首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We measured seasonal variation in area-based nitrogen concentration (N), maximum rate of carboxylation (Vcmax) and maximum rate of electron transport (Jmax) in 1-year-old needles along four first-order branches within a Pinus densiflora Sieb. & Zucc. crown, and analyzed their relationships to growth irradiance and temperature. Each leaf light environment was expressed as a ratio of the monthly mean of daily integrated photosynthetically active irradiance (Iint) for the particular needle to Iint above the canopy (Irel). Needle N decreased in the upper crown during the development of new needles, whereas it remained fairly constant in the lower crown, reflecting differences between upper and lower crown needles in their contribution to the nitrogen of new needles. Gradients of N within the crown were correlated with Irel in all seasons (r2 = 0.40-0.78). Seasonal variation in N was weakly correlated with mean daily air minimum temperatures. Both Vcmax and Jmax showed seasonal variation in all first-order branches, and decreased to their lowest values in winter. The gradients of Vcmax and Jmax within the crown were not correlated with Irel in some seasons, but were correlated with changes in N in most months (r2 = 0.33-0.75), except in the winter. Furthermore, the regression slope of the relationship between N and Vcmax and the temperature response of Vcmax and Jmax exhibited seasonal variation.  相似文献   

2.
In the temperate zone of Japan, Pinus densiflora Sieb. et Zucc. bears needles of up to three age classes in the upper crown and up to five age classes in the lower crown. To elucidate the effects of leaf age on photosynthetic parameters and its relationships with leaf mass per unit area (LMA) and leaf nitrogen (N(l)) concentration on an area (N(a)) and mass (N(m)) basis, we measured seasonal variations in LMA, N(l), light-saturated photosynthetic rate (A(max)), stomatal conductance (g(s)), maximum rate of carboxylation (V(cmax)) and maximum rate of electron transport (J(max)) in leaves of all age classes in the upper and lower crown. Leaf mass per unit area increased by 27% with increasing leaf age in the lower crown, but LMA did not depend on age in the upper crown. Leaf age had a significant effect on N(m) but not on N(a) in both crown positions, indicating that decreases in N(m) resulted from dilution. Photosynthetic parameters decreased significantly with leaf age in the lower crown (39% for A(max) and 43% for V(cmax)), but the effect of leaf age was not as great in the upper crown, although these parameters exhibited seasonal variation in both crown positions. Regression analysis indicated a close relationship between LMA and N(a), regardless of age class or when each age class was pooled (r(2) = 0.57-0.86). Relationships between LMA and N(a) and among A(max), V(cmax) and J(max) were weak or not significant when all age classes were examined by regression analysis. However, compared with older leaves, relationships among LMA, N(a) and A(max) were stronger in younger leaves. These results indicate that changes in LMA and N(l) mainly reflect light acclimation during leaf development, but they are only slightly affected by irradiance in mature leaves. In conclusion, LMA and N(l) are useful parameters for estimating photosynthetic capacity, but age-related effects need to be taken into account, especially in evergreen conifers.  相似文献   

3.
We measured horizontal and vertical gradients of light (rPPFD) along four first-order branches of a Pinus densiflora Sieb. & Zucc. crown, and compared variations in specific leaf area (SLA), needle nitrogen concentration (N), chlorophyll concentration (Chl) and photosynthetic capacity (i.e., maximum rate of carboxylation (V(cmax))) along the two axes. The horizontal gradient of rPPFD along first-order branches was similar in magnitude to the vertical gradient of rPPFD from the upper to the lower crown. None of the measured parameters (i.e., SLA, N, Chl and Vcmax) were strictly proportional to rPPFD, although they were more or less correlated with light when data obtained for all of the crown were pooled (r(2) = 0.31-0.80). The slope of rPPFD against N on an area basis (Narea) for a branch in the middle of the crown orientated northward was significantly greater than the slope for a similar branch orientated southward. Horizontal variations were unrelated to age effects because measurements were all on 1-year-old needles. We conclude that factors other than light (i.e., orientation) may influence N allocation within branches. There was considerably less variation in the relationship of Vcmax to Narea (r2 = 0.58) than in the relationship of Vcmax to rPPFD (r2 = 0.41). Fractional N distribution among components of the photosynthetic machinery was constant within the crown. Together with the relationships between rPPFD and N on a mass basis (r2 = 0.80) and SLA and Vcmax (r2 = 0.60), these findings suggest that most light acclimation in P. densiflora occurs through changes in needle morphology (e.g., SLA) during development.  相似文献   

