首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We measured the spin state of iron in ferropericlase (Mg0.83Fe0.17)O at high pressure and found a high-spin to low-spin transition occurring in the 60- to 70-gigapascal pressure range, corresponding to depths of 2000 kilometers in Earth's lower mantle. This transition implies that the partition coefficient of iron between ferropericlase and magnesium silicate perovskite, the two main constituents of the lower mantle, may increase by several orders of magnitude, depleting the perovskite phase of its iron. The lower mantle may then be composed of two different layers. The upper layer would consist of a phase mixture with about equal partitioning of iron between magnesium silicate perovskite and ferropericlase, whereas the lower layer would consist of almost iron-free perovskite and iron-rich ferropericlase. This stratification is likely to have profound implications for the transport properties of Earth's lowermost mantle.  相似文献   

2.
Fe-Mg interdiffusion coefficients for (Mg,Fe)SiO3 perovskite have been measured at pressures of 22 to 26 gigapascals and temperatures between 1973 and 2273 kelvin. Perovskite Fe-Mg interdiffusion is as slow as Si self-diffusion and is orders of magnitude slower than Fe-Mg diffusion in other mantle minerals. Length scales over which chemical heterogeneities can homogenize, throughout the depth range of the lower mantle, are limited to a few meters even on time scales equivalent to the age of Earth. Heterogeneities can therefore only equilibrate chemically when they are stretched and thinned by intense deformation.  相似文献   

3.
4.
Secondary ion mass spectrometry measurements show that Earth's representative lower mantle minerals synthesized in a natural peridotitic composition can dissolve considerable amounts of hydrogen. Both MgSiO3-rich perovskite and magnesiowüstite contain about 0.2 weight percent (wt%) H2O, and CaSiO3-rich perovskite contains about 0.4 wt% H2O. The OH absorption bands in Mg-perovskite and magnesiowüstite were also confirmed with the use of infrared microspectroscopic measurements. Earth's lower mantle may store about five times more H2O than the oceans.  相似文献   

5.
6.
Mineral properties in Earth's lower mantle are affected by iron electronic states, but representative pressures and temperatures have not yet been probed. Spin states of iron in lower-mantle ferropericlase have been measured up to 95 gigapascals and 2000 kelvin with x-ray emission in a laser-heated diamond cell. A gradual spin transition of iron occurs over a pressure-temperature range extending from about 1000 kilometers in depth and 1900 kelvin to 2200 kilometers and 2300 kelvin in the lower mantle. Because low-spin ferropericlase exhibits higher density and faster sound velocities relative to the high-spin ferropericlase, the observed increase in low-spin (Mg,Fe)O at mid-lower mantle conditions would manifest seismically as a lower-mantle spin transition zone characterized by a steeper-than-normal density gradient.  相似文献   

7.
8.
Structure and dynamics of Earth's lower mantle   总被引:1,自引:0,他引:1  
Processes within the lowest several hundred kilometers of Earth's rocky mantle play a critical role in the evolution of the planet. Understanding Earth's lower mantle requires putting recent seismic and mineral physics discoveries into a self-consistent, geodynamically feasible context. Two nearly antipodal large low-shear-velocity provinces in the deep mantle likely represent chemically distinct and denser material. High-resolution seismological studies have revealed laterally varying seismic velocity discontinuities in the deepest few hundred kilometers, consistent with a phase transition from perovskite to post-perovskite. In the deepest tens of kilometers of the mantle, isolated pockets of ultralow seismic velocities may denote Earth's deepest magma chamber.  相似文献   

9.
We obtained likelihoods in the lower mantle for long-wavelength models of bulk sound and shear wave speed, density, and boundary topography, compatible with gravity constraints, from normal mode splitting functions and surface wave data. Taking into account the large uncertainties in Earth's thermodynamic reference state and the published range of mineral physics data, we converted the tomographic likelihoods into probability density functions for temperature, perovskite, and iron variations. Temperature and composition can be separated, showing that chemical variations contribute to the overall buoyancy and are dominant in the lower 1000 kilometers of the mantle.  相似文献   

10.
Percolation of core melts at lower mantle conditions   总被引:1,自引:0,他引:1  
Experiments at high pressure and temperature to determine the dihedral angle of core melts in lower mantle phases yielded a value of approximately 71 degrees for perovskite-dominated matrices. This angle, although greater than the 60 degrees required for completely efficient percolation, is considerably less than the angles observed in mineral matrices at upper mantle pressure-temperature conditions in experiments. In other words, molten iron alloy can flow much more easily in lower mantle mineralogies than in upper mantle mineralogies. Accordingly, although segregation of core material by melt percolation is probably not feasible in the upper mantle, core formation by percolation may be possible in the lower mantle.  相似文献   

11.
Karato S  Li P 《Science (New York, N.Y.)》1992,255(5049):1238-1240
High-temperature creep experiments on polycrystalline perovskite (CaTiO(3)), an analog of (Mg,Fe)SiO(3) perovskite of the lower mantle, suggest that (grain size-sensitive) diffusion creep is important in the lower mantle and show that creep rate is enhanced by the transformation from the orthorhombic to the tetragonal structure. These observations suggest that grain-size reduction after a subducting slab passes through the 670-kilometer discontinuity or after a phase transformation from orthorhombic to tetragonal in perovskite will result in rheological softening in the top portions of the lower mantle.  相似文献   

