public health worldwide. Unlike organic pollutants, Pb and Cd do not undergo chemical or microbial breakdown and stay likely in site for longer duration after their release. Immobilization is an in-situ remediation technique that uses cost-effective soil amendments to reduce Pb and Cd availability in the contaminated soils. The Pb and Cd contamination in the soil environment is reviewed with focus on source enrichment, speciation and associated health risks, and immobilization options using various soil amendments. Commonly applied and emerging cost-effective soil amendments for Pb and Cd immobilization include phosphate compounds, liming, animal manure, biosolids, metal oxides, and biochar. These immobilizing agents could reduce the transfer of metal pollutants or residues to food web (plant uptake and leaching to subsurface water) and their long-term sustainability in heavy metal fixation needs further assessment.  相似文献   

11.
以棉花和花生秸秆为原料于500℃下限氧慢速热解制备得到两种生物质炭,通过批处理恒温振荡法,探讨了土壤施加不同种类生物质炭及冻融交替后吸附Cu(Ⅱ)的变化。结果表明,Freundlich和Langmuir等温模型均能较好地拟合各处理土壤对Cu(Ⅱ)的吸附,土壤施加棉花和花生秸秆炭后对Cu(Ⅱ)的吸附能力显著提高,吸附能力分别提高了3.8和17.9倍;冻融交替后施加棉花和花生秸秆炭的土壤对Cu(Ⅱ)的吸附能力均降低,吸附能力分别下降了1.6和1.1倍;花生秸秆炭比棉花秸秆炭更适宜作为土壤改良剂修复重金属污染土壤。  相似文献   

12.
While a large-scale soil amendment of biochars continues to receive interest for enhancing crop yields and to remediate contaminated sites, systematic study is lacking in how biochar properties translate into purported functions such as heavy metal sequestration. In this study, cottonseed hulls were pyrolyzed at five temperatures (200, 350, 500, 650, and 800 °C) and characterized for the yield, moisture, ash, volatile matter, and fixed carbon contents, elemental composition (CHNSO), BET surface area, pH, pHpzc, and by ATR-FTIR. The characterization results were compared with the literature values for additional source materials: grass, wood, pine needle, and broiler litter-derived biochars with and without post-treatments. At respective pyrolysis temperatures, cottonseed hull chars had ash content in between grass and wood chars, and significantly lower BET surface area in comparison to other plant source materials considered. The N:C ratio reached a maximum between 300 and 400 °C for all biomass sources considered, while the following trend in N:C ratio was maintained at each pyrolysis temperature: wood?cottonseed hull≈grass≈pine needle?broiler litter. To examine how biochar properties translate into its function as a heavy metal (NiII, CuII, PbII, and CdII) sorbent, a soil amendment study was conducted for acidic sandy loam Norfolk soil previously shown to have low heavy metal retention capacity. The results suggest that the properties attributable to the surface functional groups of biochars (volatile matter and oxygen contents and pHpzc) control the heavy metal sequestration ability in Norfolk soil, and biochar selection for soil amendment must be made case-by-case based on the biochar characteristics, soil property, and the target function.  相似文献   

13.
为研究改性生物炭在水溶液中对Cu2+的吸附性能,利用硅酸钠溶液、氯化镁溶液、过氧化氢溶液制备了3种不同改性小麦秸秆生物炭,通过使用扫描电镜-X射线能量色散光谱(scanning electron microscopy combined with energy dispersive X-ray spectroscopy,SEM-EDS)和傅里叶红外光谱(Fourier infrared spectroscopy,FTIR)等技术对改性前后的生物炭进行表征分析,探究其表面形貌、官能团等性质变化。硅酸钠改性生物炭(sodium silicate modified biochar,SBC)的比表面积与孔容最大,分别为43.69 m2/g、5.30 cm3/g,比未改性生物炭(biochar,BC)(6.02 m2/g、1.40 cm3/g)分别增加了6.25、2.79倍。由SEM-EDS结果表明,改性生物炭均出现C元素质量分数下降、O元素质量分数增加的现象,其中,SBC的C元素和O元素质量分数变化最大,且SBC和氯化镁改性生物炭(magnesium chloride modified biochar,MBC)上负载了大量含Si和Mg的颗粒。FTIR结果表明,改性处理均能增强官能团的峰值,硅酸钠改性增强程度最大。另外,过氧化氢改性生物炭(hydrogen peroxide modified biochar,HBC)、BC、MBC 和SBC对Cu2+的吸附动力学过程更符合准一级动力学模型,BC、MBC、SBC对Cu2+的等温吸附过程更符合Langmuir模型,HBC对Cu2+的等温吸附过程更符合Freundlich模型。分析吸附模型参数可知,改性生物炭MBC、SBC和HBC中,SBC对Cu2+的吸附能力更强,其理论吸附量可以达到230.20 mg/g,该结果可为改性生物炭对Cu2+污染水体的治理提供理论依据。  相似文献   

