首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro cultured shoots of three Chinese poplar species (Populus tomentosa, P. alba cv. Pyramidalis andP. euphratica) and an improved poplar (FS-51), as a control, were exposed to the stress of low osmotic potential, salinity and high pH, and the shoot growth was measured.P. tomentosa andP. euphratica could grow even under the high osmotic stress (0.5m mannitol; −1.7 MPa).P. euphratica shoots which were previously cultured on the medium containing 0.7m mannitol (−2.4 MPa) recovered its growth after being transplanted to the medium without mannitol. The shoot growth ofP. euphratica was not so reduced even on the medium containing 100 mM NaCl. However, growth of the other poplars markedly reduced with 10 mM NaCl. Medium pH (pH 5.8–10) also did not affect the shoot growth ofP. euphratica. These poplars have different tolerance to the stresses in cultured shootin vitro. P. euphratica was extremely tolerant to the stresses which are possible to damage plants in dry land. A part of this study was presented at the 104th Annual Meeting of the Japanese Forestry Society. (1993).  相似文献   

2.
Leaf gas exchange, water relations and osmotic adjustment were studied in hydroponically grown Phillyrea latifolia L. plants exposed to 5 weeks of salinity stress (0, 80, 160, 240 and 320 mM NaCl) followed by 5 weeks of treatment with half-strength Hoagland solution. Whole-plant relative growth rate and root/shoot and lateral/structural root ratios were also evaluated. Net CO2 assimilation rate, stomatal conductance and transpiration rate were markedly decreased by all of the salt treatments. Growth was also strongly depressed by all salt treatments, especially lateral root growth. Leaf water potential decreased soon after salinity stress was imposed, whereas there was a lag of several weeks before leaf osmotic potential decreased in response to the salt treatments. After 5 weeks of salinization, leaf turgor of salt-treated plants was similar to that of controls. Although Na+ + Cl- contributed little to the salt-induced changes in osmotic potential at full turgor (Psi(piFT)), the contributions of K+, mannitol (Man) and glucose (Glc) to Psi(piFT) markedly increased as external salinity increased. Salt accumulation was negligible in the youngest leaves, which mostly accumulated soluble carbohydrates and K+; in contrast, old leaves served as storage sinks for Na+ and Cl-. Photosynthetic performance of salt-treated plants fully recovered once salt was leached from the root zone, with the recovery rate depending on the severity of the salt stress previously experienced by the plants. Recovery of gas exchange occurred even though the leaves still had a salt load similar to that detected in leaves at the end of the 5-week salinity period, and had markedly lower concentrations of K+ and soluble carbohydrates than control leaves. We conclude that salt-induced water stress primarily controlled gas exchange of salt-treated P. latifolia leaves, whereas the salt load in the leaves did not cause irreversible damage to the photosynthetic apparatus.  相似文献   

3.
One-year-old rooted cuttings of olive (Olea europaea L. cvs. Frantoio and Leccino) were grown either hydroponically or in soil in a greenhouse. Plants were exposed to NaCl treatments (0, 100, and 200 mM) for 35 days, followed by 30 to 34 days of relief from salt stress to determine whether previously demonstrated genotypic differences in tolerance to salinity were related to water relations parameters. Exposure to high salt concentrations resulted in reductions in predawn water potential (Psi(w)), osmotic potential at full turgor (Psi(piFT)), osmotic potential at turgor loss point (Psi(piTLP)), and relative water content (RWC) in both cultivars, regardless of the growth substrate. Leaf Psi(w) and RWC returned to values similar to those of controls by the end of the relief period. The effect of salinity on Psi(pi) appeared earlier in Leccino than in Frantoio. Values for Psi(piFT) were -2.50, -2.87, and -3.16 MPa for the 0, 100, and 200 mM salt-treated Frantoio plants, respectively, and -2.23, -2.87, and -3.37 MPa for the corresponding Leccino plants. Recovery of Psi(pi) was complete for plants in the 100 mM salt treatment, but not for plants in the 200 mM salt treatment, which maintained an increased pressure potential (Psi(pi)) compared to control plants. Net solute accumulation was higher in Leccino, the salt-sensitive cultivar, than in Frantoio. In controls of both cultivars, cations contributed 39.9 to 42.0% of the total Psi(piFT), mannitol and glucose contributed 27.1 to 30.8%, and other soluble carbohydrates contributed 3.1 to 3.6%. The osmotic contribution of Na(+) increased from 0.1-2.1% for non-treated plants to 8.6-15.5% and 15.6-20.0% for the 100 mM and 200 mM salt-treated plants, respectively. The mannitol contribution to Psi(piFT) reached a maximum of 9.1% at the end of the salinization period. We conclude that differences between the two cultivars in leaf water relations reflect differences in the exclusion capacities for Na(+) and Cl(-) ions.  相似文献   