4.
Studies of nitrogen (N) use by plants have confirmed some winter N uptake; however, the mode of regulation of plant N use in winter is unknown. The regulation of N use by plants during winter may differ from that in the growing season, as plant growth strongly affects N use. We investigated the effects of winter buds on winter N use by Japanese red pine (Pinus densiflora), as a previous study demonstrated that N absorbed during winter contributes significantly to leaf growth in the following spring. We conducted a bud pruning experiment during winter to examine the effects of winter buds on winter N uptake and allocation among plant organs using 15N labeling. Over a three-week labeling period, the 15N content in roots increased to 0.20 ± 0.12 mg N g DW?1, which is equivalent to 1.8 ± 1.1 % of the total N content in the roots. However, this absorbed 15N rarely appeared in needles and buds. Bud pruning did not affect 15N uptake and allocation. On the other hand, significant total N retranslocation was found within the crowns of saplings without bud pruning, but N was not retranslocated in bud-pruned plants. The bud pruning experiment indicated that N was retranslocated from needles into winter buds. Since soil N availability changes dramatically and is unstable in many forest ecosystems, N contained in needles would be a more stable source of N than newly absorbed N.  相似文献   

5.
Leaf properties vary significantly within plant canopies, due to the strong gradient in light availability through the canopy, and the need for plants to use resources efficiently. At high light, photosynthesis is maximized when leaves have a high nitrogen content and water supply, whereas at low light leaves have a lower requirement for both nitrogen and water. Studies of the distribution of leaf nitrogen (N) within canopies have shown that, if water supply is ignored, the optimal distribution is that where N is proportional to light, but that the gradient of N in real canopies is shallower than the optimal distribution. We extend this work by considering the optimal co-allocation of nitrogen and water supply within plant canopies. We developed a simple 'toy' two-leaf canopy model and optimized the distribution of N and hydraulic conductance (K) between the two leaves. We asked whether hydraulic constraints to water supply can explain shallow N gradients in canopies. We found that the optimal N distribution within plant canopies is proportional to the light distribution only if hydraulic conductance, K, is also optimally distributed. The optimal distribution of K is that where K and N are both proportional to incident light, such that optimal K is highest to the upper canopy. If the plant is constrained in its ability to construct higher K to sun-exposed leaves, the optimal N distribution does not follow the gradient in light within canopies, but instead follows a shallower gradient. We therefore hypothesize that measured deviations from the predicted optimal distribution of N could be explained by constraints on the distribution of K within canopies. Further empirical research is required on the extent to which plants can construct optimal K distributions, and whether shallow within-canopy N distributions can be explained by sub-optimal K distributions.  相似文献   

6.
Seedlings of Eucalyptus grandis Hill ex Maiden, E. pilularis Smith and E. gummifera (Sol. ex Gaertner) Hochr. were grown in solution culture with 100 micromol phosphorus (P). After eight weeks, half of the seedlings were transferred to solution cultures containing 1 micromol P. After a further four weeks, growth, net photosynthesis and foliar P and nitrogen (N) concentrations were measured. The seeds of E. grandis came from a relatively fertile site and those of the other two species from phosphorus-deficient sites. Growth and net photosynthesis did not change in E. pilularis subjected to the low-P treatment, whereas in E. grandis, and to a limited extent in E. gummifera, the low-P treatment resulted in an increase in net photosynthesis that was associated with higher foliar N concentrations (especially protein-N), possibly as a result of nitrogen being retranslocated from the roots. In response to the low-P treatment, leaf phosphorus concentration was reduced by 50-60% in E. grandis and E. pilularis and by 20-30% in E. gummifera. Of the chemical fractions examined, the greatest decrease occurred in the inorganic-P pool. The data suggest that photosynthesis is not limited by leaf phosphorus concentrations typical of those found in Eucalyptus seedlings growing on phosphorus-deficient sites.  相似文献   

