首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
The pharmacokinetic characteristics of valnemulin in layer chickens were studied after single intravenous, intramuscular, and oral administration at a dose of 15 mg/kg body weight. Plasma samples at certain time points were collected and the drug concentrations in them by ultra high‐performance liquid chromatography tandem mass spectrometry (UHPLC‐MS). The concentration–time data for each individual were plotted by noncompartmental analysis for the whole three routes. Following intravenous administration, the plasma concentration showed tiny fluctuation. The elimination half‐life (), total body clearance (Cl), and area under the plasma concentration–time curve (AUC) were 1.85 ± 0.43 h, 2.2 ± 0.9 L/h, and 7.52 ± 2.46 μg·h/mL, respectively. Following intramuscular administration, the peak concentration (Cmax, 1.40 ± 0.43 μg/mL) was achieved at the time of 0.34 h. A multiple‐peak phenomenon existed after oral administration, and the first peak and secondary peak were at 10 min and during 2–4 h, respectively, while the tertiary peak appeared during 5–15 h. The bioavailability (F %) for intramuscular and oral administration was 68.60% and 52.64%, respectively. In present study, the detailed pharmacokinetic profiles showed that this drug is widely distributed and rapidly eliminated, however has a low bioavailability, indicating that valnemulin is likely to be a favorable choice in the clinical practice.  相似文献   

3.
Thymoquinone (TQ) is the major constituent of Nigella sativa and known to possess a variety of pharmacological effects. This study was designed to evaluate the pharmacokinetic profile of TQ following oral (PO) and intravenous (IV) administration in layer chickens. The layer chickens were equally divided into two groups (six chickens in each group, total 12 chickens), and TQ was administered via PO and IV routes. For PO route, the dose was 20 mg/kg b.w. and for IV route, 5 mg/kg b.w. was administered, respectively. A sensitive and accurate High‐Performance Liquid Chromatography (HPLC) technique was validated for the quantification of TQ from plasma. The limit of detection (LOD) and limit of quantification (LOQ) were 0.02 µg/ml and 0.05 µg/ml, respectively with >80% recovery. Maximum plasma concentration (Cmax) following PO and IV administration was 8.805 and 4.497 µg/ml, respectively, while time to reach at maximum concentration (Tmax) was 1 and 0.1 hr, respectively. The elimination half‐lives were recorded as 1.02 and 0.978 hr, whereas the mean residence times were 1.79 and 1.036 hr following both PO and IV administration, respectively. The 85% PO bioavailability was indicative that TQ could be used for various therapeutic purposes in layer chickens.  相似文献   

4.
1. The pharmacokinetics of gatifloxacin were investigated following intravenous and oral administration of a single dose at a rate of 10?mg/kg body weight in broiler chicks.

2. Drug concentration in plasma was determined using High Performance Liquid Chromatography with ultraviolet detection on samples collected at frequent intervals after drug administration.

3. Following intravenous administration, the drug was rapidly distributed (t1/2α: 0·33?±?0·008?h) and eliminated (t1/2β: 3·62?±?0·03?h; ClB: 0·48?±?0·002?l/h/kg) from the body.

4. After oral administration, the drug was rapidly absorbed (C max: 1·74?±?0·024?µg/mL; T max: 2?h) and slowly eliminated (t1/2β: 3·81?±?0·07?h) from the body. The apparent volume of distribution (Vd(area)), total body clearance (ClB) and mean residence time (MRT) were 3·61?±?0·04?l/kg, 0·66?±?0·01?l/h/kg and 7·16?±?0·08?h, respectively. The oral bioavailability of gatifloxacin was 72·96?±?1·10 %.

5. Oral administration of gatifloxacin at 10?mg/kg is likely to be highly efficacious against susceptible bacteria in broiler chickens.  相似文献   

5.
6.
7.
AIMS: To determine the bioavailability of levamisole in sheep. METHODS: Levamisole was administered to three groups of six Merino sheep orally and intramuscularly at three dose levels of 5, 7.5 and 10 mg/kg. There was a washout period of 1 week between treatments. Blood samples were collected by jugular venepuncture and plasma was separated immediately by centrifugation and stored at 20 degrees C until analysed. The levamisole concentration in plasma was determined by high performance liquid chromatography with a U.V. detection method. Individual plasma levamisole concentration-time data were analysed using the compartmental method. RESULTS: The values obtained for k(a), C(max), t(max) and F show a moderate rate and extent of absorption after oral administration of levamisole while, after intramuscular administration, these values demonstrate a high rate and extent of absorption of levamisole. The intramuscular bioavailability was higher than the oral bioavailability (rate of absorption three-fold faster, extent of absorption 25-33% higher and C(max) two-fold higher). The Friedman test involving dose and route of administration showed that the route of administration affects k(a), C(max), t(max) and F; significant differences were found in these parameters. CLINICAL RELEVANCE: On the basis of these data, the recommended routes for the administration of levamisole in sheep are oral for gastro-intestinal nematodiasis and intramuscular for extragastric nematodiasis.  相似文献   