14.
生物炭对土壤肥力与环境质量的影响机制与风险解析   总被引:18,自引:4,他引:18  
生物炭作为土壤改良剂和促进作物生长的应用价值已经被很多研究证实。该文综述了生物炭在改善农业土壤质量和作物生长中的应用研究进展,系统阐述了生物炭在提高农业土壤有效水含量,增加土壤矿质元素利用效率,缓解土壤酸化,降低土壤重金属生物有效性和提高农作物产量与质量方面的重要作用与微观机制。特别地,该文强调了生物炭应用于农业生态系统过程中可能引起的多环芳烃、重金属等污染物富集以及氮素根系吸收量下降等不可忽视的潜在问题,并对今后的重点研究方向进行了系统分析总结,以期为生物炭在提高土壤肥力质量与环境质量中的安全与高效利用提供科学参考。  相似文献   

15.

Purpose

Anthropic activities induce severe metal(loid)s contamination of many sites, which is a threat to the environment and to public health. Indeed metal(loid)s cannot be degraded, and thus accumulate in soils. Furthermore, they can contaminate surrounding ecosystems through run-off or wind erosion. This study aims to evaluate the phytostabilization capacity of Salix viminalis to remediate As and Pb highly contaminated mine site, in a biochar-assisted phytoremediation context and to assess biochar particle size and dose application effects.

Materials and methods

To achieve this, mesocosm experiments were conducted using the contaminated technosol and four different size fraction of one biochar as amendment, at two application rates (2 and 5%). Non-rooted cuttings of Salix viminalis were planted in the different mixtures. In order to characterize the mixtures, soil pore waters were sampled at the beginning and at the end of the experiment and analyzed for pH, electrical conductivity, and metal(loid) concentrations. After 46 days of Salix growth, roots, stems, and leaves were harvested and weighed, and As and Pb concentrations and distributions were measured.

Results and discussion

Soil fertility improved (acidity decrease, electrical conductivity increase) following biochar addition, whatever the particle size, and the Pb concentration in soil pore water decreased. Salix viminalis did not grow on the non-amended contaminated soil while the biochar amendment permitted its growth, with a better growth with the finest biochars. The metal(loid)s accumulated preferentially in roots.

Conclusions

Fine biochar particles allowed S. viminalis growth on the contaminated soil, allowing this species to be used for technosol phytostabilization.
  相似文献   

16.
ABSTRACT

Today, soil metal pollution has become a significant environmental issue of great public concern. This is because soil is both a major sink for heavy metal(loid)s (HMs) released into the environment, by both pedogenic and anthropogenic activities; and also a major source of food chain contamination mainly through plant uptake and animal transfer. In addition, HM contamination of soil leads to negative impacts on soil characteristics and function by disturbing both soil biological and physiochemical properties (e.g. extreme soil pH, poor soil structure and soil fertility and lack of soil microbial activity). This eventually leads to decreased crop production. Various soil remediation techniques have been successfully employed to reduce the risks associated with HMs efflux into soil. Among these, the use of low-cost and environmentally safe inorganic and organic amendments for the in-situ immobilization of HMs has become increasingly popular. Immobilization agents have successfully reduced the availability of metal ions through a variety of adsorption, complexation, precipitation, and redox reactions. Soil amendments can also be a source of nutrients and thus can also act as a soil conditioner, improving the soil’s physiochemical properties and fertility, resulting in enhanced plant establishment in metal contaminated soils. This article critically reviews the use of immobilizing agents in HM contaminated agricultural and mining soils paying particular attention to metal immobilization chemistry and the effects of soil amendments on common soil quality parameters.  相似文献   