7.
We studied the effects of O(3) uptake on conductance (g(wv)) and photosynthesis (A) in needles of ponderosa pine (Pinus ponderosa Laws.) seedlings exposed for 70 days to one of three O(3) regimes-Low-O(3) (0.1 micro mol mol(-1) daily peak), High-O(3) (0.2 micro mol mol(-1) daily peak), and Low/High-O(3) (alternating 2 days Low-O(3) and 2 days High-O(3)). Seedlings exposed to charcoal-filtered air served as controls. Total O(3) exposures, expressed as ppm-h (the sum of the average hourly concentration in ppm ( micro mol mol(-1)) over the exposure period), were 77, 135, 105 and 4 for the Low-O(3), High-O(3), Low/High-O(3) and control treatments, respectively. Conductance (g(wv)) declined to about 60% of the value in control seedlings by Day 6 in seedlings in the High-O(3) treatment and by Day 37 in seedlings in the Low/High-O(3) treatment, but g(wv) did not decline at all in seedlings in the Low-O(3) treatment. At the end of the 70-day experiment, cumulative O(3) uptake, calculated from measured g(wv) values and assuming an internal O(3) concentration of zero, was 12.2, 13.5, and 14.7 mmol m(-2) for seedlings in the Low-O(3), Low/High-O(3), and High-O(3) treatments, respectively; however, O(3) uptake was reduced by 0, 24, and 36%, respectively, from that expected if there had been no decline in g(wv). With increasing total O(3) exposure, A declined, but the reduction was not strictly cumulative, i.e., A measured on Days 49 and 70 was similar for a given treatment even though both total O(3) exposure and uptake had increased. At the end of the experiment, A at near saturating CO(2) (1000 micro mol mol(-1)) and saturating photosynthetic photon flux density was reduced by about 25, 40 and 50% in seedlings in the Low-O(3), Low/High-O(3) and High-O(3) treatments, respectively, compared to the control seedlings. The ratio of internal to external CO(2) concentrations, an indicator of relative change in stomatal limitation of A, did not change over time and did not differ among treatments, suggesting that A and g(wv) decreased in parallel. After 40-60 days without O(3), A of seedlings in all O(3) treatments was not significantly different. Our data indicate that O(3)-induced stomatal closure was a result of reduced A and that decreased g(wv) reduced O(3) uptake to a rate that needles of ponderosa pine could tolerate without exhibiting further reductions in gas exchange capacity.  相似文献   

8.
Scaling leaf-level measurements to estimate carbon gain of entire leaf crowns or canopies requires an understanding of the distribution of photosynthetic capacity and corresponding light microenvironments within a crown. We have compared changes in the photosynthetic light response and nitrogen (N) content (per unit leaf area) of Pinus contorta Dougl. ssp. latifolia Engelm. (lodgepole pine) leaves in relation to their age and light microenvironment. The vertical gradient in integrated daily photosynthetic photon flux density (PPFD) from the upper to the lower crown of lodgepole pine was similar in magnitude to the horizontal gradient in daily PPFD along shoots from young to old leaves. The relationship between light-saturated net photosynthesis (A(max)) and daily PPFD was significant for both young and old leaves. However, old leaves had a lower A(max) than young leaves in a similar daily irradiance regime. For leaves of all ages from throughout the crown, A(max) was linearly related to the estimated daily net carbon gain that leaves could achieve in their natural PPFD environment (estimated A(day)) (r(2) = 0.84, P < 0.001, n = 39), indicating that estimated A(day) may be dominated by carbon fixed when leaves are light-saturated and operating at A(max). Comparison of the PPFD required to achieve A(max) and the PPFD available to the leaves showed that all of the measured leaves (n = 39), regardless of their position in the crown or age, were in light environments that could light-saturate photosynthesis for a similar proportion of the day. For all data pooled, foliar N was weakly correlated with daily PPFD. Analyzing each leaf age class separately showed that foliar N was significantly related to daily PPFD, A(max), and estimated A(day) for the youngest leaves but not for middle-aged or old leaves. Therefore, the general theory that foliar N is allocated within a crown according to total daily light availability was supported only for young (1-4 years old) leaves in this study.  相似文献   

