首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pear decline (PD) is an important phytoplasmal disease that occurs mainly in Europe and North America. In 1994, pear trees exhibiting symptoms typical of PD disease were observed in orchards of central Taiwan. The sequence of 16S rDNA and 16S–23S rDNA intergenic spacer region (ISR) of the causative agent of pear decline in Taiwan (PDTW) were amplified with polymerase chain reaction (PCR) using a DNA template prepared from the diseased leaves. Sequence analysis of 16S rDNA revealed that the PDTW agent was closely related to the phytoplasmas of the apple proliferation group that cause diseases in stone fruits, pear and apple. Consistent with the result of 16S rDNA sequence analysis, sequence analysis of the 16S–23S rDNA ISR and putative restriction site analyses of 16S rDNA and 16S–23S rDNA ISR sequences provided further support for the view that the PDTW phytoplasma causing pear decline in Taiwan may represent a new subgroup of the apple proliferation group. According to the rDNA sequence of PDTW phytoplasma, two specific PCR primer pairs, APf2/L1n and fPD1/rPDS1, were designed in this study for the detection of the etiological agent in pear trees and insect vectors. Based on the sequence analyses of the PCR-amplified fragments, two species of pear psyllas, Cacopsylla qianli and Cacopsylla chinensis, were found to carry PDTW phytoplasma.  相似文献   

2.
In several European countries apple trees are affected by apple proliferation disease, which is usually associated with the presence of ‘Candidatus Phytoplasma mali’. During 2010, samples from several apple trees displaying proliferation symptoms were collected throughout the Czech Republic to verify identity of phytoplasmas detected in association with the disease. The majority of the 74 apple trees examined using molecular tools were positive for ‘Ca. P. mali’ presence. The 16S–23S ribosomal genes, the ribosomal protein genes and the nitroreductase and rhodonase like genes were then studied to verify phytoplasma strain variability on multigenic bases. Two RFLP profiles and correspondingly two genetic lineages were found in the PCR-amplified fragments covering the 16S–23S rDNA spacer region. ‘Ca. P. mali’ strains belonging to rpX-A subgroup were identified in the majority of the apple tree sampled, whereas phytoplasmas belonging to the rpX-B subgroup were distributed sporadically. The apple proliferation subtypes AP-15 and AT-2 exhibited nearly equal occurrence; the AT-1 subtype and a mixture of the two or all three of the AP subtypes were infrequently found. The PCR/RFLP results were confirmed by nucleotide sequence analyses of selected ‘Ca. P. mali’ strains.  相似文献   

3.
The genetic relatedness of phytoplasmas associated with dieback (PDB), yellow crinkle (PYC) and mosaic (PM) diseases in papaya was studied by restriction fragment length polymorphism (RFLP) analysis of the 16S rRNA gene and 16S rRNA/23S rRNA spacer region (SR). RFLP and SR sequence comparisons indicated that PYC and PM phytoplasmas were identical and most closely related to members of the faba bean phyllody strain cluster. By comparison the PDB phytoplasma was most closely related to Phormium yellow leaf (PYL) phytoplasma from New Zealand and the Australian grapevine yellows (AGY) phytoplasma from Australia. These three phytoplasmas cluster with the stolbur and German grapevine yellows (VK) phytoplasmas within the aster yellows strain cluster. Primers based on the phytoplasma tuf gene, which amplify gene products from members of the AY strain cluster, also amplified a DNA product from the PDB phytoplasma but not from either the PYC or PM phytoplasmas. Primers deduced from the 16S rRNA/SR selectively amplified rDNA sequences from the PDB and AGY phytoplasmas but not from other members of the stolbur strain cluster. Similarly, primers designed from 16S rRNA/SR amplified rDNA from the PYC and PM phytoplasmas but not from the PDB phytoplasma. These primers may provide for more specific detection of these pathogens in epidemiological studies.  相似文献   

