首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
石志红 《安徽农业科学》2009,37(10):4637-4638
[目的]寻求黑玉米饮料的最佳生产工艺。[方法]以成熟度为60%~70%的黑玉米鲜穗为材料生产黑玉米饮料,研究不同酶解条件、糖化时间、糖化酶用量和稳定剂等对产品质量的影响。[结果]最佳酶解条件为:a-2淀粉酶用量1%,90℃保温酶解5 min;糖化酶参考用量为:液化DE值17%,淀粉乳33%,酶制剂240 U/g淀粉,实际生产中,糖化酶加入比例1%,55~60℃保温糖化4~5 h;添加比例为0.20%的复合稳定剂(琼脂+黄原胶)的稳定效果最好;三聚磷酸钠、食盐、柠檬酸钠等对饮料电解质平衡和稳定性具有重要影响。[结论]黑玉米饮料的最佳生产工艺为:a-2淀粉酶(添加比例1%)90℃酶解5 min,糖化酶(添加比例1%)55~60℃糖化4~5 h,0.20%复合稳定剂(琼脂+黄原胶)。  相似文献   

2.
[目的]探讨超声波辅助淀粉酶和糖化酶酶解玉米淀粉的工艺条件,为提高糖收率,降低生产成本,提高企业经济效益提供参考.[方法]采用超声波辅助淀粉酶和糖化酶酶解玉米淀粉,以DE值为测定指标,液化过程选取淀粉质量浓度、加酶量、超声功率、液化反应时间4个影响因素,进行正交试验,确定最佳液化酶解工艺条件;糖化过程选取加酶量、超声功率、糖化反应时间3个影响因素,进行正交试验,确定最佳糖化酶解工艺条件.[结果]最佳液化工艺条件为:淀粉质量浓度0.3 g/ml、加酶量20 U/g淀粉,超声功率100 W,反应时间1h;最佳糖化工艺条件为:加酶量50 U/g淀粉,超声功率100 W,糖化反应时间60h.[结论]研究得到了超声波辅助淀粉酶和糖化酶酶解玉米淀粉的最佳工艺条件,在此工艺条件下,DE值达到107%以上,能够提高糖收率,节约生产成本,有助于企业经济效益的提高.  相似文献   

3.
藜麦饮料液化糖化工艺研究   总被引:1,自引:0,他引:1  
[目的]优化藜麦淀粉进行水解时的液化和糖化的工艺条件。[方法]以藜麦为原料,DE值为主要评估指标,采用单因素和正交试验设计对藜麦饮料生产中的淀粉液化和糖化工艺进行优化研究。[结果]最优液化工艺条件为α-淀粉酶用量11 U/g、液化时间45 min、液化温度65℃、pH 7.0,此时液化DE值为24.46%。最优糖化工艺条件:糖化酶用量110 U/g、糖化时间70 min、糖化温度70℃、pH 5.0,糖化DE值为63.45%。[结论]该研究可为藜麦在饮料研发方向提供一定的参考。  相似文献   

4.
抗性淀粉提取工艺的研究   总被引:1,自引:0,他引:1  
[目的]优化普鲁兰酶对大米淀粉脱支的工艺条件,以期获得较高的RS产率。[方法]以大米淀粉为原料,用普鲁兰酶对其进行脱支,采用L9(34)正交试验设计优化酶法制备RS的工艺。采用经AACC认定的76-13标准方法测定RS含量。[结果]各因子对RS产率的影响顺序为:加酶量>酶解温度>淀粉浓度>酶解时间,最佳因素水平组合为淀粉浓度25%,加酶量2.4PUN/g(干淀粉),酶解温度60℃,酶解时间14h。[结论]以大米淀粉为原料,采用普鲁兰酶对其进行脱支制备RS的最佳工艺为加酶量2.4PUN/g(干淀粉),酶解温度60℃,淀粉浓度25%,酶解时间14h,在此条件下RS产率为19.16%。  相似文献   

5.
采用微波辅助酶解法制备了玉米抗性淀粉,在固定的微波糊化条件下,考察了耐高温α-淀粉酶添加量和酶解时间、普鲁兰酶添加量和酶解时间对抗性淀粉收率的影响。结果表明:在耐高温α-淀粉酶添加量3 U/g干淀粉、酶解时间30 min,普鲁兰酶添加量8 U/g干淀粉、酶解时间4 h最佳实验条件下,抗性淀粉收率可达14.38%,实验结果可为微波辅助酶解法制备玉米淀粉提供依据。  相似文献   

6.
机械活化玉米淀粉免液化快速糖化的研究   总被引:1,自引:0,他引:1  
[目的]对机械活化玉米淀粉进行酶解研究,探讨机械活化对淀粉免液化快速糖化的影响规律。[方法]采用搅拌球磨机对玉米淀粉进行机械活化,以不同活化时间的玉米淀粉为原料,以糖化酶为糖化试剂,分别考察机械活化时间、糊化温度、反应时间、淀粉酶用量、pH、反应温度等因素对糖化DE值的影响。[结果]机械活化淀粉水解DE值明显比原淀粉高,淀粉经机械活化后对糊化温度、反应温度的依赖性降低。说明机械活化能有效破坏淀粉紧密的颗粒表面和结晶结构,降低结晶度,提高糖化酶水解的反应活性,加快酶解速度,缩短酶解时间。[结论]淀粉经机械活化处理后甚至可不经糊化直接进行酶水解,从而实现淀粉的免液化快速糖化。  相似文献   