9.
Carbon dioxide assimilation and transpiration by secondary needles of two-year-old loblolly pines (Pinus taeda L.) were measured at 2 and 21% (ambient) oxygen. Measurements were made with a Georgia provenance at irradiances (photosynthetic photon flux density) of 150, 300, 700 and 1200 micromol m(-2) s(-1) and a constant temperature of 25 degrees C, and at temperatures of 15, 25 and 35 degrees C and a constant irradiance of 1200 micromol m(-2) s(-1). Measurements were made with provenances from North Carolina, Florida, Arkansas, and Georgia at 25 degrees C and an irradiance of 1200 micromol m(-2) s(-1). There was no significant interaction between the effects of irradiance and oxygen on either net photosynthesis or leaf conductance. Taking all irradiances together, photosynthesis was 16% less and leaf conductance 28% less in 2% oxygen than in 21% oxygen. There was a significant interaction between the effects of temperature and oxygen concentration on both net assimilation and leaf conductance. Net photosynthesis at 21% oxygen relative to that at 2% was significantly reduced at 25 and 35 degrees C, but not at 15 degrees C, whereas leaf conductance at 21% oxygen relative to that at 2% was significantly increased at 15 and 25 degrees C, but not at 35 degrees C. In the provenance study, net photosynthesis was 11% higher and leaf conductance 36% lower in 2% oxygen than in 21% oxygen. There was no significant interaction between the effects of provenance and oxygen on either net photosynthesis or leaf conductance.  相似文献   

10.
We examined Pinus aristata Engelm. stands in four locations in Colorado: Almagre Mountain, Black Mountain, Goliath Peak and Quartzville. All stands are located at 3200-3700 m and face south-southeast. We measured maximum mass-based assimilation rates (A(max)) and nitrogen (N) and phosphorus (P) foliar concentrations on six foliar age classes, from which instantaneous photosynthetic N- and P-use efficiencies (PNUE and PPUE, respectively) and P:N ratios were estimated. Leaf mass per area (LMA) was also determined for each foliar age class from each site. Foliar age, P and N concentrations, and the P:N ratio explained the most variation in A(max) when data from all sites were combined. Leaf mass per area did not vary with foliar age class. Both P and N limit A(max), although P appears to be more limiting. The critical P:N ratio is approximately 0.12. Results for Black Mountain differed from the other sites, as A(max) was not correlated with age and was negatively correlated with LMA and P. Current findings showed no evidence of N saturation at the Front Range sites (Almagre Mountain and Goliath Peak); however, because P is a limiting nutrient, increased anthropogenic N availability at sites in the Front Range may cause adverse effects on photosynthesis, and perhaps growth, in the future.  相似文献   

