首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Effects of sodium naphthenates (NAs) on root hydraulic conductivity (Lp) and gas exchange processes were examined in aspen (Populus tremuloides Michx.) seedlings grown in solution culture. Exposure of roots to NAs for 3-5 weeks significantly decreased Lp and stomatal conductance. Root-absorbed NAs also decreased leaf chlorophyll concentration, net photosynthesis and leaf growth. Short-term (< or = 2 h) exposure of excised roots to NAs significantly decreased root water flow (Qv) with a concomitant decline in root respiration. We conclude that NAs metabolically inhibited Lp, likely by affecting water channel activity, and that this inhibition could be responsible for the observed reductions in gas exchange and leaf growth.  相似文献   

2.
The effects of shade and soil temperature on growth of Eucalyptus marginata Donn ex Sm (jarrah) seedlings were studied in greenhouse experiments. Plant dry weight and that of all plant parts declined in response to shade, as did root/shoot ratio. Plant leaf area was less in unshaded plants than in plants grown in shade, and specific leaf area increased with shade. Unshaded seedlings had a higher light-saturated rate of photosynthesis, a higher light compensation point and a higher light saturation point than seedlings grown in 70% shade. The relationship between plant dry weight and leaf dry weight was independent of shading, whereas the relationship between plant dry weight and plant leaf area was dependent on shading. Therefore, leaf dry weight may be a better predictor of biomass production than leaf area in forest stands where shade is likely to affect growth significantly. Soil temperature had a significant effect on the growth of all plant parts except cotyledons. Total plant growth and shoot growth were maximal at a soil temperature of 30 degrees C, but root growth had a slightly lower temperature optimum such that the root/shoot ratio was highest at 20 degrees C. Roots grown at 15 degrees C were about 30% shorter per unit of dry weight than roots grown at 20 to 35 degrees C. We conclude that increases in irradiance and soil temperature as a result of overstory removal in the forest will cause significant increases in growth of E. marginata seedlings, but these increases represent a relatively small component of the growth response to overstory removal.  相似文献   

3.
Growth and gas exchange characteristics were studied in pine (Pinus sylvestris L.) and spruce (Picea abies Karst.) seedlings grown in hydroponic culture in the presence of N (50 mg l(-1)) and transferred at the start of their second growing season to tap water at 5, 8, 12, 16 or 20 degrees C (air temperature between 18-20 degrees C) for 3 weeks (pine) or 5 weeks (spruce). Root growth of both species was completely inhibited at root temperatures of 5 and 8 degrees C, but increased almost exponentially as root temperature increased. Shoot growth was maximal at 12 degrees C in both pine and spruce and decreased at low root temperatures. In both species, CO(2) uptake was decreased at low root temperatures and appeared to be influenced by the pattern of nitrogen retranslocation. In pine seedlings, as root temperature increased, an increasing proportion of the total nitrogen pool was retranslocated to the new shoot, whereas in spruce seedlings nitrogen was retranslocated to the roots. Differences in the retranslocation of nitrogen in the two species were reflected in the amount of soluble protein in needles, which at the end of the experiment increased with increasing root temperature in pine, but decreased in spruce. Our data suggest that in spruce, but not pine, CO(2) uptake was limited by the amount of Rubisco.  相似文献   

4.
采用自制潮汐模拟系统培养红树植物老鼠簕幼苗,设置7个相对于自然光5%、15%、20%、45%、60%、75%、100%的光照强度,研究了不同光强对老鼠簕幼苗从发芽至生长10个月的生理生态影响.随着光照强度的升高,幼苗的保存率、苗高、地径、根干质量、茎干质量、叶干质量、单株生物量、根冠比、根系活力、叶面积、叶绿素a、b含量均是先升后降;可溶性糖含量、净光合速率、蒸腾速率、气孔导度、最大净光合速率随光强增大而增加.在淹浸30 min内,不同光照强度的净光合速率均有增大的表现,而气孔导度均降低,且最终均稳定在初始值以下.试验表明:光照强度为45%时,多数生理生态指标表现为促进植物的生长;当光照强度为20%时,老鼠簕幼苗通过降低根冠比、光补偿点,增加苗高、叶绿素含量、叶面积和表观量子利用效率来提高自身光能获取的效率;当光照强度为5%时,光照会显著抑制幼苗的生长,但保存率依然在60%以上.可以认为,极低的光照强度致使幼苗生长缓慢,但并不影响其自然定居的密度;同时,在不同光强下,老鼠簕光饱和点和光补偿点均很低.以上可以解释淇澳岛红树林林下存在高密度老鼠簕的原因是由于其自身拥有高的耐阴能力,同时对光照减弱有极强的适应能力.  相似文献   