4.
The identity of phytoplasmas detected in strawberry plants with green petal (SGP) and lethal yellows (SLY) diseases was determined by RFLP analysis of the 16S rRNA gene and adjacent spacer region (SR). RFLP and sequence comparisons indicated that the phytoplasmas associated with SGP and SLY were indistinguishable and were most closely related to ' Candidatus Phytoplasma australiense', the phytoplasma associated with Australian grapevine yellows, papaya dieback and Phormium yellow leaf diseases. This taxon lies within the aster yellows strain cluster. Primers based on the phytoplasma tuf gene, which amplify only members of the AY strain cluster, amplified a DNA product from the SGP and SLY phytoplasmas. Primers deduced from the 16S rRNA/SR of P. australiense that amplify only members of this taxon amplified rDNA sequences from the SGP and SLY phytoplasmas. Primers that selectively amplify members of the faba bean phyllody (FBP) phytoplasma group, the most commonly occurring phytoplasma group in Australia, did not amplify rDNA from the SGP and SLY phytoplasmas.  相似文献   

5.
Previously undescribed phytoplasmas were detected in diseased plants of dandelion (Taraxacum officinale) exhibiting virescence of flowers, thistle (Cirsium arvense) exhibiting symptoms of white leaf, and a Gaillardia sp. exhibiting symptoms of stunting and phyllody in Lithuania. On the basis of restriction fragment length polymorphism (RFLP) analysis of 16S rDNA amplified in PCR, the dandelion virescence (DanVir), cirsium whiteleaf (CirWL), and gaillardia phyllody (GaiPh) phytoplasmas were classified in phylogenetic group 16SrIII (X-disease phytoplasma group), new subgroups III-P and III-R and subgroup III-B, respectively. RFLP and nucleotide sequence analyses revealed 16S rRNA interoperon sequence heterogeneity in the two rRNA operons, rrnA and rrnB, of both DanVir and CirWL. Results from phylogenetic analysis based on nucleotide sequences of 16S rDNA were consistent with recognition of the two new subgroups as representatives of distinct new lineages within the group 16SrIII phytoplasma subclade. The branching order of rrnA and rrnB sequences in the phylogenetic tree supported this interpretation and indicated recent common ancestry of the two rRNA operons in each of the phytoplasmas exhibiting interoperon heterogeneity.  相似文献   

6.
Winter oilseed rape grown in several areas in South Bohemia showed symptoms of stunting, leaf reddening and extensive malformation of floral parts. Phytoplasmas were consistently observed by using electron microscopy only in phloem tissue of symptomatic plants. DNA isolated from infected and healthy control plants was used in PCR experiments. Primer pairs R16F2/R2, P1/P7 and rpF2/R2, amplifying, respectively, 16S rDNA, 16S rDNA plus spacer region and the beginning of the 23S and ribosomal protein gene L22 specific for phytoplasmas, were used. According to RFLP and sequence analyses of PCR products, the phytoplasma from rape was classified in the aster yellows phytoplasma group, subgroup 16SrI-B. The PCR products from the Czech phytoplasma-infected rape also had RFLP profiles identical to those of phytoplasma strains from Italian Brassica . This first molecular characterization of phytoplasmas infecting rape compared with strains from Brassica does not, however, clearly indicate differences among isolates of the same 16SrI-B subgroup. Further studies on other chromosomal DNA portions could help the research on host specificity or on geographical distribution of these phytoplasmas.  相似文献   

7.
 利用植原体16S rDNA通用引物对采集的北京和天津黄化病桃树总DNA进行巢式PCR检测,证明发病样本的病原为桃黄化病植原体。经过检测昆虫总DNA和经取食过的人工培养液DNA中桃黄化病植原体的16S rDNA,结果表明桃黄化病植原体的有效传播媒介昆虫为桃一点叶蝉。将带毒桃一点叶蝉个体的头部、胸部以及腹部分离,分别在这些部位检测到桃黄化病植原体的16S rDNA,说明桃一点叶蝉的头部、胸部以及腹部都可带毒,表明植原体可从植物汁液进入叶蝉的口针、食道和肠道。  相似文献   

8.
High tolerance of European plum varieties to plum leptonecrosis   总被引:1,自引:0,他引:1  
A 13 year comparative study was carried out on the behaviour of four European and two Japanese plum varieties grown in adjacent rows in an area of northern Italy where plum leptonecrosis is epidemic. Within seven years, 100% of the Japanese plum trees became symptomatically infected. Nine years after planting, five trees of each of the European cvs, which were asymptomatic, were top-grafted with healthy buds of the cv Ozark Premier, which is an indicator for plum leptonecrosis. Based on the results of PCR analysis, DAPI staining and on the reaction of the top-grafted Ozark Premier indicators, 50% of the European plum trees, despite their healthy appearance, were shown to be infected with plum leptonecrosis. The detectable presence and graft transmissibility of the plum leptonecrosis phytoplasma in the asymptomatic European plum trees means that the European plum trees are not resistant to the infection but that they are tolerant. The active presence of a still unknown vector/s in the investigated area is stressed as well as the important role of Prunus domestica L. played in the conservation and spread of plum leptonecrosis.  相似文献   