11.
In our experiments, one-year-old Larix olgensis seedlings were cultivated in sand, and supplied with solutions with different concentrations of nitrate or phosphate. The effects of nitrogen and phosphorus supply on chlorophyll biosynthesis, total nitrogen content, and photosynthetic rate were studied. The experimental results are listed below: 1) 5-aminolevulinic acid (ALA) synthetic rate increased as nitrate concentrations supplied to larch seedlings increased from 1 to 8 mmol/L. But the rate decreased by 17% when nitrate concentration increased to 16 mmol/L, in contrast to the control. Under phosphate treatments, ALA synthetic rates were similar to those under nitrate treatments. The activities of porphobilinogen (PBG) synthase reached a maximum when larch seedlings were supplied with 8 mmol/L of nitrate or 1 mmol/L of phosphate. 2) when larch seedlings were supplied with 8 mmol/L of nitrate and 0.5 mmol/L of phosphate, the contents of chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids reached a maximum. The total nitrogen contents in leaves increased as nitrate concentrations increased. 3) When phosphate concentrations increased from 0.125 to 1 mmol/L, the total nitrogen contents in leaves slightly increased; however, continuous increase of phosphate concentrations resulted in the decrease in total nitrogen contents in leaves. When nitrate concentrations increased from 1 to 8 mmol/L, soluble protein contents in leaves increased in general, and continuous increase of nitrate concentrations induced a decrease in soluble protein contents in leaves. Under treatment of 0.25 mmol/L of phosphate, the soluble protein contents reached a maximum. 4) In general, F v/F m increased as nitrate concentrations increased from 1 to 8 mmol/L, and continuous increase of nitrate concentration resulted in decrease in F v/F m. The similar changes occurred under phosphate treatments. As nitrate concentrations increased from 1 to 8 mmol/L, photosynthetic rates gradually increased, but when nitrate concentrations increased to 16 mmol/L, photosynthetic rate reduced by 16%, in contrast to the control. Photosynthetic rates reached a maximum when seedlings were supplied with 1 mmol/L, and an oversupply of phosphate (2 mmol/L) resulted in decrease in photosynthetic rates. The results suggested that supply levels of nitrogen affected ALA biosynthetic rates, activities of PBG synthase, and affected contents of chlorophyll and carotenoids. Moreover, nitrogen supply levels affected contents of total nitrogen and soluble proteins in leaves, and net photosynthetic rates. ALA biosynthesis rates and activities of PBG synthase were affected by phosphate supply, but contents of chlorophyll and carotenoids were not affected. And net photosynthetic rates were affected little by phosphate supply. __________ Translated from Scientia Silvae Sinicae, 2005, 41(4) [译自:林业科学, 2005, 41(4)]  相似文献   

12.
Concentrations of total soluble phenolics, catechin, proanthocyanidins (PA), lignin and nitrogen (N) were measured in loblolly pine (Pinus taeda L.) needles exposed to either ambient CO(2) concentration ([CO(2)]), ambient plus 175 or ambient plus 350 micromol CO(2) mol(-1) in branch chambers for 2 years. The CO(2) treatments were superimposed on a 2 x 2 factorial combination of irrigation and fertilization treatments. In addition, we compared the effects of branch chambers and open-top chambers on needle chemistry. Proanthocyanidin and N concentrations were measured in needles from branch chambers and from trees in open-top chambers exposed concurrently for two years to either ambient [CO(2)] or ambient plus 200 micromol CO(2) mol(-1) in combination with a fertilization treatment. In the branch chambers, concentrations of total soluble phenolics in needles generally increased with needle age. Concentrations of total soluble phenolics, catechin and PA in needle extracts increased about 11% in response to the elevated [CO(2)] treatments. There were no significant treatment effects on foliar lignin concentrations. Nitrogen concentrations were about 10% lower in needles from the elevated [CO(2)] treatments than in needles from the ambient [CO(2)] treatments. Soluble phenolic and PA concentrations were higher in the control and irrigated soil treatments in about half of the comparisons; otherwise, differences were not statistically significant. Needle N concentrations increased 23% in response to fertilization. Treatment effects on PA and N concentrations were similar between branch and open-top chambers, although in this part of the study N concentrations were not significantly affected by the CO(2) treatments in either the branch or open-top chambers. We conclude that elevated [CO(2)] and low N availability affected foliar chemical composition, which could in turn affect plant-pathogen interactions, decomposition rates and mineral nutrient cycling.  相似文献   