5.
We investigated the effects of root-zone temperature on bud break, flowering, shoot growth and gas exchange of potted mature apple (Malus domestica (Borkh.)) trees with undisturbed roots. Soil respiration was also determined. Potted 'Braeburn' apple trees on M.9 rootstock were grown for 70 days in a constant day/night temperature regime (25/18 degrees C) and one of three constant root-zone temperatures (7, 15 and 25 degrees C). Both the proportion and timing of bud break were significantly enhanced as root-zone temperature increased. Rate of floral cluster opening was also markedly increased with increasing root-zone temperature. Shoot length increased but shoot girth growth declined as root-zone temperatures increased. Soil respiration and leaf photosynthesis generally increased as root-zone temperatures increased. Results indicate that apple trees growing in regions where root zone temperatures are < or = 15 degrees C have delayed bud break and up to 20% fewer clusters than apple trees exposed to root zone temperatures of > or = 15 degrees C. The effect of root-zone temperature on shoot performance may be mediated through the mobilization of root reserves, although the role of phytohormones cannot be discounted. Variation in leaf photosynthesis across the temperature treatments was inadequately explained by stomatal conductance. Given that root growth increases with increasing temperature, changes in sink activity induced by the root-zone temperature treatments provide a possible explanation for the non-stomatal effect on photosynthesis. Irrespective of underlying mechanisms, root-zone temperatures influence bud break and flowering in apple trees.  相似文献   

6.
Liao TS  Weng JH 《Tree physiology》2002,22(5):355-362
We investigated several ecophysiological characteristics of seedlings of a low-elevation (100-200 m) and a high-elevation (2000-2400 m) population of Taiwan alder (Alnus formosana Makino) from subtropical Taiwan. Both populations had a wide optimal temperature range for photosynthesis, and there was little difference in the optimal temperature range for photosynthesis between populations. Photosynthetic rate (P(N)) was near maximal from 20 to 35 degrees C when seedlings of both the low-elevation and the high-elevation populations were acclimated at a day/night temperature of 30/23 degrees C. When seedlings were acclimated at a day/night temperature of 20/10 degrees C, P(N) was near maximal over the range 15-35 degrees C in the low-elevation population and 15-30 degrees C in the high-elevation population. Compared with nine other tree species native to Taiwan, Taiwan alder had a high P(N) and stomatal conductance (g(s)) under well-watered conditions. Reflecting its higher transpiration rate, Taiwan alder had a significantly greater leaf-air temperature difference than camphor (Cinnamomum camphora (L.) J. Presl), a co-occurring lowland tree species with leaves similar in shape and size to those of Taiwan alder. Despite higher g(s), high root and shoot hydraulic conductances enabled Taiwan alder to maintain higher leaf water potentials than camphor under well-watered conditions. We conclude that both photosynthetic characteristics and water relations are important factors enabling Taiwan alder to adapt to a wide temperature range, thereby ensuring its success at both high and low elevations in subtropical Taiwan.  相似文献   

7.
Root growth in seedling transplants of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), Pacific silver fir (Abies amabilis(Dougl.) Forbes), noble fir (Abies procera Rehd.), lodgepole pine (Pinus contorta Dougl. ex Loud.) and ponderosa pine (Pines ponderosa Doug. ex Laws.) began when soil temperature exceeded 5 °C. Root growth increased rapidly after 10 °C and attained maximum values at 20 °C. At 30 °C, no root growth occurred in the firs; in the pines, root growth was 30 to 39% of maximum. Maximum shoot growth also occurred at 20 °C. In ponderosa pine, height growth of seedlings from a high-elevation source was unaffected by cold soil, but in low-elevation seedlings it was reduced. Budburst in Douglas-fir and the pines was delayed up to 11 days by cold soil, whereas in silver fir and noble fir, it was only slightly delayed. Prior to new root growth in ponderosa pine, xylem pressure potentials and stomatal conductances during the afternoon indicated reduced stomatal opening at all soil temperatures, whereas 23 days later, stomata were open to a greater degree when temperatures exceeded 10 °C.  相似文献   

