首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Epizootiologic study of bluetongue: virologic and serologic results   总被引:5,自引:0,他引:5  
Heparinized blood and serum samples were obtained from 1,295 ruminants in herds or flocks with bluetongue virus (BTV) infection in 4 western states. Submissions were from herds or flocks with clinical bluetongue (BT), as well as from animals on premises with no history of BT disease. Insects, including Culicoides variipennis, were collected in areas enzootic for BT disease. Viral isolations were in 10-day-old embryonating chicken eggs that were then adapted to Vero cells for serotyping. Sera were tested from group-specific antibody to BTV by the micro agar gel precipitin (AGP) test. Viral isolations were from cattle (81), sheep (122), goats (9), antelope (2), and C varipennis (5). There were 7 isolates of serotype 120, 114 of serotype 11, 42 of serotype 13, and 56 of serotype 17. In herds or flocks from which BTV was isolated, 51% of cattle, 56% of sheep, 21% of goats, and 52% of antelope had AGP antibodies. Virus was isolated from 43% of the cattle and 23% of the sheep that had no demonstrable evidence of AGP antibodies. Viral isolations were seasonal, occurring from August until December. Approximately 30% of the herds or flocks from which virus was isolated had more than one serotype of virus causing infection.  相似文献   

2.
Epizootic hemorrhagic disease virus (EHDV), an arthropod-borne orbivirus (family Reoviridae), is an emerging pathogen of wild and domestic ruminants that is closely related to bluetongue virus (BTV). The present study examines the outcome of an experimental EHDV-7 infection of Holstein cattle and East Frisian sheep. Apart from na?ve animals that had not been exposed to BTV, it included animals that had been experimentally infected with either BTV-6 or BTV-8 two months earlier. In addition, EHDV-infected cattle were subsequently challenged with BTV-8. Samples were tested with commercially available ELISA and real-time RT-PCR kits and a custom NS3-specific real-time RT-PCR assay. Virus isolation was attempted in Vero, C6/36 and KC cells (from Culicoides variipennis), embryonated chicken eggs and type I interferon receptor-deficient IFNAR(-/-) mice. EHDV-7 productively infected Holstein cattle, but caused no clinical signs. The inoculation of East Frisian sheep, on the other hand, apparently did not lead to a productive infection. The commercial diagnostic kits performed adequately. KC cells proved to be the most sensitive means of virus isolation, but viremia was shorter than 2 weeks in most animals. No interference between EHDV and BTV infection was observed; therefore the pre-existing immunity to some BTV serotypes in Europe is not expected to protect against a possible introduction of EHDV, in spite of the close relation between the viruses.  相似文献   

3.
Donor sheep were infected either by bites of bluetongue virus (BTV)-infected (serotype 11, "Texas Station strain") Culicoides variipennis or by inoculation with 100,000 median chicken embryo intravascular lethal doses of BTV (serotype 11) from a suspension made from infected C variipennis. Fourteen embryos from 4 BTV-infected ewes bred by rams not infected with BTV were transferred to 8 BTV-seronegative recipient ewes, and 35 embryos and 4 unfertilized eggs from 14 BTV-infected ewes bred by BTV-infected rams were transferred to 19 BTV-seronegative recipient ewes. Eleven pregnancies and 12 lambs resulted. None of the recipients or lambs seroconverted, and BTV was not isolated from the pregnant recipient ewes or their lambs at slaughter 30 days after parturition.  相似文献   

4.
Thirty-two bovine field isolates of bluetongue virus (BTV), 6 field isolates of epizootic hemorrhagic disease virus (EHDV) from deer, 4 BTV prototype serotypes (10, 11, 13, and 17), and 2 EHDV prototype serotypes (1 and 2) were coelectrophoresed, using polyacrylamide gels. Field isolates were obtained from various regions of the United States. Analysis of polyacrylamide gels and scattered plots generated for comparison of migration patterns for different isolates within each serotype of BTV revealed wide variation among the individual segments. The BTV serotypes 10 and 11 had more variation, compared with BTV serotypes 13 and 17, especially for migration of genome segment 5. A definitive correlation was not seen between the double-stranded RNA migration profiles on polyacrylamide gel electrophoresis, geographic origin, herd of origin, or year of collection. One BTV field isolate contained more than 1 electropherotype, with 2 bands at the segment-7 position, and it was further characterized as BTV serotype 11. Segments 2 and 5 of EHDV isolates were more variable in their migration than were the other gene segments. Generally, migration profiles for EHDV double-stranded RNA were more variable, compared with those of BTV isolates. Although a correlation was found between migration profiles and serotype of 2 isolates of EHDV, a study of additional EHDV isolates is required before the diversity of electrophoretic patterns of EHDV can be determined.  相似文献   