13.
Mesophyll conductance, g(m), was estimated from measurements of stomatal conductance to carbon dioxide transfer, g(s), photosynthesis, A, and chlorophyll fluorescence for Year 0 (current-year) and Year 1 (1-year-old) fully sunlit leaves from short (2 m tall, 10-year-old) and tall (15 m tall, 120-year-old) Nothofagus solandrii var. cliffortiodes trees growing in adjacent stands. Rates of photosynthesis at saturating irradiance and ambient CO(2) partial pressure, A(satQ), were 25% lower and maximum rates of carboxylation, V(cmax), were 44% lower in Year 1 leaves compared with Year 0 leaves across both tree sizes. Although g(s) and g(m) were not significantly different between Year 0 and Year 1 leaves and g(s) was not significantly different between tree heights, g(m) was significantly (19%) lower for leaves on tall trees compared with leaves on short trees. Overall, V(cmax) was 60% higher when expressed on the basis of CO(2) partial pressure at the chloroplasts, C(c), compared with V(cmax) on the basis of intercellular CO(2) partial pressure, C(i), but this varied with leaf age and tree size. To interpret the relative stomatal and mesophyll limitations to photosynthesis, we used a model of carbon isotopic composition for whole leaves incorporating g(m) effects to generate a surface of 'operating values' of A over the growing season for all leaf classes. Our analysis showed that A was slightly higher for leaves on short compared with tall trees, but lower g(m) apparently reduced actual A substantially compared with A(satQ). Our findings showed that lower rates of photosynthesis in Year 1 leaves compared with Year 0 leaves were attributable more to increased biochemical limitation to photosynthesis in Year 1 leaves than differences in g(m). However, lower A in leaves on tall trees compared with those on short trees could be attributed in part to lower g(m) and higher stomatal, L(s), and mesophyll, L(m), limitations to photosynthesis, consistent with steeper hydraulic gradients in tall trees.  相似文献   

14.
Cao B  Dang QL  Zhang S 《Tree physiology》2007,27(6):891-899
To study the effects of elevated CO2 concentration ([CO2]) on relationships between nitrogen (N) nutrition and foliar gas exchange parameters, white birch (Betula papyrifera Marsh.) seedlings were exposed to one of five N-supply regimes (10, 80, 150, 220, 290 mg N l(-1)) in either ambient [CO2] (360 micromol mol(-1)) or elevated [CO2] (720 micromol mol(-1)) in environment-controlled greenhouses. Foliar gas exchange and chlorophyll fluorescence were measured after 60 and 80 days of treatment. Photosynthesis showed a substantial down-regulation (up to 57%) in response to elevated [CO2] and the magnitude of the down-regulation generally decreased exponentially with increasing leaf N concentration. When measured at the growth [CO2], elevated [CO2] increased the overall rate of photosynthesis (P(n)) and instantaneous water-use efficiency (IWUE) by up to 69 and 236%, respectively, but decreased transpiration (E) and stomatal conductance (g(s)) in all N treatments. However, the degree of stimulation of photosynthesis by elevated [CO2] decreased as photosynthetic down-regulation increased from 60 days to 80 days of treatment. Elevated [CO2] significantly increased total photosynthetic electron transport in all N treatments at 60 days of treatment, but the effect was insignificant after 80 days of treatment. Both P(n) and IWUE generally increased with increasing leaf N concentration except at very high leaf N concentrations, where both P(n) and IWUE declined. The relationships of P(n) and IWUE with leaf N concentration were modeled with both a linear regression and a second-order polynomial function. Elevated [CO2] significantly and substantially increased the slope of the linear regression for IWUE, but had no significant effect on the slope for P(n). The optimal leaf N concentration for P(n) and IWUE derived from the polynomial function did not differ between the CO2 treatments when leaf N was expressed on a leaf area basis. However, the mass-based optimal leaf N concentration for P(n) was much lower in seedlings in elevated [CO2] than in ambient [CO2] (31.88 versus 37.00 mg g(-1)). Elevated [CO2] generally decreased mass-based leaf N concentration but had no significant effect on area-based leaf N concentration; however, maximum N concentration per unit leaf area was greater in elevated [CO2] than in ambient [CO2] (1.913 versus 1.547 g N m(-2)).  相似文献   