8.
Drought resistance of Ailanthus altissima (Mill.) Swingle is a major factor underlying the impressively wide expansion of this species in Europe and North America. We studied the specific mechanism used by A. altissima to withstand drought by subjecting potted seedlings to four irrigation regimes. At the end of the 13-week treatment period, soil water potential was -0.05 MPa for well-watered control seedlings (W) and -0.4, -0.8 and -1.7 MPa for drought-stressed seedlings (S) in irrigation regimes S1, S2 and S3, respectively. Root and shoot biomass production did not differ significantly among the four groups. A progressively marked stomatal closure was observed in drought-stressed seedlings, leading to homeostasis of leaf water potential, which was maintained well above the turgor loss point. Root and shoot hydraulics were measured with a high-pressure flow meter. When scaled by leaf surface area, shoot hydraulic conductance did not differ among the treated seedlings, whereas root hydraulic conductance decreased by about 20% in S1 and S2 seedlings and by about 70% in S3 seedlings, with respect to the well-watered control value. Similar differences were observed when root hydraulic conductance was scaled by root surface area, suggesting that roots had become less permeable to water. Anatomical observations of root cross sections revealed that S3 seedlings had shrunken cortical cells and a multilayer endodermal-like tissue that probably impaired soil-to-root stele water transport. We conclude that A. altissima seedlings are able to withstand drought by employing a highly effective water-saving mechanism that involves reduced water loss by leaves and reduced root hydraulic conductance. This water-saving mechanism helps explain how A. altissima successfully competes with native vegetation.  相似文献   

9.
Teskey RO  Will RE 《Tree physiology》1999,19(8):519-525
To determine the extent to which loblolly pine seedlings (Pinus taeda L.) acclimate to high temperatures, seedlings from three provenances-southeastern Texas (mean annual temperature 20.3 degrees C), southwestern Arkansas (mean annual temperature 16.2 degrees C) and Chesapeake, Maryland (mean annual temperature 12.8 degrees C)-were grown at constant temperatures of 25, 30, 35 or 40 degrees C in growth chambers. After two months, only 14% of the seedlings in the 40 degrees C treatment survived, so the treatment was dropped from the experiment. Provenance and family differences were not significant for most measured variables. Total biomass was similar in the 25 and 30 degrees C treatments, and less in the 35 degrees C treatment. Foliage biomass was higher, and root biomass lower, in the 30 degrees C treatment compared with the 25 degrees C treatment. Net photosynthesis and dark respiration of all seedlings were measured at 25, 30 and 35 degrees C. Both net photosynthesis and dark respiration exhibited acclimation to the temperature at which the seedlings were grown. For each temperature treatment, the highest rate of net photosynthesis was measured at the growth temperature. Dark respiration rates increased with increasing measurement temperature, but the basal rate of respiration, measured at 25 degrees C, decreased from 0.617 &mgr;mol m(-2) s(-1) in the 25 degrees C treatment to 0.348 &mgr;mol m(-2) s(-1) in the 35 degrees C treatment, resulting in less carbon loss in the higher temperature treatments than if the seedlings had not acclimated to the growth conditions. Temperature acclimation, particularly of dark respiration, may explain why total biomass of seedlings grown at 30 degrees C was similar to that of seedlings grown at 25 degrees C.  相似文献   