9.
Russian olive trees (Elaeagnus angustifolia) showing witches’ broom symptoms typical of phytoplasma infection were observed in the Urmia region of Iran. A phytoplasma named Russian olive witches’ broom phytoplasma (ROWBp-U) was detected from all symptomatic samples by amplification of the 16S rRNA gene and 16S/23S rDNA spacer region using the polymerase chain reaction (PCR) which gave a product of expected length. DNA from symptomless plants used as a negative control yielded no product. The sequence of the 16S rRNA gene and 16S/23S rDNA spacer region of ROWBp-U showed 99% similarity with the homologous genes of members of the aster yellows group. We also detected a phytoplasma in neighboring alfalfa plants (AlWBp-U) showing severe witches’ broom symptoms. An 1107 bp PCR product from the 16S rRNA gene showed 99% homology with the corresponding product in ROWBp-U, suggesting the presence of the same phytoplasma actively vectored in the area. Further observations showed that Russian olive trees with typical ROWB symptoms were present in an orchard near Tehran which is located over 530 km south-east of the original Urmia site. The corresponding sequence of this phytoplasma (ROWBp-T) showed 99% homology to that of the ROWBp-U. A sequence homology study based on the 16S rRNA gene and 16S/23S rDNA spacer region of ROWBp-U and other phytoplasmas showed that ROWBp-U is most closely related to the 16SrI group. To our knowledge, this is the first report of a phytoplasma infection in a member of the Elaeagnaceae.  相似文献   

10.
臭矢菜丛枝病植原体的分子鉴定研究   总被引:1,自引:0,他引:1  
 本实验采用DAPI荧光显微镜、PCR、克隆和测序等技术,对海南臭矢菜丛枝病样进行了检测和鉴定。以染病臭矢菜总DNA为模板应用3对植原体特异性引物进行PCR扩增,获得PCR产物为16S rDNA(1 430 bp)、16S-23S rDNA(358bp)、rp DNA(1 294 bp)。应用DNA回收试剂盒获得了3个PCR扩增片断的纯化产物,并克隆到DH5α大肠杆菌中测序。应用DNAMAN和MEGA软件对获得的序列与NCBI数据库中植原体序列进行同源性分析和构建系统发育树。结果显示臭矢菜丛枝病植原体与花生丛枝病植原体序列同源性最高,16S rDNA的序列同源性为99.9%,16S-23S rDNA高达100%,rp为99.7%,因而将臭矢菜丛枝病植原体归为花生丛枝组(16SrⅡ),根据16S rDNA的RFLP分析,将其归为16SrⅡ-A亚组。  相似文献   

11.
ABSTRACT In the spring of 2000, an aster yellows (AY) epidemic occurred in carrot crops in the Winter Garden region of southwestern Texas. A survey revealed that vegetable crops, including cabbage, onion, parsley, and dill, and some weeds also were infected by AY phytoplasmas. Nested polymerase chain reaction (PCR) and restriction fragment length polymorphism analysis of PCR-amplified phytoplasma 16S rDNA were employed for the detection and identification of phytoplasmas associated with these crops and weeds. Phytoplasmas belonging to two subgroups, 16SrI-A and 16SrI-B, in the AY group (16SrI), were predominantly detected in infected plants. Carrot, parsley, and dill were infected with both subgroups. Onion and three species of weeds (prickly lettuce, lazy daisy, and false ragweed) were predominantly or exclusively infected by subgroup 16SrI-A phytoplasma strains, while cabbage was infected by subgroup 16SrI-B phytoplasmas. Both types of phytoplasmas were detected in three leafhopper species, Macrosteles fascifrons, Scaphytopius irroratus, and Ceratagallia abrupta, commonly present in this region during the period of the epidemic. Mixed infections were very common in individual carrot, parsley, and dill plants and in individual leafhoppers. Sequence and phylogenetic analyses of 16S rDNA and ribosomal protein (rp) gene sequences indicated that phytoplasma strains within subgroup 16SrI-A or subgroup 16SrI-B, detected in various plant species and putative insect vectors, were highly homogeneous. However, based on rp sequences, two rpI subgroups were identified within the subgroup 16SrI-A strain cluster. The majority of subgroup 16SrI-A phytoplasma strains were classified as rp subgroup rpI-A, but phytoplasma strains detected in one onion sample and two leafhoppers (M. fascifrons and C. abrupta) were different and classified as a new rp subgroup, rpI-N. The degree of genetic homogeneity of the phytoplasmas involved in the epidemic suggested that the phytoplasmas came from the same pool and that all three leafhopper species may have been involved in the epidemic. The different phytoplasma population profiles present in various crops may be attributed to the ecological constraints as a result of the vector-phytoplasma-plant three-way interaction.  相似文献   