4.
The transgenic poplar (Populus tremula L.) was obtained by transfer of the ugt and acb genes via triparental mating, which was employed to deliver large fragments of TDNA as a cluster. Freshly harvested seeds of local poplar were placed on MS agar medium and plantlets were obtained. After 1 year of subcultivation, plantlets were infected with a transconjugant of triparental mating with target ugt and acb genes into axillary buds. The transformed sprouts so obtained were cut and subcultivated on agar medium with an addition of 0.6 mg/l indole-3-butyric acid as an auxin source. The transformed sprouts showed GUS activity and resistance to gentamycin and kanamycin. The integrity of the target ugt and acb genes into poplar genome was demonstrated via PCR and Southern blot hybridisation. The transgenic poplar plants revealed a higher growth energy, corresponding to a higher content of IAA as opposed to control plants. Both transgenic and non-transformed plants were potted into soil for outdoor acclimatisation and subsequently transferred to earth in beds. Growing outside during 3 years, the transgenic poplar demonstrated a higher growth rate with fast bud and branch development.  相似文献   

5.
We studied the response of nodal segments of Eucalyptus microtheca F.J. Muell. to salt stress in a tissue culture system. Three clones of Eucalyptus microtheca (37, 42 and 43) were grown in vitro under saline conditions (0-140 mM NaCl) for three months. The survival of all three clones decreased with increasing concentrations of NaCl in the medium, but the presence of up to 70 mM NaCl stimulated rooting in Clones 37 and 42. Shoot elongation of Clone 43 was less affected by salt than that of Clones 37 and 42. Leaf growth, expressed as leaf length, was stimulated 40% in Clone 42 and 33% in Clone 43, but was progressively inhibited up to 27% by 70 mM NaCl in Clone 37. Massive accumulation of Na(+) and Cl(-) occurred, especially in Clones 42 and 43 (4000 and 3000 mmol Na(+) kg(DW) (-1), respectively), as the salinity of the culture solution increased, and this was correlated with inhibition of growth. Because of a reduction in the accumulation of K(+) with increasing salinity, the K(+)/Na(+) ratio decreased from a control value of 4.5 to 0.14 in shoots grown in the presence of 140 mM NaCl. The development of techniques for selecting seedlings by monitoring the physiology of shoots in vitro instead of testing whole plants in vivo will provide a relatively simple method of selection for woody trees.  相似文献   

6.
Ferritin, a universal intracellular protein, can store large amounts of iron and improve plant resistance to abiotic and biotic stress. In this study, a ferritin gene(TaFer) from Tamarix androssowii Litv. was transferred into Populus tomentosa Carr. cv 'BJR01' via Agrobacterium. Six independent transgenic lines were obtained with a tolerance to kanamycin and three were randomly selected for further analysis. The PCR and RT-PCR results indicate that the TaFer gene had been integrated into the poplar genome. The effect of the gene on abiotic stress tolerance was tested, and the results show that transgenic plants improve growth, had higher chlorophyll and lower MDA contents, and higher relative electrical conductivity,fewer changes of SOD and POD activities, higher iron content, higher root ferric reductase activity and lower levels of ROS accumulation and cell death in response to drought, Fe-insufficient or Fe-excess tolerance. These results indicate that the TaFer gene can improve abiotic stress tolerance in transgenic Populus tomentosa.  相似文献   