10.
Lamhamed  M.S.  Bernier  P.Y.  Hébert  C. 《New Forests》1997,13(1-3):209-223
Containerized black spruce (Picea mariana [Mill.] B.S.P.) seedlings of three different sizes (small, medium, and large) were planted in raised sand beds maintained under wet, moderately dry or dry watering regimes during the growing season. The small seedlings were of a conventional stock type. The two larger sizes were novel stock types grown in larger containers. Physiological measurements during the summer showed that the small and medium seedlings maintained nearly similar levels of gas exchanges and water status, but that the large seedlings had reduced net photosynthesis and stomatal conductance under all watering regimes. Analysis of dry masses showed comparable relative growth rates in the small and medium seedlings, but a small to null growth in the large seedlings. Examination of root relative growth rate under wet conditions revealed significant root growth in small and medium seedlings, but negligible growth in the large seedlings. It was concluded that increasing the shoot size of containerized seedlings can be achieved without increasing the susceptibility of the seedlings to water stress, as long as the vigour of the root system is maintained.  相似文献   

11.
Specific chloroplast proteins, gas exchange and dry matter production in oak (Quercus robur L.) seedlings and clonal cherry (Prunus avium L. x pseudocerasus Lind.) plants were measured during 19 months of growth in climate-controlled greenhouses at ambient (350 vpm) or elevated (700 vpm) CO(2). In both species, the elevated CO(2) treatment increased the PPFD saturated-rate of photosynthesis and dry matter production. After two months at elevated CO(2), Prunus plants showed significant increases in leaf (55%) and stem (61%) dry mass but not in root dry mass. However, this initial stimulation was not sustained: treatment differences in net assimilation rate (A) and plant dry mass were less after 10 months of growth than after 2 months of growth, suggesting acclimation of A to elevated CO(2) in Prunus. In contrast, after 10 months of growth at elevated CO(2), leaf dry mass of Quercus increased (130%) along with shoot (356%) and root (219%) dry mass, and A was also twice that of plants grown and measured at ambient CO(2). The amounts of Rubisco and the thylakoid-bound protein cytochrome f were higher in Quercus plants grown for 19 months in elevated CO(2) than in control plants, whereas in Prunus there was less Rubisco in plants grown for 19 months in elevated CO(2) than in control plants. Exposure to elevated CO(2) for 10 months resulted in increased mean leaf area in both species and increased abaxial stomatal density in Quercus. There was no change in leaf epidermal cell size in either species in response to the elevated CO(2) treatment. The lack of acclimation of photosynthesis in oak grown at elevated CO(2) is discussed in relation to the production and allocation of dry matter. We propose that differences in carbohydrate utilization underlie the differing long-term CO(2) responses of the two species.  相似文献   

12.
Photosynthetic and stomatal responses to a soil drying cycle were examined in half-sib seedlings of four walnut (Juglans nigra L.) families. Well-watered seedlings of an Iowa seed source had significantly higher rates of net photosynthesis than seedlings from New York or Michigan sources. This superior photosynthetic potential was associated with both greater stomatal conductance and mesophyll capacity for CO(2) fixation. In a drying soil, net photosynthesis and leaf conductance to water vapor of all families declined substantially, even under mild water stress. These responses were more strongly related to soil water status, as estimated by predawn leaf water potential, than to leaf water potential at the time of gas exchange measurement. There were no differences among families in the pattern of gas exchange response to developing water stress; however, families differed in capacity for recovery of gas exchange from water stress following rehydration. Sensitivity of photosynthesis of black walnut seedlings to water stress may be associated with poor growth and survival of this species in xeric habitats.  相似文献   

13.
We studied the interaction of light and water on water-use efficiency in cork oak (Quercus suber L.) seedlings. One-year-old cork oak seedlings were grown in pots in a factorial experiment with four light treatments (68, 50, 15 and 5% of full sunlight) and two irrigation regimes: well watered (WW) and moderate drought stress (WS). Leaf predawn water potential, which was measured at the end of each of two cycles, did not differ among the light treatments. Water-use efficiency, assessed by carbon isotope composition (delta(13)C), tended to increase with increasing irradiance. The trend was similar in the WW and WS treatments, though with lower delta(13)C in all light treatments in the WW irrigation regime. Specific leaf area increased with decreasing irradiance, and was inversely correlated with delta(13)C. Thus, changes in delta(13)C could be explained in part by light-induced modifications in leaf morphology. The relationship between stomatal conductance to water vapor and net photosynthesis on a leaf area basis confirmed that seedlings in higher irradiances maintained a higher rate of carbon uptake at a particular stomatal conductance, implying that shaded seedlings have a lower water-use efficiency that is unrelated to water availability.  相似文献   