12.
In February 2007, sweet orange trees with characteristic symptoms of huanglongbing (HLB) were encountered in a region of S?o Paulo state (SPs) hitherto free of HLB. These trees tested negative for the three liberibacter species associated with HLB. A polymerase chain reaction (PCR) product from symptomatic fruit columella DNA amplifications with universal primers fD1/rP1 was cloned and sequenced. The corresponding agent was found to have highest 16S rDNA sequence identity (99%) with the pigeon pea witches'-broom phytoplasma of group 16Sr IX. Sequences of PCR products obtained with phytoplasma 16S rDNA primer pairs fU5/rU3, fU5/P7 confirm these results. With two primers D7f2/D7r2 designed based on the 16S rDNA sequence of the cloned DNA fragment, positive amplifications were obtained from more than one hundred samples including symptomatic fruits and blotchy mottle leaves. Samples positive for phytoplasmas were negative for liberibacters, except for four samples, which were positive for both the phytoplasma and 'Candidatus Liberibacter asiaticus'. The phytoplasma was detected by electron microscopy in the sieve tubes of midribs from symptomatic leaves. These results show that a phytoplasma of group IX is associated with citrus HLB symptoms in northern, central, and southern SPs. This phytoplasma has very probably been transmitted to citrus from an external source of inoculum, but the putative insect vector is not yet known.  相似文献   

13.
Red clover (Trifolium pratense) and Ladino clover (Trifolium repens) plants showing phytoplasma-associated symptoms (yellowing/reddening, virescence and phyllody) have been recovered in Friuli-Venezia Giulia, Italy. Using AluI RFLP analysis of PCR amplified 16S rDNA we showed that the disease can be caused independently by two phylogenetically distinct phytoplasmas. One of them showed the very typical 16S rDNA RFLP pattern of the agent of Clover Phyllody in Canada (CCPh). The 16S rDNA of the other phytoplasma (Italian Clover Phyllody phytoplasma, ICPhp) has been PCR amplified, cloned and sequenced. The sequence revealed high similarity (>98%) with phytoplasmas belonging to the X disease cluster, which includes organisms not reported to cause phyllody on their hosts. The analysis by AluI RFLP of the PCR amplified pathogen 16S rDNA from other herbaceous plants (Crepis biennis, Taraxacum officinale, Leucanthemum vulgare) collected nearby with phytoplasma-associated symptoms showed similar patterns. Southern blot hybridization of their EcoRI digested total DNA revealed identical RFLP patterns, suggesting that the causative agent may be the same organism.Abbreviations PCR Polymerase Chain Reaction - rDNA gene for the small subunit ribosomal RNA - RFLP Restriction Fragment Length Polymorphism  相似文献   

14.
Okra plants with bunchy top disease were found to be prevalent during the period of August–October 2009 in New Delhi, India. The common symptoms observed were shortening of internodes, aggregation of leaves at the apical region, reduced leaf lamina, stem reddening, fruit bending, phyllody and stunting of plants. The disease incidence ranged from 2–60% accompanied by significant reductions in production of both flowers and seeds. Nested polymerase chain reaction targeting phytoplasma specific 16S rDNA and rp genes revealed all symptomatic plants to be positive for phytoplasma. Homology searches depicted its closest identity to phytoplasmas of 16SrI ‘Candidatus Phytoplasma asteris’, like the Sugarcane yellows and Periwinkle phyllody phytoplasmas. Profiles for 16S rDNA obtained with 10 restriction endonucleases, differed in TaqI sites for two phytoplasma isolates (BHND5 & 10) from the standard pattern of 16SrI-B subgroup, the latter was seen in the case of isolate BHND1. Restriction fragment analysis of rp genes with AluI, Tsp509I matched with patterns of the rpI-B phytoplasmas. Phylogenetic reconstruction of rp genes revealed okra bunchy top phytoplasma (BHND1) as a divergent isolate, the subsequent sequence analysis of which showed the presence of a novel BslI site. These significant differences suggest that multiple phytoplasma strains are affecting okra, one of which is a diverging lineage within the 16SrI-B group while others represent a new 16SrI subgroup not reported so far. Additionally, this is the first report of a phytoplasma associated disease in okra plants worldwide.  相似文献   