7.
Li M  Li Y  Li H  Wu G 《Tree physiology》2012,32(1):104-113
Dehydration-responsive element binding/C-repeat-binding factors (DREB/CBF) control the activity of multiple stress response genes and therefore represent attractive targets for genetic improvement of abiotic stress tolerance. Paper mulberry (Broussonetia papyrifera L. Vent) is well known for its bark fibers and high levels of chalcone and flavonoid derivatives. Transgenic paper mulberry plants expressing a tall fescue (Festuca arundinacea Schreb.) FaDREB1 gene under the control of CaMV 35S were produced to examine the potential utility of FaDREB1 to increase the tolerance of paper mulberry plants to abiotic stress. The overexpressing FaDREB1 plants showed higher salt and drought tolerance than the wild-type plants (WT). After 13 days of withholding water, or 15 days in the presence of 250 mM NaCl, all the WT plants died, while the over-expressing FaDREB1 plants survived. The FaDREB1 plants had higher leaf water and leaf chlorophyll contents, accumulated more proline and soluble sugars, and had less ion leakage (which reflects membrane damage) than the WT plants had under high salt- and water-deficient conditions. The 35S promoter-driven expression of FaDREB1 did not cause growth retardation under normal growth conditions. Therefore, improved tolerance to multiple environmental stresses in paper mulberry might be achieved via genetic engineering through the ectopic expression of an FaDREB1 gene.  相似文献   

8.
Introduction Salinity is a major factor in inhibiting plant growth and decreasing forest productivity. Up to 1997, the total area affected by salinity in the world had amounted to 930 million hm2 (FAO), and is still increasing. A global study of land use …  相似文献   

9.
The growth and morphological characteristics of 25 species of poplar were investigated. The cuttings were cultivated in Hoagland Nutrient Solution, which was made with sodium chloride (NaCl) solutions of concentration of 1.00, 3.00, 4.00, 5.00, 6.00, and 8.00 g/L, respectively. Under such salt stress, the new branch length and biomass accumulation of cuttings decreased as the salt concentration increased. The root/shoot ratio of most of species showed an escalation and then reduction tendency. Under low con...  相似文献   

10.
[目的]DET2基因编码一个5α-还原酶,是油菜素内酯(BRs)合成过程中的关键限速基因。研究DET2基因在杨树生长发育中的作用,对于进一步研究油菜素内酯在木本植物中的调控机制有重要意义。[方法]从银腺杨84K(Populus alba×P. glandulosa,‘84K’)克隆得到拟南芥AtDET2同源基因PagDET2,利用生物信息学对其进行序列比对、生化特征分析、构建系统发育进化树。通过RT-PCR分析其在杨树中的表达模式。构建由CaMV 35S强启动子驱动的过表达载体,通过农杆菌介导的叶盘转化法转化84K杨,得到PagDET2-OE转基因植株。分析过表达DET2基因对于转基因植株内源BRs含量、植株生长和抗逆的影响。[结果]克隆了包含全长编码区PagDET2基因全长,可编码一个长度为257个氨基酸的蛋白质。其蛋白序列与毛果杨、拟南芥、水稻、棉花、大豆、番茄DET2蛋白同源性较高,说明该基因在进化过程中相对保守。PagDET2在84K杨不同组织中均检测到表达,其在茎中的表达较高。通过ELISA检测植物BRs含量发现,过量表达DET2可以显著提高杨树内源BRs含量。过量表达DET2基因,可以导致转基因植株的高生长,但对盐胁迫更加敏感。[结论]DET2基因作为BRs合成的关键基因,在杨树中过量表达可以显著提高内源BRs含量,促进植株增高。DET2转基因植株的获得为进一步分析BR参与木本植物生长发育的调控机制奠定了基础。  相似文献   