14.
Well-watered American elm (Ulmus americana L.) seedlings responded to increased nitrate availability with increased leaf nitrogen (N) concentration and photosynthetic rate, larger and more numerous leaves, greater total growth and greater proportional allocation of carbon to shoot than root. Plasticity of growth and carbon allocation were greater than plasticity of N concentration and photosynthetic capacity. For a given N availability, allocation of N per unit leaf area was positively correlated with dry mass per unit leaf area (specific leaf mass), but these relationships differed with N availability. Rates of net photosynthesis and leaf conductance declined logarithmically with decreasing predawn water status. Increased water stress resulted in a greater relative decline in net photosynthesis and leaf conductance for high-N than low-N plants.  相似文献   

15.
Tinus RW 《Tree physiology》1996,16(9):795-799
Container-grown quiescent Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) seedlings were air dried to plant water potentials of -0.2, -2.2 or -3.8 MPa (unstressed, moderate, and severe stress treatments, respectively). Trees from each treatment were either placed in root mist chambers held at 10, 20, or 28 degrees C for 28 days and root growth potential (RGP) and plant water potential (PWP) measured weekly, or potted in a 1/1 mix of peat and vermiculite, watered only once, and height growth and survival recorded after 10 weeks in an unheated greenhouse. Root growth potential of unstressed trees was greater than that of moderately stressed trees at all temperatures. Root growth potential of severely stressed trees was zero. Predawn plant water potentials of unstressed and moderately stressed trees were initially high, fell to -0.5 to -0.8 MPa, and then increased. Predawn plant water potential of severely stressed trees declined continuously over the 28-day experiment. Survival and height growth of the severely stressed trees were reduced compared to the unstressed and moderately stressed trees. Among the root growth potential measurements, RGP measured after 7 days at 10 degrees C was most sensitive to drought stress history and revealed differences in vigor that were not apparent from the survival and height growth data.  相似文献   

16.
Seedlings of Betula pendula Roth were grown with their root systems separated between two soil compartments. Four treatments were imposed: (i) adequate irrigation in both compartments (WW, controls); (ii) adequate irrigation in one compartment and drought in the other compartment (WD); (iii) drought in both compartments (DD); and (iv) half of the root system severed and the remainder kept well-watered (root excision, RE). Predawn leaf water potential, stomatal conductance, soil-to-leaf specific hydraulic conductance, and root and leaf growth decreased in DD-treated seedlings, which also displayed severe leaf shedding (30% loss in leaf area). The DD treatment also resulted in increased concentrations of abscisic acid (ABA) and its glucose ester in the xylem sap of roots and shoots compared to concentrations in control seedlings (about 200 versus 20 nM). Despite the difference in xylem sap concentrations, total ABA flux to the shoots was similar in the two treatments (1-2 pmol ABA m(-2) leaf area s(-1)) as a result of reduced transpiration in the DD-treated seedlings. Compared with root growth in control plants, root growth increased in the RE-treated plants and decreased in the drying compartment of the WD treatment; however, the RE and WD treatments only slightly reduced leaf expansion, and had no detectable effects on shoot water relations or ABA concentrations of the root and shoot xylem sap. We conclude that short-term soil water depletion affecting only 50% of the root system does not cause a measurable stress response in birch shoots, despite root growth cessation in the fraction of drying soil.  相似文献   

17.
Effects of defoliation on partial shoot removal by decapitation on seedling growth, water use and net gas exchange of remaining basal leaves, were examined in Citrus spp. Shoot and root growth rates were manipulated to test for effects of growth demands on net gas exchange. Partially defoliated plants had higher leaf pressure potentials, root conductivities and rates of water use than intact control plants. Shoot regrowth occurred at the expense of root loss. Basal leaves on defoliated plants consistently had higher rates of CO(2) assimilation (A) than leaves on intact plants. Stomatal conductance (g(s)) changed little after defoliation so the higher A of leaves on defoliated plants lowered the ratio of intercellular to ambient CO(2) concentration (C(i)/C(a)) in the mesophyll. In some cases, g(s) increased with A in defoliated plants but C(i)/C(a) was not affected. Stomatal conductance only limited A when intact seedlings were stressed by root confinement in small pots or when leaves were exposed to high vapor pressure deficits during gas exchange measurements. Increased carbon demand for shoot regrowth increased photosynthetic capacity and was more important than stomatal responses in determining A after partial shoot loss.  相似文献   