12.
We measured the spin state of iron in magnesium silicate perovskite (Mg(0.9),Fe(0.1))SiO(3) at high pressure and found two electronic transitions occurring at 70 gigapascals and at 120 gigapascals, corresponding to partial and full electron pairing in iron, respectively. The proportion of iron in the low spin state thus grows with depth, increasing the transparency of the mantle in the infrared region, with a maximum at pressures consistent with the D" layer above the core-mantle boundary. The resulting increase in radiative thermal conductivity suggests the existence of nonconvecting layers in the lowermost mantle.  相似文献   

13.
Experimental determination of oxygen self-diffusion in CaTiO(3) perovskite, a structural analog of (Mg,Fe)SiO(3) perovskite, confirms a theoretical relation between diffusion constants and anion porosity. Oxygen diffusion rates in (Mg,Fe)SiO(3) perovskite calculated with this relation increase by about eight orders of magnitude through the lower mantle. Electrical conductivity values calculated from these diffusion rates are consistent with inferred conductivity values for the lower mantle. This result suggests that the dominant conductivity mechanism in the deep mantle is ionic.  相似文献   

14.
First-principles molecular-dynamics simulations show that over the pressure regime of Earth's mantle the mean silicon-oxygen coordination number of magnesium metasilicate liquid changes nearly linearly from 4 to 6. The density contrast between liquid and crystal decreases by a factor of nearly 5 over the mantle pressure regime and is 4% at the core-mantle boundary. The ab initio melting curve, obtained by integration of the Clausius-Clapeyron equation, yields a melting temperature at the core-mantle boundary of 5400 +/- 600 kelvins.  相似文献   

15.
Polycrystalline MgGeO3 post-perovskite was plastically deformed in the diamond anvil cell between 104 and 130 gigapascals confining pressure and ambient temperature. In contrast with phenomenological considerations suggesting (010) as a slip plane, lattice planes near (100) became aligned perpendicular to the compression direction, suggesting that slip on (100) or (110) dominated plastic deformation. With the assumption that silicate post-perovskite behaves similarly at lower mantle conditions, a numerical model of seismic anisotropy in the D' region implies a maximum contribution of post-perovskite to shear wave splitting of 3.7% with an oblique polarization.  相似文献   

16.
One of the principal means of understanding upper mantle dynamics involves inferring mantle flow directions from seismic anisotropy under the assumption that the seismic fast direction (olivine a axis) parallels the regional flow direction. We demonstrate that (i) the presence of melt weakens the alignment of a axes and (ii) when melt segregates and forms networks of weak shear zones, strain partitions between weak and strong zones, resulting in an alignment of a axes 90 degrees from the shear direction in three-dimensional deformation. This orientation of a axes provides a new means of interpreting mantle flow from seismic anisotropy in partially molten deforming regions of Earth.  相似文献   

17.
Heat and mass are injected into the shallow crust when mantle fluids are able to flow through the ductile lower crust. Minimum 3He/4He ratios in surface fluids from the northern Basin and Range Province, western North America, increase systematically from low crustal values in the east to high mantle values in the west, a regional trend that correlates with the rates of active crustal deformation. The highest ratios occur where the extension and shear strain rates are greatest. The correspondence of helium isotope ratios and active transtensional deformation indicates a deformation-enhanced permeability and that mantle fluids can penetrate the ductile lithosphere, even in regions where there is no substantial magmatism. Superimposed on the regional trend are local, high 3He/4He anomalies indicating hidden magmatic activity and/or deep fluid production with locally enhanced permeability, identifying zones with high resource potential, particularly for geothermal energy development.  相似文献   

18.
Optical absorption spectra have been measured at pressures up to 80 gigapascals (GPa) for the lower-mantle oxide magnesiowüstite (Mg,Fe)O. Upon reaching the high-spin to low-spin transition of Fe2+ at about 60 GPa, we observed enhanced absorption in the mid- and near-infrared spectral range, whereas absorption in the visible-ultraviolet was reduced. The observed changes in absorption are in contrast to prediction and are attributed to d-d orbital charge transfer in the Fe2+ ion. The results indicate that low-spin (Mg,Fe)O will exhibit lower radiative thermal conductivity than high-spin (Mg,Fe)O, which needs to be considered in future geodynamic models of convection and plume stabilization in the lower mantle.  相似文献   

19.
20.
The individual elastic constants of magnesium oxide (MgO) have been determined throughout Earth's lower mantle (LM) pressure-temperature regime with density functional perturbation theory. It is shown that temperature effects on seismic observables (density, velocities, and anisotropy) are monotonically suppressed with increasing pressure. Therefore, at realistic LM conditions, the isotropic wave velocities of MgO remain comparable to seismic velocities, as previously noticed in athermal high-pressure calculations. Also, the predicted strong pressure-induced anisotropy is preserved toward the bottom of the LM, so lattice-preferred orientations in MgO may contribute substantially to the observed seismic anisotropy in the D" layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号