15.
The aim of this study was to estimate fine root production(FP) and fine root mortality(FM) at 0–10,10–20,and 20–30 cm soil depths using minirhizotrons in a75-year-old Pinus densiflora Sieb.et Zucc.forest located in Gwangneung,Korea.We developed the conversion factors(frame cm-2) of three soil depths(0.158 for 0–10 cm,0.120 for 10–20 cm,and 0.131 for 20–30 cm) based on soil coring and minirhizotron data.FP and FM were estimated using conversion factors from March 26,2013 to March 2,2014.The annual FP and FM values at the 0–30 cm soil depth were 3200.2 and 2271.5 kg ha~(-1)yr~(-1),respectively.The FP estimate accounted for approximately 17 % of the total net primary production at the study site.FP was highest in summer(July 31–September 26),and FM was highest in autumn(September 27–November 29).FP was positively correlated with seasonal change in soil temperature,while FM was not related to that change.The seasonality of FP and FM might be linked to above-ground photosynthetic activity.Both FP and FM at the 0–10 cm depth were significantly higher than at 10–20 and20–30 cm depths,and this resulted from the decrease in nutrient availability with increasing soil depth.The minirhizotron approach and conversion factors developed in this study will enable fast and accurate estimation of the fine root dynamics in P.densiflora forest ecosystems.  相似文献   

16.
【目的】解析和定量评价林分因子对赤松赤枯病发生(发病率和病情指数)的影响,为昆嵛山赤松纯林的营林措施和赤枯病的预防提供理论指导。【方法】在昆嵛山区域选取林龄相对一致(约34年)的赤松纯林为研究对象,调查林分密度、郁闭度、树高、枝下高、胸径和冠幅6个林分因子及赤枯病的发病率和病情指数,采用方差分析、相关性分析和多重比较分析各项林分因子与赤松赤枯病之间的关系,并通过冗余分析得影响赤枯病发生的关键因子。【结果】赤枯病在赤松林中普遍发生,发病样地占调查样地的96.3%。整体上,高密度林( 2 956 ~4 089株·hm -2 )的发病率和病情指数显著高于低密度林(688~1 822株·hm -2 )和中密度林(1 823~2 955株·hm -2 )的发病率和病情指数;疏林(郁闭度<30%)的发病率和病情指数显著低于中疏林(郁闭度30%~70%)和密林(郁闭度> 70%)的发病率和病情指数;在不同的树高、枝下高、冠幅和胸径分组中,发病率和病情指数均随着分组值的增大而减小。相关性分析表明:林分密度对赤枯病发病率和病情指数的影响均达到极显著正相关水平( r =0.761, P < 0.01;r =0.748, P < 0.01);赤枯病的发病率和病情指数也均受到郁闭度的极显著影响( r =0.509, P < 0.01;r =0.442, P < 0.01);二者与树高均呈极显著正相关( r =-0.443, P < 0.01;r =-0.362, P < 0.01);赤枯病的发病率和病情指数均随枝下高的增大而极显著减小( r =-0.460, P < 0.01;r =-0.419, P < 0.01);二者与胸径均呈负相关关系,且相关性极显著( r =-0.425, P < 0.01;r =-0.373, P < 0.01);随着冠幅的增大,林木发病率和病情指数均极显著降低( r =-0.345, P < 0.01;r =-0.381, P < 0.01)。冗余分析证明林分密度和枝下高对赤枯病发生的贡献最大。【结论】松赤枯病在昆嵛山区域发生较普遍但不严重,其发病率和病情指数在不同林分因子分组中均有差异,且均受各林分因子极显著影响。RDA分析证明,林分密度和枝下高对松赤枯病影响最显著,建议对昆嵛山区域赤松纯林赤枯病的防治工作要以重要因子为主要调控对象,进行合理修剪和间伐。  相似文献   