18.
Honeylocust seedlings (Gleditsia triacanthos L.) were grown in cylinders containing soil adjusted to pH 4, 5 or 6, and harvested every 10 days for 40 days for dry weight and leaf mineral analysis. Total weight of plants grown at pH 4 was less than that of plants grown at pH 5 or 6. Root weight accounted for a greater proportion of total weight in plants grown at pH 4 than in plants grown at pH 5 or 6. Root growth as a function of total plant growth was higher in plants grown at pH 4 than in plants grown at pH 5 or 6, whereas leaf growth as a function of total plant growth was less in plants grown at pH 4 than in plants grown at pH 5 or 6. However, the relationships between root biomass and root length and between leaf biomass and leaf area were the same in all treatments. An analysis of total leaf concentrations of Ca, P, K, Mg, Mn and Al indicated that Al accumulation in leaves was significantly related to a decrease in plant growth at pH 5. A leaf tissue aluminum concentration of 35 microg g(-1) was associated with toxicity symptoms and a 25% reduction in total plant weight.  相似文献   

19.
Bigras FJ 《Tree physiology》1997,17(5):311-318
Root systems of 6-month-old, cold-hardened, container-grown black spruce seedlings (Picea mariana (Mill.) B.S.P.) were exposed to 0, -5, -10, -15, -20, or -22.5 degrees C. Freezing-induced damage to fine roots, coarse roots and the whole root system was assessed by various viability tests including leakage of electrolytes, leakage of phenolic compounds, water loss, root and shoot water potentials, and live root dry mass. To assess the long-term effects of freezing-induced root damage, seedling survival and regrowth were measured. Leakage of both electrolytes and phenolic compounds differed among fine roots, coarse roots, and whole root systems. In coarse roots and the whole root system, but not in fine roots, leakage of electrolytes, leakage of phenolic compounds, water loss, and root and shoot water potentials were correlated with percentage of live root dry mass which, in turn, was highly correlated with seedling survival and regrowth. Compared with live root dry mass, electrolyte and phenolic leakage, water loss, and root and shoot water potentials were less well correlated with seedling survival and regrowth. Among the viability tests, electrolyte leakage of the whole root system correlated most closely with seedling survival and regrowth. Under freezing conditions that destroyed less than 50% of each seedling's root system, about 70% of the seedlings survived and subsequent growth was little affected, whereas under freezing conditions that destroyed 70% of each seedling's root system, only about 30% of the seedlings survived and subsequent growth was reduced compared with that of undamaged plants.  相似文献   

20.
Bareroot jack pine (Pinus banksiana Lamb.) and white spruce (Picea glauca (Moench) Voss) were planted near Elliot Lake, Ontario, on a boreal reforestation site. Site preparation treatments were mixed, mineral and undisturbed (i.e., control) soil. Seedling water relations and growth were examined during the first field season. During the first 28 days after planting, jack pine base (i.e., predawn) and minimum xylem water potential readings were more negative in the control site preparation treatment. White spruce, during the first 10 days, in all site preparation treatments had base and minimum xylem water potential readings more negative than –1.7 MPa. By day 28 base xylem water potentials of white spruce had increased to approximately –1.0 MPa in all site preparation treatments. As the growing season progressed, white spruce minimum xylem water potential readings ceased exceeding the measured turgor loss point first in the mixed followed by the mineral and then control site preparation treatment. Jack pine minimum xylem water potential readings, in all site preparation treatments, almost never exceeded the measured turgor loss point. Water stress and stomatal optimization integrals, day 28 and 125, for both species showed least water stress and greater stomatal optimization in the mixed, mineral and control site preparation treatments, respectively. Both species had less new root growth in the field during the first 28 days after planting compared to seedlings grown for 28 days in a greenhouse for root growth capacity testing. Root growth at 28 days and both shoot and root development at the end of the growing season, were greatest to least in mixed, mineral, and control site preparation treatments, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号