5.
A cell line (BHFTE) was derived from a tongue explant of a bighorn sheep fetus (Ovis canadensis nelsoni). The cells have been maintained through 23 serial passages, and the modal number of chromosomes was calculated to be 55. Monolayer cultures were shown to be susceptible to various viruses, including bluetongue virus (BTV). Of 5 BTV serotypes (2, 10, 11, 13, and 17) tested, each produced a cytopathic effect (CPE) on initial passage at 33 C. A field isolate (serotype 10) of BTV from a black-tailed deer (Odocoileus hemionus columbianus) in its second passage in Vero-M cells also produced CPE when inoculated into BHFTE cells. Antigens of BTV were demonstrated by direct immunofluorescence in the cytoplasm of BHFTE cells inoculated with homogenates of chicken embryos injected with clinical specimens from a domestic sheep and an Arabian oryx (Oryx gazella leucoryx). A suspension of BTV-infected gnats (Culicoides spp.) produced CPE and BTV-specific fluorescence on the first passage in cells inoculated with a suspension of blood from sheep experimentally infected with BTV. Additionally, selected bovine viruses induced CPE in the cells. The cell line, which is free of mycoplasma and bovine viral diarrhea virus contamination, may be useful in diagnostic medicine and research involving the ruminant species.  相似文献   

6.
This paper records the results of a bluetongue virus (BTV) serological survey and reports the first isolation of BTV on the French Island of Reunion. In January 2003, the French Island of Reunion, located off the coast of Madagascar, reported an outbreak of disease in cattle that resembled clinical bluetongue (BT) in sheep. The suspected causal agent was isolated and identified as epizootic haemorrhagic disease of deer virus (EHDV). However, because of the similarity in the clinical signs to those of BT, a retrospective survey against BTV was carried out using sera collected in 2002. Results revealed the presence of antibody in all sera tested indicating that BTV has been resident on the Island since 2002, and probably earlier. Although up to July 2003 no clinical BT had ever been reported in sheep, BTV viral RNA was amplified by RT-PCR from a single sheep blood collected in February that year, which strongly suggested that BTV was currently circulating on the Island. Following a second outbreak of disease in August 2003, this time involving a flock of Merino sheep, infectious BTV was finally isolated, and identified by both traditional and molecular techniques as serotype 3. The nucleotide and amino-acid sequences of the RT-PCR products amplified for BTV segments 7 and 10 from the sheep blood collected in February and August from different areas of the Island, were sufficiently diverse as to suggest that they were of different origins and/or different BTV serotypes.  相似文献   

7.
Epizootic hemorrhagic disease virus (EHDV) is an Orbivirus. While not previously considered as an important disease in cattle, several EHDV serotypes (EHDV-6 and 7) have recently been implicated in disease outbreaks. The involvement of sheep in the epidemiology of EHDV is still not understood. In this study we compared the prevalence of antibodies to EHDV and bluetongue virus (BTV) in sheep to their prevalence in cattle after an outbreak of EHDV that occurred in Israel during 2006. Sixty-six sheep and lambs scattered in seven herds were compared to 114 cows and calves scattered in 13 dairy cattle herds, matched to the sheep herds by location. While antibody prevalence to EHDV was high in cattle (35.2% within the outbreak zone) no evidence of exposure to EHDV was found in sheep (p<0.0001). Antibodies to BTV were apparent in both cattle and sheep though in the former it was significantly higher (63.2%, 16.7% respectively, p<0.0001), suggesting higher exposure of cattle to biting Culicoides midges. Taken together, these results imply that sheep have a negligible role in the epidemiology of EHDV.  相似文献   