17.
利用粘粒矿物修复重金属污染农业土壤研究进展   总被引:16,自引:2,他引:14  
Heavy metal contamination of agricultural soils poses risks and hazards to humans.The remediation of heavy metal-polluted soils has become a hot topic in environmental science and engineering.In this review,the application of clay minerals for the remediation of heavy metal-polluted agricultural soils is summarized,in terms of their remediation effects and mechanisms,influencing factors,and future focus.Typical clay minerals,natural sepiolite,palygorskite,and bentonite,have been widely utilized for the in-situ immobilization of heavy metals in soils,especially Cd-polluted paddy soils and wastewater-irrigated farmland soils.Clay minerals are able to increase soil pH,decrease the chemical-extractable fractions and bioavailability of heavy metals in soils,and reduce the heavy metal contents in edible parts of plants.The immobilization effects have been confirmed in field-scale demonstrations and pot trials.Clay minerals can improve the environmental quality of soils and alleviate the hazards of heavy metals to plants.As main factors affecting the immobilization effects,the pH and water condition of soils have drawn academic attention.The remediation mechanisms mainly include liming,precipitation,and sorption effects.However,the molecular mechanisms of microscopic immobilization are unclear.Future studies should focus on the long-term stability and improvement of clay minerals in order to obtain a better remediation effect.  相似文献   

18.
Swell–shrinkage, cracking and stickiness of expansive clayey soils usually lead to their low yield. Improvement of these poor soil physical properties is a key goal for enhancing the crop productivity of expansive clayey soils. This article presents results of a study on the impact of three biochars produced from wheat straw (SB), woodchips (WCB), and wastewater sludge (WSB) on the swell–shrinkage behavior, mechanical strength, and surface cracking of a clayey soil. The soil was treated with biochars at the rate of 0, 20, 40, and 60 g biochar kg?1 soil, respectively; and incubated for 180 d in glasshouse. Application of biochars decreased significantly (p < 0.01) the coefficient of linear extensibility (COLE) of the soil, the effect of SB being most prominent. The tensile strength (TS) of the clayey soil was originally 937 kPa, which decreased to 458 kPa, 495 kPa and 659 kPa for 6% SB‐, WCB‐, and WSB‐amended soils, respectively. Shear strength tests indicated that biochars significantly reduced cohesion (c) and increased internal friction angle (θ). Biochar significantly reduced the formation of soil surface cracks, surface area, and length of the cracks. The surface area density of cracks in the 6% biochar‐amended soils decreased by 14% for SB, 17% for WCB, and 19% for WSB, respectively, compared with control. The results suggest that biochar can be used as a soil amendment for improving the poor physical properties of the clayey soil, particularly in terms of reduction in swell–shrinkage, tensile strength and surface area density of cracking.  相似文献   

19.
生物质炭中的污染物含量及其田间施用的环境风险预测   总被引:7,自引:0,他引:7  
生物质炭在碳固定、污染修复和酸性土壤改良中的应用非常广泛,但对生物质炭中所含污染物的研究甚少,其在田间应用中的环境风险并不清楚。该文选择松针和麦秆为原料,采用不同制备方法,研究了不同条件下获得的生物质炭中的重金属和多环芳烃含量,并初步评估了其田间应用的环境风险。研究表明,不同有机废弃物来源制备的生物质炭中均含有一定量的重金属(0.301~128mg/kg)和多环芳烃(1.48~5.48mg/kg);松针制备的生物质炭中的重金属含量普遍高于麦秆制备的生物质炭,而多环芳烃含量则相反,且高温制备有助于降低生物质炭中的多环芳烃含量;在低施用量的田间条件下,生物质炭的施用不易对土壤造成多环芳烃的环境风险,但在高施用量条件下,生物质炭中含有的多环芳烃容易使土壤中多环芳烃含量达到中度或重度污染的程度;生物质炭中的重金属在土壤中的积累量比较有限,环境风险较小。  相似文献   

20.
刘杏梅  赵健  徐建明 《土壤学报》2021,58(2):445-455
为全面直观了解全球农田土壤重金属污染钝化修复研究进展和发展趋势,本文基于Web of Science(简称WoS)核心合集数据库利用WoS数据库自带分析工具、HistCite引文图谱分析软件和VOSviewer可视化分析软件,从发文量或被引频次TOP10的国家、研究机构、作者、期刊、研究热点等方面对1990―2019年发表的农田土壤重金属污染钝化修复文献进行计量分析。结果表明,世界范围内农田土壤重金属钝化修复领域年度发文量呈逐渐增长的趋势,发文量前三的国家是中国、美国和西班牙,中国的发文量远超其他国家,占比28.79%;发文机构主要是中国科学院、西班牙高等科学研究委员会、中国科学院大学、佛罗里达大学和浙江大学等,其中中国科学院发文量和被引频次均为最高,在该领域具有显著的科研水平和影响力;主要期刊有Environmental Science and Pollution Research、Chemosphere、Science of the Total Environment和Journal of Hazardous Materials等;目前应用较多的钝化剂主要是污泥、生物质炭、赤泥、堆...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号