15.
Phytoplasmas infecting sour cherry and lilac in Lithuania were found to represent two lineages related to clover phyllody phytoplasma (CPh), a subgroup 16SrI-(R/S)C (formerly 16SrI-C) strain exhibiting rRNA interoperon sequence heterogeneity. 16S rDNAs amplified from the cherry bunchy leaf (ChBL) and lilac little leaf (LcLL) phytoplasmas were identical or nearly identical to those of operon rrnA and operon rrnB, respectively, of CPh. There was no evidence of 16S rRNA interoperon sequence heterogeneity in either LcLL or ChBL phytoplasma. Based on collective RFLP patterns of 16S rDNA, ChBL was classified in subgroup 16SrI-R, and LcLL was classified in new subgroup 16SrI-S. The ribosomal protein (rp) gene sequences from LcLL phytoplasma were identical to those of CPh, and strain LcLL was classified in rp subgroup rpI-C. By contrast, rp gene sequences from ChBL phytoplasma differed from those of subgroup rpI-C; based on RFLP patterns of rp gene sequences, ChBL was classified in new rp subgroup rpI-O. Single nucleotide polymorphisms (SNPs), designated here by a new SNP convention, marked members of rp subgroup rpI-C, and distinguished LcLL and CPh from ChBL and other non-rpI-C phytoplasmas in group 16SrI. The results raise questions concerning phytoplasma biodiversity assessment based on rRNA genes alone and encourage the supplemental use of a single copy gene in phytoplasma identification and classification, while drawing attention to a possible role of horizontal gene transfer in the evolutionary history of these lineages.  相似文献   

16.
Berges R  Rott M  Seemüller E 《Phytopathology》2000,90(10):1145-1152
ABSTRACT For competitive polymerase chain reaction (PCR), an internal standard DNA template was developed that consisted of a highly conserved, internally deleted 16S rDNA fragment of an aster yellows phytoplasma. The internal standard was calibrated using a quantified culture of Acholeplasma laidlawii. Serial dilutions of the internal standard and fixed amounts of target templates from infected plants were coamplified with the same primers, and the products obtained were quantified using an enzyme-linked immunosorbent assay procedure. Analysis of the data revealed that the phytoplasma concentration in the plants examined differed by a factor of about 4 x 10(6). Phytoplasma concentrations of 2.2 x 10(8) to 1.5 x 10(9) cells per g of tissue were identified in periwinkles infected with various phytoplasmas. High to moderate concentrations were detected in Malus domestica (apple) genotypes infected with the apple proliferation phytoplasma, Alnus glutinosa (alder) genotypes infected with the alder yellows phytoplasma, and most aster yellows-infected Populus (poplar) genotypes examined. Very low phytoplasma concentrations, ranging from 370 to 34,000 cells per g of tissue, were identified in proliferation-diseased apple trees on resistant rootstocks 4551 and 4608, yellows-diseased Quercus robur (oak) trees, and Carpinus betulus (hornbeam) trees. Such low concentrations, which corresponded to about 4 to 340 cells in the reaction mixture, could only be detected and quantified by nested PCR.  相似文献   

17.
利用植原体16S rDNA基因通用引物对新疆轮台县疑似杏褪绿卷叶病植株总DNA进行巢氏PCR检测,扩增出大小约1.2 kb的特异性条带。对扩增产物克隆和测序,确定特异片段大小为1248 bp。序列同源性比较和系统进化分析表明,新疆杏褪绿卷叶植原体不同分离株16S rDNA基因序列同源性极高,达到99.8%~100%。与16SrⅤ组成员的同源性达到98.2%以上,其中与16SrⅤ-B亚组的枣疯病植原体山东宝山分离株,甜樱桃绿化植原体山东分离株同源性最高,达到99.4%~99.6%。进一步虚拟RFLP分析,结果表明该植原体属于榆树黄化组(16SrⅤ)的一个新的亚组,与其相似性最高的是16SrⅤ-B亚组,相似系数为0.94。本研究首次报道了新疆杏褪绿卷叶植原体16S rDNA的序列,确定了其分类地位,为杏褪绿卷叶病的早期诊断和检测提供了基础。  相似文献   