8.
Genome segment 10 of bluetongue virus (BTV) serotype 11 UC8 strain was cloned and subsequently hybridized to viral double-stranded RNA extracted from 90 field isolates of BTV serotypes 10, 11, 13, and 17; the prototype strains of BTV 2, 10, 11, 13, and 17; the prototype strain epizootic hemorrhagic disease virus (EHDV) serotype 1; and 4 field isolates of EHDV serotype 2. The 90 field isolates were obtained from different counties in California, Louisiana, and Idaho during the years 1979, 1980, and 1981. The cloned genetic probe hybridized with all the BTV samples tested, showing different degrees of cross-hybridization at the stringency conditions used in this study. This indicated that BTV genome segment 10 has conserved nucleotide sequences among the BTV serotypes 2, 10, 11, 13, and 17. No cross-hybridization signals were detected between the cloned genome segment 10 of BTV 11 UC8 strain and the prototype strain of EHDV serotype 1 and the field isolates of serotype 2. This probe recognized a wide variety of BTV isolates.  相似文献   

9.
Ibaraki virus, which causes a bluetongue-like disease of cattle in Japan, was compared antigenically with the four serotypes of bluetongue virus (BTV) found in the U.S. and with the two serotypes of epizootic hemorrhagic disease virus (EHDV). No antigenic relationship was found between Ibaraki virus and BTV serotypes 10, 11, 13, and 17 in tests for group or serotype-specific antigens. However, Ibaraki virus and EHDV were related antigenically. The agar gel precipitin and indirect fluorescent antibody tests for group antigens showed two-way cross relationships between Ibaraki virus and EHDV serotypes 1 and 2. The more restrictive serotype-specific neutralization test revealed that antigenic relatedness was stronger between Ibaraki virus and the serotype 2 (Alberta strain) of EHDV than between Ibaraki virus and the serotype 1 (New Jersey strain) of EHDV.  相似文献   

10.
蓝舌病病毒(BTV)基因的第三片段(RMA_3)在不同型间有较高的同源性.用光生物素标记的其cDNA重组体pC7,检测2~22型BTV BHK细胞培养物全部为阳性,而相关病毒EHDV_1、EHDV_2和Ibraki病毒为阴性;同一探针检测17个型BTV攻毒羊的全血样品均为阳性,未感染的正常羊血细胞和BHK细胞培养物样品均为阴性.  相似文献   

11.
12.
The diagnostic potential of RT-PCR for detection of bluetongue virus (BTV) ribonucleic acid (RNA) sequence in cell culture and tissue samples from infected ruminants from United States, Sudan, South Africa and Senegal, was evaluated. The non structural protein 1 (NS1) gene of North American BTV serotype 11 was targeted for PCR amplification. The United States BTV serotypes 2, 10, 11, 13 and 17 and the Sudanese BTV serotypes 1, 2, 4 and 16 and BTV serotype 4 from South Africa and BTV serotype 2 from Senegal were studied. RNAs from all BTV field isolates used in this study, propagated in cell cultures, were detected by the described RT-PCR-based assay. The first specific 790bp BTV PCR products were amplified using a pair of outer primers (BTV1 and BTV2). Specificity of the PCR products was confirmed by a nested amplification of a 520bp PCR product using a pair of internal (nested) primers (BTV3 and BTV4). The BTV PCR products were visualized on ethidium bromide-stained agarose gels. Amplification products were not detected when the RT-PCR-based assay was applied to RNAs from closely related orbiviruses including, epizootic hemorrhagic disease virus (EHDV) prototypes serotypes 1, 2, 4; RNA from Sudanese isolate of palyam orbiviruses serogroup and total nucleic acid extracts from uninfected Vero cells. Application of the nested BTV RT-PCR to clinical samples resulted in amplification of BTV RNA from blood and serum samples from goats experimentally infected with BTV4 and from naturally infected sheep, goats, cattle and deer. The results of this study indicated that this RT-PCR assay could be applied for rapid detection of BTV, in cell culture and clinical samples from susceptible ruminants during an outbreak of the disease, in the United States and African.  相似文献   