7.
黄金莲  钟振声 《安徽农业科学》2011,39(32):20015-20017
[目的]研究普鲁兰酶对淀粉糖糖分、透射比和过滤速度的影响。[方法]通过对照试验研究普鲁兰酶对淀粉糖糖分以及透射比、过滤速度等的影响,用高效液相色谱确定各种糖的含量,探讨普鲁兰酶对不同原料淀粉糖生产的影响。[结果]普鲁兰酶能提高木薯麦芽糖中麦芽糖的含量,而以玉米和马铃薯淀粉为原料时则提高麦芽三糖的含量;以木薯和玉米淀粉为原料生产低聚异麦芽糖时,普鲁兰酶有利于提高糖的品质。加入普鲁兰酶之后大多数淀粉糖的过滤速度都减慢了,但糖浆透射比增大。[结论]研究结果为制备高品质的麦芽糖和低聚异麦芽糖提供了新的理论依据。  相似文献   

8.
以陕南豆薯淀粉浆液为试材,在单因素试验的基础上,采用L9(34)正交试验优化其液化和糖化工艺。结果表明,陕南豆薯淀粉浆液最佳的液化工艺为α-淀粉酶添加量75 U/g,液化pH值5.0,液化时间90 min,液化温度90℃;最佳的糖化工艺为糖化酶添加量200 U/g,糖化pH值4.5,糖化时间120 min,糖化温度60℃。在此优化条件下,糖化液的葡萄糖值(DE值)为16.23%。  相似文献   

9.
本试验是利用中温α-淀粉酶液化玉米淀粉,以期得到较高DE值的产品,系统的研究了液化过程中的主要影响因素及其相互作用。通过实验确定优化的最佳液化条件为:液化温度为75℃,α-淀粉酶的用量为25mg酶/g淀粉,底物浓度为35%,液化时间为26min。此条件下水解液的DE值为56.55%  相似文献   

10.
高麦芽糖浆(HMS)是以玉米淀粉为原料采用酶法生产淀粉糖的一种新型淀粉糖生产技术。淀粉经过α-淀粉酶作用,快速搅拌混合,迅速升温而液化。最佳液化条件是:α-淀粉酶用量4μ/g,温度85℃,pH值6.0,时间15分钟。液化液无色透明,含不溶物质少。糖化采用β-淀粉酶与异淀粉酶同时作用。最侄糖化条件为:β-淀粉酶用量120μ/g,异淀粉酶用量30μ/g,温度60℃,pH5.1,时间48小时。糖化液色泽浅黄,糊精含量较少,易于过滤。精制后的糖液近无色。糖液调整pH值后,可在真空下或常温常压下进行浓缩。分析薄板层析结果表明:DE值为81.6的糖液,含高麦芽糖69.7%(麦芽糖量10.9μg/ml糖浆,麦芽三糖量4.3μg/ml糖浆)。此糖浆即为高麦芽糖浆。  相似文献   

11.
木薯酒精浓醪发酵液化糖化工艺的研究   总被引:3,自引:1,他引:2  
[目的]优化木薯粉浓醪酒精发酵中液化糖化的工艺条件。[方法]以木薯粉为原料进行浓醪酒精发酵,在单因素试验的基础上,运用正交试验对液化糖化工艺中的各种参数进行了研究。[结果]正交试验表明,各因素的影响主次为:糖化酶量>糖化时间>糖化pH值>糖化温度。根据各因素的水平K值大小,确定了木薯粉浓醪酒精发酵中最佳液化工艺条件,即:料水比为1∶2.3,液化温度105℃,液化酶用量为10 U/g木薯粉,液化时间为2 h;最佳糖化工艺条件为:糖化pH值4.5,60℃时加入糖化酶150 U/g木薯粉后,直接将醪液冷却至33℃进行发酵,即糖化与发酵同时进行。在该条件下进行木薯粉浓醪酒精发酵,酒精终浓度可达16.9%(V/V)。[结论]该研究为后续发酵条件的优化以及100 L的放大试验打下了基础。  相似文献   

12.
[目的]探讨利用小麦B淀粉制备麦芽糊精的方法。[方法]在单因素试验的基础上,对B淀粉的料浆浓度、加酶量、反应时间、反应温度4个因素设3个水平进行正交试验,分析4个因素对小麦B淀粉液化程度的影响,并用高效液相色谱法测定麦芽糊精的糖分组成。[结果]结果表明,在淀粉浆pH值为6.3~6.4,加氯化钙为500 mg/L时,最优的小麦B淀粉液化工艺条件为:料浆浓度27%,反应温度95℃、反应时间40 min,加酶量30 U/g B淀粉(干基),在最佳工艺条件下得到的液化液蛋白含量很低,大概为0.46%,基本为可溶性蛋白。随着DE值的增大,小分子糖含量明显增多,七糖及以上的大分子糖明显减少。[结论]该试验为小麦B淀粉麦芽糊精的生产与应用提供了理论依据。  相似文献   