18.
Polymerase chain reaction (PCR) assays were used to detect phytoplasmas in foliage samples from Chinaberry ( Melia azedarach ) trees displaying symptoms of yellowing, little leaf and dieback in Bolivia. A ribosomal coding nuclear DNA (rDNA) product (1·8 kb) was amplified from one or more samples from seven of 17 affected trees by PCR employing phytoplasma-universal rRNA primer pair P1/P7. When P1/P7 products were reamplified using nested rRNA primer pair R16F2n/R16R2, phytoplasmas were detected in at least one sample from 13 of 17 trees with symptoms. Restriction fragment length polymorphism (RFLP) analysis of P1/P7 products indicated that trees CbY1 and CbY17 harboured Mexican periwinkle virescence (16SrXIII)-group and X-disease (16SrIII)-group phytoplasmas, respectively. Identification of two different phytoplasma types was supported by reamplification of P1/P7 products by nested PCR employing X-disease-group-specific rRNA primer pair R16mF2/WXint or stolbur-group-related primer pair fSTOL/rSTOL. These assays selectively amplified rDNA products of 1656 and 579 bp from nine and five trees with symptoms, respectively, of which two trees were coinfected with both phytoplasma types. Phylogenetic analysis of 16S rDNA sequences revealed Chinaberry yellows phytoplasma strain CbY17 to be most similar to the chayote witches'-broom (ChWBIII-Ch10) agent, a previously classified 16SrIII-J subgroup phytoplasma. Strain CbY1 resembled the Mexican periwinkle virescence phytoplasma, a 16SrXIII-group member. The latter strain varied from all known phytoplasmas composing group 16SrXIII. On this basis, strain CbY1 was assigned to a new subgroup, 16SrXIII-C.  相似文献   

19.
从表现黄化(丛枝)症状的桉树上采集病叶,抽提主脉总DNA,采用植原体通用引物与巢式引物进行PCR和巢式PCR扩增,对扩增产物进行克隆和序列测定,获得了植原体的近全长16S rRNA基因及部分16~23S rRNA基因间隔区序列.序列分析揭示,所获得的序列与已知植原体基因组相应区段的序列高度同源,与柳叶菜变叶植原体(epilobium phyllody)和白腊树丛枝植原体(ash witches'-broom)相应序列(GenBank登录号:AY101386和AY566302)同源率为99.9%,与白腊树黄化植原体(aster yellows BD2)相应序列和番茄巨芽植原体(tomato big bud)相应序列同源率分别为99.6%和99.3%.该序列构建的系统进化树表明,引起我国广州地区桉树黄化(丛枝)病的植原体属于16SrI组(即翠菊黄化组),将其暂命名为桉树黄化(丛枝)植原体广东株系(Eucalyp-tus yellowing and witches'-broom phytoplasma strain Guangdong,EYWB-Gd).建立了桉树植原体巢式PCR检测方法,对疑似病样及桉树组培苗进行了检测,多数疑似病样检测结果为阳性,供试的10株组培苗未发现阳性样品.  相似文献   

20.
Restriction fragment length polymorphism (RFLP) analysis of PCR-amplified ribosomal DNA and Southern blot hybridization using cloned chromosomal DNA fragments from the apple proliferation (AP) phytoplasma as probes were used to investigate the genetic relationship of the California peach yellow leaf roll (PYLR) agent with phytoplasmas causing fruit tree diseases in Europe. This comparison showed that the California PYLR phytoplasma is closely related to apple proliferation (AP), pear decline, and European stone fruit yellows phytoplasmas and that it is a member of the phylogenetic AP group. The PYLR agent could clearly be distinguished from the AP and European stone fruit yellows phytoplasmas by Southern blot hybridization with DNA fragments from the AP phytoplasma and by RFLP analysis of ribosomal DNA employing Ssp I, Bsa AI, and Rsa I restriction endonucleases. However, the PYLR phytoplasma was indistinguishable from the pear decline agent by RFLP analysis of PCR-amplified ribosomal DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号