13.
The frequencies of precipitating antibodies to bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) in domestic ruminants and white-tailed deer (WTD) in Georgia were 36% and 32%, respectively (n = 2,200). The frequencies of seropositivity to BTV and EHDV were high among cattle (47% and 42%, respectively [n = 1,068]) and less so in WTD (36% and 34% [n = 414]). The frequencies among sheep were 34% for BTV and 29% for EHDV (n = 286), whereas among goats, seropositivity was 8% for BTV and 7% for EHDV (n = 433). Serum samples from northeastern Georgia (1 of the 4 regions in the survey) had the highest frequency of precipitating antibodies for BTV (45%) and EHDV (38%). The lowest frequency was in southeastern Georgia, with 29% seropositivity for BTV and 24% seropositivity for EHDV. Of the 175 farms or herds in the serosurvey, 70% included animals that had BTV-precipitating antibodies, and 67% included animals which had EHDV-precipitating antibodies. Seventeen viral isolates were obtained from individual animals on 9 different farms. Fifteen of the isolates were BTV--8 from cattle, 4 from sheep, and 3 from WTD; 8 of them were serotype 11, and 7 were serotype 17. Viral isolates from each of 2 WTD were identified as EHDV serotype 1 and serotype 2. Of the total 17 isolates, 11 were from clinically healthy ruminants, and 6 were from animals with clinical signs of BT or EHD. Five of the viral isolates originated from northeastern Georgia, 7 from the northwestern region, and 5 from the southwestern region; none was obtained from specimens from the southeastern region.  相似文献   

14.
An enzyme-linked immunosorbent assay has been developed to detect antibodies to epizootic hemorrhagic disease of deer virus (EHDV). The assay incorporates a monoclonal antibody to EHDV serotype 2 (EHDV-2) that demonstrates specificity for the viral structural protein, VP7. The assay was evaluated with sequential sera collected from cattle experimentally infected with EHDV serotype 1 (EHDV-1) and EHDV-2, as well as the four serotypes of bluetongue virus (BTV), BTV-10, BTV-11, BTV-13, and BTV-17, that currently circulate in the US. A competitive and a blocking format as well as the use of antigen produced from both EHDV-1- and EHDV-2-infected cells were evaluated. The assay was able to detect specific antibody as early as 7 days after infection and could differentiate animals experimentally infected with EHDV from those experimentally infected with BTV. The diagnostic potential of this assay was demonstrated with field-collected serum samples from cattle, deer, and buffalo.  相似文献   

15.
Genetic relatedness of 2 strains of bluetongue virus (BTV) serotype 11 that were isolated from the same geographic site--one from host (sheep) and the other from the vector Culicoides variipennis during an enzootic of bluetongue at Bruneau, Idaho, in August 1973--was determined by comparing the oligonucleotide fingerprint analyses of the individual double-stranded RNA segments of the genomes. It was observed that the 2 strains of BTV-11 exhibit considerable differences in their genotypes, the percentage of diversity being different for each of the corresponding RNA species of the 2 strains of BTV-11. These results indicate that more than one genotype of BTV can circulate in juxtaposition in a given geographic site. The observed genotypic diversity might be due to the accumulation of point mutations on specific RNA species or antecedent reassortment of RNA segments between different BTV in nature or both.  相似文献   

16.
Bluetongue (BT) virus, an orbivirus of the Reoviridae family encompassing 24 known serotypes, is transmitted to ruminants via certain species of biting midges (Culicoides spp.) and causes thrombo-hemorrhagic fevers mainly in sheep. During the 20th century, BTV was endemic in sub-tropical regions but in the last ten years, new strains of BTV (serotypes 1, 2, 4, 8, 9, 16) have appeared in Europe leading to a devastating disease in naive sheep and bovine herds (serotype 8). BTV enters into insect cells via the viral inner core VP7 protein and in mammalian cells via the external capsid VP2 haemagglutinin, which is the major determinant of BTV serotype and neutralization. BTV replicates in mononuclear phagocytes and endothelial cells where it induces expression of inflammatory cytokines as well as apoptosis. BTV can remain as nonreplicating entities concealed in erythrocytes for up to five months. Homologous protection against one BTV serotype involves neutralizing antibodies and T cell responses directed to the external VP2 and VP5 proteins, whereas heterologous protection is supported by T cells directed to the NS1 non structural protein and inner core proteins. Classical inactivated vaccines directed to a specific serotype generate protective immunity and may help control current epidemic situations. New recombinant vaccine strategies that allow differentiating infected from vaccinated animals and that generate cross protective immunity are urgently needed to efficiently combat this worldwide threatening disease.  相似文献   