11.
We tested the effects of ectomycorrhizal (ECM) inoculation on greenhouse-grown white spruce (Picea glauca (Moench) Voss) and jack pine (Pinus banksiana L.) seedlings to be used for revegetation of salt-affected tailing sands resulting from the exploitation of oil sand in northeastern Alberta, Canada. White spruce and jack pine seedlings were inoculated with three ECM fungi selected for their in vitro tolerance to excess Na+ and Cl-: Hebeloma crustuliniforme (Bull) Quel. UAMH 5247, Laccaria bicolor Maire (Orton) UAMH 8232 and a Suillus tomentosus (Kauff.) Sing., Snell and Dick isolate from a salt-affected site. The physiological responses of the seedlings to a gradient of NaCl concentration (0, 50, 100 and 200 mM) were assessed over four weeks by: (1) Na+ accumulation and allocation; (2) chlorophyll a fluorescence; (3) growth, (4) water content; and (5) organic osmolyte accumulation. Jack pine seedlings were more sensitive than white spruce seedlings to increasing Na+ and Cl- concentrations. Both species showed decreasing biomass accumulation, and increasing concentrations of organic osmotica and Na with increasing NaCl concentration. White spruce seedlings inoculated with the S. tomentosus isolate had the best growth response at all NaCl concentrations tested. Although jack pine seedlings inoculated with the L. bicolor or S. tomentosus isolate exhibited the highest growth in the 50 and 100 mM NaCl treatments, both fungi increased the photochemical stress and dehydration of their hosts in the 200 mM NaCl treatment. At the latter concentration, jack pine seedlings inoculated with H. crustuliniforme showed the greatest tolerance to salt stress. Although the different fungi altered the physiological response of the host in different ways, inoculation with salt-stress-tolerant ECM fungi increased growth and reduced the negative effects of excess NaCl. Use of controlled mycorrhization may increase survival of coniferous seedlings used for revegetation of salt-affected sites.  相似文献   

12.
Transgenic lines were achieved by transforming the E. coli 1-phosphate mannitol dehydrogenase gene (mtl-D) into the Populus tomentosa Carr. genome. An Agrobacterium tumefaciens strain (AGL1), constructed by cloning mtl-D into the disarmed plasmid pBin438, was used to infect leaves of the clone YW2. The infected leaf discs were cultured on a medium containing 30 mg·L-1 kanamycin and 500 mg·L-1 cefotaxime. Transgenic plantlets regenerated from the infected leaves, rooted on the medium containing 30 mg·L-1 kanamycin. PCR and a Southern blotting test verified that the exogenous mtl-D gene had integrated into the transformation plants of the P. tomentosa genome. The mannitol content in control plant was 69μg·g-1 FW, and the mannitol contents of the transgenic lines T1 to T5 ranged between 103.7 and 289.5μg·g-1 FW. Of the shoots of the control plants 20% survived; on the medium containing 0.6% NaCl, 60% and 70% of two transgenic shoots survived on a medium containing 0.8% NaCl.  相似文献   