17.
Morphological changes in the cytoskeleton, nuclei, and vacuoles were monitored during the cell death of short-lived ray tracheids in the conifer Pinus densiflora. After formation of the dentate thickenings that occurred at the final stage of formation of cell walls, organelles started to disappear in differentiating ray tracheids. First, the microtubules and vacuoles disappeared. Then actin filaments disappeared in the differentiating ray tracheids adjacent to ray tracheids that lacked nuclei, and, finally, the nuclei disappeared. These features indicate that cell death in ray tracheids might differ from the programmed cell death of tracheary elements that has been studied in vitro in the Zinnia culture system. This study was presented at the 57th Annual Meeting of the Japan Wood Research Society, August 8–10, 2007, Hiroshima, Japan  相似文献   

18.
We examined the effects of elevated carbon dioxide concentration ([CO2]) on the relationship between light-saturated net photosynthesis (A(sat)) and area-based foliar nitrogen (N) concentration (N(a)) in the canopy of the Duke Forest FACE experiment. Measurements of A(sat) and N(a) were made on two tree species growing in the forest overstory and four tree species growing in the forest understory, in ambient and elevated [CO2] FACE rings, during early and late summer of 1999, 2001 and 2002, corresponding to years three, five and six of CO2 treatment. When measured at the growth [CO2], net photosynthetic rates of each species examined in the forest overstory and understory were stimulated by elevated [CO2] at each measurement date. We found no effect of elevated [CO2] on N(a) in any of the species. The slope of the A(sat)-N relationship was 81% greater in elevated [CO2] than in ambient [CO2] when averaged across all sample dates, reflecting a differential CO2 effect on photosynthesis at the top and bottom of the canopy. We compared A(sat)-N relationships in trees grown in ambient and elevated [CO2] at two common CO2 concentrations, during late summer 2001 and both early and late 2002, to determine if the stimulatory effect of elevated [CO2] on photosynthesis diminishes over time. At all three sample times, neither the slopes nor the y-intercepts of the A(sat)-N relationships of trees grown in ambient or elevated [CO2] differed when measured at common CO2 concentrations, indicating that the responses of photosynthesis to long-term elevated [CO2] did not differ from the responses to a short-term increase in [CO2]. This finding, together with the observation that N(a) was unaffected by growth in elevated [CO2], indicates that these overstory and understory trees growing at the Duke Forest FACE experiment continue to show a strong stimulation of photosynthesis by elevated [CO2].  相似文献   

19.
Both scion and rootstock clones significantly influenced scion elongation and concentrations of nitrogen and phosphorus in the scion foliage. Scion clone was the more important determinant. Scion clone × rootstock clone interactions were not significant. The ability of a clone to elongate as a scion was not correlated with its capacity to promote or retard scion elongation when used as a rootstock. Genetic differences in foliar nutrient concentrations appeared to reflect levels of nutrient demand, rather than the ability of roots to absorb nutrients. Nutrient demand of the rootstock can also explain negative correlations between nitrogen levels in rootstock clones and levels of both nitrogen and phosphorus in the scions. There was no significant relationship between scion elongation and foliar nitrogen concentrations of either rootstock or scion. The weak relationship between scion elongation and concentration of phosphorus in the rootstock apparently resulted from tissue dilution.  相似文献   

20.
Diurnal patterns of leaf conductance, net photosynthesis and water potential of five tree species were measured at the top of the canopy in a tropical lowland rain forest in southwestern Cameroon. Access to the 40 m canopy was by a large canopy-supported raft, the Radeau des Cimes. The measurements were made under ambient conditions, but the raft altered the local energy balance at times, resulting in elevated leaf temperatures. Leaf water potential was equal to or greater than the gravitational potential at 40 m in the early morning, falling to values as low as -3.0 MPa near midday. Net photosynthesis and conductance were typically highest during midmorning, with values of about 10-12 micro mol CO(2) m(-2) s(-1) and 0.2-0.3 mol H(2)O m(-2) s(-1), respectively. Leaf conductance and net photosynthesis commonly declined through midday with occasional recovery late in the day. Photosynthesis was negatively related to leaf temperature above midday air temperature maxima. These patterns were similar to those observed in other seasonally droughted evergreen communities, such as Mediterranean-climate shrubs, and indicate that environmental factors may cause stomatal closure and limit photosynthesis in tropical rain forests during the midday period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号