17.
Since 1999, several serotypes of bluetongue virus (btv) have been isolated in the western part of the Mediterranean basin, and since 2000, Corsica has been exposed to three different serotypes: BTV serotype 2 in 2000, BTV serotype 4 (BTV-4) in 2003 and BTV serotype 16 in 2004. In 2000 there were no surveillance systems for bluetongue, but in 2003, active surveillance of the circulation of BTV and its vector Culicoides species, aided by a raised level of awareness in farmers and veterinarians, made it possible to study the introduction of BTV-4. The monitoring and analysis of the seroconversions of sentinel herds of goats, clinical signs and meteorological variables showed that the serotype had been present in the island since May that year, but clinical signs were first observed only in October. Moreover, the weather conditions and wind patterns were suitable for the transport of Culicoides species from Sardinia in May. These observations suggest that btv had been transported on air currents from a southern infected area, and that it could have spread without causing clinical signs of disease for a few months.  相似文献   

18.
Dual serotypes of bluetongue virus (BTV) were recovered from field-collected samples of sheep and cattle blood. Two sheep, each infected with both BTV serotypes 10 and 17, were found in a flock with bluetongue disease associated with these two serotypes. One sheep infected with BTV serotypes 11 and 17 was found in a second flock; it was the only viremic sheep detected and was clinically ill. Dual serotype infections of one beef and two dairy cattle were found in three geographically separate herds; mixtures recovered were of BTV serotypes 10 and 17 and serotypes 11 and 17. Clinical signs of illness were absent in the cattle in two herds, but severe conjuctivitis was seen in several cows in a third herd, including the cow with a dual serotype infection (BTV 11 and 17). Two of the cattle with dual infections had no serological evidence of BTV as determined by the agar gel precipitin test; serum was not available from the other cow with a dual serotype infection. The significance of dual infections and immune tolerance are discussed.  相似文献   

19.
SUMMARY The polymerase chain reaction was used to detect the presence of blue-tongue virus (BTV) in a number of clinical and insect samples collected in the Northern Territory of Australia. Sequence analyses of the amplified BTV genes differentiated endemic Australian and exotic viruses. Two potential exotic BTV were detected as a result of PCR analyses of blood from sentinel animals and of the insect vector, Culicoides wadai. The detection of BTV in C wadai was the first direct demonstration of the presence of BTV in this potential vector. This new technology can significantly reduce the time taken for a diagnosis from a clinical sample and increase the amount of useful information obtained on a BTV isolate by using rapid sequencing techniques. Sequence data were used to differentiate between BTV20 isolated in 1975 and two isolates of the same serotype, isolated in 1992, and indicated that the latter were probably a recent incursion into Australia from Indonesia due to their greater VP3 sequence homology to the BTV9 (Java) than to Australian BTV isolates.  相似文献   

20.
The Palyam serogroup-specific antigen, VP7, of Chuzan virus strain K-47 was expressed in insect cells by a recombinant baculovirus. The expressed protein appeared as a single band of 38kDa corresponding to the predicted molecular mass of Chuzan virus VP7 by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). In immunoprecipitation analysis, the recombinant VP7 was not only recognized by all polyclonal antibodies against the Palyam serogroup viruses (PALV) tested in this study, but also by antisera to bluetongue virus (BTV) serotype 1, epizootic haemorrhagic disease virus (EHDV) serotypes 1 and 2. However, in Western immunoblot assay, no positive signals were observed between this protein and these antisera, even in the homologous reaction using antiserum to Chuzan virus. These findings demonstrate that the common antigenic determinants on the VP7 proteins of Chuzan virus and the other PALV serotypes are mainly conformational and that the proteins share some epitopes with those of BTV and EHDV beyond the serogroup. No cross-reactivities were detected between Chuzan virus VP7 and antisera to BTV and EHDV in agar gel immunodiffusion (AGID) and indirect ELISA tests, indicating that the recombinant VP7 is useful as a diagnostic reagent for serological tests of congenital abnormalities of cattle caused by PALV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号