13.
【目的】 TATA框结合蛋白相关因子TAF10作为基本转录因子之一,在生长发育和胁迫响应过程中发挥着广泛的、重要的生物学作用。对蜡梅中TAF10同源基因 CpTAF10的克隆与功能分析,有利于丰富对植物TAFs基因功能的认识,并为解析蜡梅抗逆形成的转录调节机理提供新的理论依据。【方法】以转录组数据库中获得的蜡梅TAFs家族基因序列,克隆得到 CpTAF10基因的cDNA序列,并对其编码蛋白进行序列特征和进化树分析。采用实时荧光定量PCR 技术分析 CpTAF10基因在蜡梅不同组织及花期中的表达特性,以及高温、低温、盐胁迫及ABA处理后的表达变化。同时,构建 CpTAF10基因的过表达载体,采用花序侵染法进行拟南芥遗传转化,对拟南芥转基因纯合株系进行表型观察和胁迫耐性分析。【结果】获得的 CpTAF10基因 cDNA序列为712 bp,包含405 bp的开放阅读框(ORF),编码134个氨基酸,蛋白理论分子量为15.21 kDa,预测的等电点pI值为5.19。CpTAF10蛋白序列与其他植物同源序列具有较高的同源性,蛋白多序列比对显示CpTAF10蛋白属于TAF10同源蛋白,并含有组蛋白折叠结构域。表达特性分析结果发现,CpTAF10基因在蜡梅的根、茎、子叶、幼叶、成熟叶和花6个不同组织中均有不同程度的表达,其中,在成熟叶中的表达量最高。 CpTAF10在蜡梅花朵的不同花期中,呈现出波动的表达模式,在衰老期表达量最高。在低温、盐胁迫和ABA处理的蜡梅叶片中均能被诱导表达,但其表达变化各不相同。在拟南芥中过表达 CpTAF10基因可提高盐胁迫下拟南芥种子的萌发率,相对于野生型植株,转基因植株的主根和侧根在盐胁迫下均表现出一定的生长优势。【结论】 CpTAF10基因能在低温、盐胁迫和ABA处理后诱导表达,可能参与蜡梅逆境胁迫耐性的分子调控。在拟南芥中过表达 CpTAF10基因显著提高了转基因拟南芥的萌芽率及主根和侧根的生长优势,在一定程度上可增强植物的盐胁迫耐性。  相似文献   

14.
转果聚糖蔗糖转移酶基因银腺杨的获得   总被引:8,自引:0,他引:8  
采用农杆菌介导的遗传转化方法,将来自枯草杆菌的果聚糖蔗糖转移酶基因(SacB)导入银腺杨,以提高杨树对水分胁迫的抗性。以来自无菌培养的叶片为外植体,通过大约10 0 0个叶盘与农杆菌LBA4 4 0 4共培养,将植物双元表达载体pKP中SacB基因导入银腺杨基因组,经卡那霉素筛选后,共获得10 2株卡那霉素抗性植株。经PCR特异性扩增和Southern点杂交分析,证明其中97株再生植株基因组DNA中整合了SacB基因。对其中的6 2个无性系进行RT PCR分析,结果表明SacB基因在其中的5 0个无性系中获得表达。温室生长观察表明,转基因无性系外部形态与对照相比没有稳定的显著差异,少数部分转基因无性系的生长明显受到抑制,其他转基因无性系生长正常。这些转基因无性系的获得为培育抗旱转基因杨树奠定了基础。  相似文献   

15.
Development of transgenic plants with tolerance to environmental stress is an important goal of plant biotechnology. Late-embryogenesis-abundant(LEA) proteins accumulate in seeds during late embryogenesis, where they protect cellular membranes and macromolecules against drought. In this work, we transferred the Tamarix androssowii LEA gene into hybrids of Populus davidiana×P. bolleana. We compared relative rates of height growth, chlorophyll fluorescence kinetic parameters, and leaf Na+ levels of six TaLEA-containing lines with non-transferred plants(NT), all grown under 0.8% NaCl stress condition. Survival percentages of transgenic lines were all higher than for NT controls after rehydration and the survival percentage of SL2 was five-fold higher than for NT controls. Seedling height increased 48.7% in SL2(from the onset of induced stress to the end of the growing season), 31% more than for the NT controls. Chlorophyll fluorescence kinetic parameters showed a marked increase in photosynthetic capacity in SL2 and SL5. Na+ levels in young leaves of transgenic lines were lower than in control NT leaves, but higher in yellow and withered leaves, indicating improved salt tolerance in transgenic lines.  相似文献   