13.
甘薯渣是以甘薯为原料生产淀粉后的残渣,其中含淀粉50%左右。通过在甘薯渣粉中加入耐高温α\|淀粉酶、糖化酶和纤维素酶进行处理,然后分别对其进行保温和灭酶处理,再对糖化醪进行固液分离,浓缩得到液糖产品。经高效液相色谱(HPLC)分析发现其成分大部分为葡萄糖。利用正交试验初步得到了酶解的最佳工艺条件:料水比6%,淀粉酶加量12 U/g干物质,液化时间为60 min,糖化酶加量300 U/g干物质,纤维素酶加量0.5 U/g干物质,糖化时间为24 h。该方法工艺简单,专一性强,所得产品品质好,收率高,可有效解决甘薯渣严重污染环境的问题,且具有良好的工业应用前景。  相似文献   

14.
[目的]优化燕麦乳饮料的制作工艺。[方法]以燕麦为原料制作燕麦乳饮料,针对制作过程中影响其DE值以及原料利用率的因素料液比、酶解温度、酶解时间、加酶量等进行试验,优化出具有较高DE值和原料利用率的燕麦乳最优制作工艺,确定燕麦乳饮料主要添加物的添加量。[结果]确定制作燕麦乳饮料的最佳酶解工艺条件:料液比1∶15 g/ml,反应温度85℃,反应时间40 min,加酶量12U/g原料。在该条件下,酶解液的DE值为37.40%,原料利用率为57.49%。同时确定了燕麦乳饮料主要添加物的添加量:果葡糖浆为90 g/L,柠檬酸为0.36 g/L。[结论]研究可为燕麦的进一步开发利用提供参考依据。  相似文献   

15.
李妍  蔡慧红 《安徽农业科学》2014,(33):11879-11881,11900
[目的]研制淮山酶解饮料的最优工艺.[方法]以鲜淮山为原料,采用生物酶进行液化糖化后,在淮山水解液基础上进行调配制备淮山饮料.对淮山的护色、液化、糖化的工艺条件及淮山饮料的适宜配方进行了探讨.[结果]试验表明,选用0.1%的柠檬酸及0.2%的抗坏血酸复配护色能更好地控制淮山褐变;液化的适宜工艺条件为α-淀粉酶用量0.35%,温度为70℃,时间为1.5h;糖化的适宜工艺条件为糖化酶用量为0.15%,温度为60℃,时间为4h;在淮山水解液中加入8%白砂糖和0.15%黄原胶调配,口感风味最好.[结论]研究可为淮山的进一步开发利用提供参考依据.  相似文献   

16.
挤压膨化木薯粉生产酒精的研究   总被引:2,自引:0,他引:2  
[目的]为挤压膨化技术应用于木薯燃料酒精生产提供理论依据。[方法]将木薯挤压膨化后用于酒精发酵,通过L18(36)正交试验,得出最佳工艺条件。[结果]结果表明,当料水比为1∶2、糖化酶用量100U/g、糖化温度60℃、糖化时间45min、酵母接种量0.1%和发酵温度30℃时,酒精体积分数达16.61%,与传统酒精发酵工艺相比,酒精体积分数提高了22.76%。[结论]挤压膨化技术和高浓度酒精发酵技术相结合可以推进木薯燃料酒精行业的大规模发展。  相似文献   

17.
双酶法水解板栗淀粉工艺研究   总被引:2,自引:0,他引:2  
为使板栗中的淀粉能被人体更有效利用,减少板栗饮料生产中的分层和沉淀现象。采用双酶法(耐高温α-淀粉酶、糖化酶)对板栗浆液中的淀粉进行水解。以淀粉水解度为指标,通过单因素试验和正交试验优化,最终确定了制取板栗淀粉水解液的糊化、糖化的最佳工艺条件分别为加酶量8U/g、95℃、pH6.0、时间60min以及加酶量80U/g、60℃、pH4.0、时间50min。  相似文献   

18.
[目的]优化单酶复配酶解纤维素的条件。[方法]以经1 200 kGy~(60)Coγ-射线辐照处理过的玉米秸秆为原料,采用响应面分析法,对外切葡聚糖酶、内切葡聚糖酶、β-葡萄糖苷酶、木聚糖酶等酶进行优化。[结果]4个因素对酶解产还原糖的影响主次顺序依次为木聚糖酶、外切葡聚糖酶、β-葡萄糖苷酶和内切葡聚糖酶。得到最优酶添加量为外切葡聚糖酶1.07 U/g、内切葡聚糖酶31.53 U/g、β-葡萄糖苷酶20.81 U/g和木聚糖酶81.96 U/g。在上述条件下,试验验证还原糖产量372.624 mg/g与预测值能够很好地吻合。[结论]该中心组合设计响应面优化单酶复配酶解辐照玉米秸秆的方法可靠,可为单酶复配提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号