16.
Ma Q  Yue LJ  Zhang JL  Wu GQ  Bao AK  Wang SM 《Tree physiology》2012,32(1):4-13
Zygophyllum xanthoxylum, a C(3) woody species, is a succulent xerophyte that is well adapted to arid environments. Our previous investigations showed that Na(+) has a positive effect on the growth of Z. xanthoxylum under drought conditions, which was closely related to high Na(+) accumulation in leaves. To reveal the physiological mechanisms underlying how Na(+) accumulation improves the drought resistance of Z. xanthoxylum, 3-week-old seedlings were treated with a series of additional external NaCl concentrations (5-150 mM) in sand culture experiments. Seedlings were also subjected to water deficit (30% of field water capacity) in the presence or absence of additional NaCl (50 mM) in pot experiments. The results indicated that 50 mM NaCl could mitigate deleterious impacts of water deficit on the growth of Z. xanthoxylum, by improving the relative water content, inducing a significant drop in leaf water potential and, concomitantly, increasing leaf turgor pressure and chlorophyll concentrations resulting in an enhancement of overall plant photosynthetic activity (i.e., photosynthetic rate and water use efficiency). Furthermore, NaCl (50 mM) could alleviate the inhibitory effect of water deficit on the activity of photosystem II in Z. xanthoxylum. The contribution of Na(+) to the total osmotic potential varied from 8% in the control to 13% in plants subjected to water deficit and, surprisingly, to 28% in plants grown in the presence of 50 mM NaCl under water deficit; however, the contribution of K(+) significantly decreased from 13 to 8%. These findings suggest that, under arid environments, Z.?xanthoxylum is able to accumulate a high concentration of Na(+) in its leaves and use it directly for osmotic adjustment, which was coupled with an improvement in leaf hydration and photosynthetic activity.  相似文献   

17.
This work studied the participation of ascorbic acid (AA) in the dormancy establishment of apical buds of poplar (Populus deltoides Bartram ex Marshall cv. Catfish 2) lateral branches. AA content was highest during the active growth period and decreased to the lowest content during bud dormancy. The accumulation of the oxidised form, dehydroascorbate, was similar in either growth or dormant bud stages. The supplementation of buds with AA at the end of the summer delayed bud set. Similarly, the supplementation of buds with gibberellic acid extended the growth period and kept a high AA content in the apoplast. These results suggest that a decrease in the accumulation of reduced AA might be needed for the dormancy establishment in apical buds of poplar lateral branches.  相似文献   

18.
刚毛柽柳NAC24基因的表达及抗逆功能分析   总被引:2,自引:0,他引:2  
【目的】NAC类转录因子是植物特有的最大的转录因子家族之一,广泛参与植物的生长发育过程,并在植物响应盐、干旱等多种非生物胁迫的过程中发挥至关重要的调控作用。本研究拟从盐生木本植物刚毛柽柳中克隆获得一个NAC转录因子基因,研究该基因的耐盐、抗旱功能,以期为研究木本植物NAC转录因子的抗逆分子机制奠定理论基础。【方法】在刚毛柽柳NaHCO_3胁迫转录组数据库中筛选获得一个NAC转录因子基因,将其命名为ThNAC24(GenBank登陆号:KF031949)。利用生物信息学工具将其与其他9个物种的NAC蛋白进行多序列比对,与拟南芥105个NAC蛋白进行进化树分析。分别用300 mmol·L-1 NaCl和400 mmol·L-1甘露醇对刚毛柽柳进行胁迫,在胁迫6、12、24和48 h后分别取刚毛柽柳根及叶组织。通过实时荧光定量RT-PCR(qRT-PCR)技术分析盐、干旱胁迫下ThNAC24基因在不同胁迫时间点及不同组织的表达情况,初步鉴定其是否响应盐、干旱胁迫。为进一步研究ThNAC24基因的抗逆功能,分别构建植物过表达(pROKⅡ-ThNAC24)及抑制表达(pFGC5941-ThNAC24)载体。利用农杆菌介导的高效瞬时遗传转化体系获得ThNAC24基因瞬时过表达(OE)、抑制表达(IE)及对照(Control)刚毛柽柳植株。在盐、干旱胁迫下分析比较了ThNAC24基因瞬时过表达、抑制表达及对照刚毛柽柳植株的二氨基联苯胺(DAB)和氯化硝基四氮唑蓝(NBT)染色情况,过氧化物酶(POD)和超氧化物歧化酶(SOD)活性,及电解质渗透率、失水率及丙二醛(MDA)含量,鉴定ThNAC24基因的耐盐、抗旱功能。【结果】ThNAC24基因的开放阅读框为1 023 bp,编码340个氨基酸。多序列比对结果显示ThNAC24在N端的氨基酸序列相似度比较高,具有NAC家族的序列特征;系统进化树分析结果显示ThNAC24与ANAC103和ANAC082的亲缘关系较近。qRT-PCR结果显示:盐胁迫下,ThNAC24基因上调表达,在根组织中胁迫12 h表达量最高,而叶组织中胁迫24 h的表达量最高;干旱胁迫下,ThNAC24基因上调表达,在根组织中胁迫6 h表达量最高,在叶组织中胁迫12 h的表达量最高。ThNAC24基因在刚毛柽柳根和叶组织中均有表达且响应盐和干旱胁迫。过表达ThNAC24基因显著降低了刚毛柽柳H_2O_2和超氧阴离子含量,增强了POD和SOD酶的活性,从而减少活性氧(ROS)的积累。过表达ThNAC24基因能够降低刚毛柽柳在逆境胁迫下的电解质渗透率、失水率及MDA的积累,从而保护细胞膜结构的完整性。【结论】刚毛柽柳ThNAC24基因能够响应盐、干旱胁迫,过表达ThNAC24基因植株通过增强POD和SOD活性,进而提高ROS清除能力,减少细胞受损或死亡,从而提高刚毛柽柳的耐盐及抗旱能力。  相似文献   

19.
Colt cherry (Prunus avium x pseudocerasus) callus cultures were derived from leaf protoplasts, protoplasts of root cell suspension cultures, or by direct culture of leaf and root tissues. Survival of calli cultured on basal proliferation medium containing 25, 50, 100 or 200 mN (millinormal) NaCl, Na(2)SO(4) or KCl, or iso-osmotic (with NaCl) concentrations of mannitol ranged from 1 to 15%. After six transfers on the same medium, surviving cell lines were subjected to three cycles of direct recurrent selection; i.e., in each cycle, they were cultured alternately on basal proliferation medium, and on basal proliferation medium supplemented with NaCl, KCl, Na(2)SO(4) or mannitol. Salt- or mannitol-tolerant cell lines selected in this way had smaller cells than unselected cell lines, and they grew more rapidly and had higher callus and cell survival rates than unselected cell lines when cultured in the presence of salt or mannitol. Cells lines selected for tolerance to one agent (sodium salt, potassium salt or mannitol) showed minimal tolerance to another agent. However, when plants were regenerated from salt- or mannitol-tolerant callus and new cultures derived from them, the new cultures showed tolerance to all of the salts and mannitol. Plant regeneration from the new cultures was not achieved under the conditions that led to the regeneration of the parent plants from callus.  相似文献   

20.
Amines and their derivatives are known to influence insect behavior involved in feeding and reproduction. In order to examine the feasibility of improving the resistance of poplar to insect pests by the introduction of a plant-derived amine-generating transgene, explants from the hybrid poplar clone ‘INRA 717 1B4’ (P. tremula ×P. albo) were transformed with a Camptotheca acuminata tryptophan decarboxylase (TDC, EC 4.1.1.28) cDNA driven by the CaMV 35S promoter. The enzyme TDC catalyzes the decarboxylation of tryptophan to tryptamine, which, in addition to being a bioactive amine itself, is known to act as a precursor of various other indole derivatives. Putative transgenic lines were confirmed by PCR for the TDC1 gene sequence and by the expression analysis of the transgene mRNA and encoded protein. No visible phenotypic changes were associated with ectopic TDC1 expression. Chemical and radiotracer analyses of the transgenic plants revealed tryptamine accumulation as high as 4 mM in leaf tissue, and suggested that the tryptamine produced by ectopically expressed TDC was not further metabolized. Insect bioassays with the TDC transgenic plants showed that the tryptamine accumulation was consistently associated with adverse effects on feeding potential and physiology of Malacosoma disstria (forest tent caterpillar).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号