8.
9.
The aim of this study was to determine the pharmacokinetics of dexamethasone in broiler chickens. Dexamethasone sodium phosphate (0.3 mg/kg bodyweight) was injected IV or IM and blood samples were collected at 0, 0.25, 0.5, 0.75, 1, 2, 4, 6, 8, 10, 12 and 24 h after administration. Dexamethasone in the plasma samples was measured using a liquid chromatography–tandem mass spectrometry method and the pharmacokinetics analysed according to a one-compartmental model.The maximum plasma concentration after IM administration occurred at 0.37 h. The elimination half-life for dexamethasone was 0.46 h and 0.70 h following IV and IM administration, respectively, which was shorter than other species, while the clearance (1.26 L/h kg) was higher than has been reported for other species (<0.5 L/h kg). The volume of distribution (~1 L/kg) was similar to values reported for other species and the bioavailability of dexamethasone after IM administration was 100%. The results from this study will be useful in investigating whether inflammatory disease may affect the pharmacokinetic parameters of dexamethasone in chickens.  相似文献   

10.
Pharmacokinetics of mequindox and one of its major metabolites (M) was determined in chickens after intravenous (i.v.), intramuscular (i.m.) and oral administration of mequindox at a single dose of 10 (i.v. and i.m.) or 20 mg/kg b.w. (oral). Plasma concentration profiles were analyzed by a non-compartmental pharmacokinetic method. Following i.v., i.m. and oral administration, the areas under the plasma concentration-time curve (AUC(0-∞)) were 0.71±0.15, 0.67±0.21, 0.25±0.10 μg h/mL (mequindox) and 37.24±7.98, 36.40±9.16, 86.39±16.01 μg h/mL (M), respectively. The terminal elimination half-lives (t(1/2λz)) were determined to be 0.15±0.06, 0.21±0.09, 0.49±0.23 h (mequindox) and 5.36±0.86, 5.39±0.52, 5.22±0.35 h (M), respectively. The bioavailabilities (F) of mequindox were 89.4% and 16.6% for i.m. and oral administration. Steady-state distribution volume (V(ss)) of 1.20±0.34 L/kg and total body clearance (Cl(B)) of 13.57±2.16 L/kg h were determined for mequindox after i.v. dosing. After single i.m. and oral administration, peak plasma concentrations (C(max)) of 3.04±1.32, 0.36±0.13 μg/mL (mequindox) and 3.81±0.92, 5.99±1.16 μg/mL (M) were observed at t(max) of 0.08±0.02, 0.32±0.12 h (mequindox) and 0.66±0.19, 6.67±1.03 h (M), respectively. The results showed that mequindox was rapidly absorbed after i.m. or p.o. administration and most of mequindox was transformed to metabolites in chickens, with much higher C(max)s and AUCs of metabolite (M) than those of mequindox in plasma.  相似文献   

11.
1. The pharmacokinetics and bioavailability of levofloxacin in turkeys were investigated after a single intravenous (IV), intramuscular (IM) and oral (PO) administration of 10 mg/kg body weight.

2. The concentrations of levofloxacin in plasma samples were assayed using a microbiological assay method and pharmacokinetic parameters were calculated by non-compartmental analysis.

3. Following IV administration, the elimination half-life (t0.5(β)), volume of distribution at steady state (Vdss) and total body clearance (Cl) were 4.49 h, 1.31 l/kg and 0.23 l/h/kg, respectively.

4. After single IM and PO administrations at the same dose, levofloxacin was rapidly absorbed as indicated by an absorption half-life (t0.5ab) of 1.02 and 0.76 h, respectively; maximum plasma concentrations (Cmax) of 5.59 and 5.15 μg/ml were obtained at a maximum time (Tmax) of 2 h for both routes and levofloxacin bioavailability (F) was 96.5 h and 79.9% respectively after IM and PO administration. In vitro plasma protein binding of levofloxacin was 24.3%.

5. Based on these pharmacokinetic parameters, a dose of 10 mg/kg body weight given intramuscularly or orally every 24 h in turkeys can maintain effective plasma concentrations with bacterial infections with (minimum inhibitory concentration) MIC90 > 0.1 μg/ml.  相似文献   


12.
Comparative pharmacokinetic profiles of diaveridine following single intravenous and oral dose of 10 mg/kg body weight in healthy pigs and chickens were investigated, respectively. Concentrations of diaveridine in plasma samples were determined using a validated high‐performance liquid chromatography–ultraviolet (HPLC‐UV) method. The concentration–time data were subjected to noncompartmental kinetic analysis by WinNonlin program. The corresponding pharmacokinetic parameters in pigs or chickens after single intravenous administration were as follows, respectively: t1/2β (elimination half‐life) 0.74 ± 0.28 and 3.44 ± 1.07 h; Vd (apparent volume of distribution) 2.70 ± 0.99 and 3.86 ± 0.92 L/kg; ClB (body clearance) 2.59 ± 0.62 and 0.80 ± 0.14 L/h/kg; and AUC0‐∞ (area under the blood concentration vs. time curve) 4.11 ± 1.13 and 12.87 ± 2.60 μg?h/mL. The corresponding pharmacokinetic parameters in pigs or chickens after oral administration were as follows, respectively: t1/2β 1.78 ± 0.41 and 2.91 ± 0.57 h; Cmax (maximum concentration) 0.43 ± 0.24 and 1.45 ± 0.57 μg/mL; Tmax (time to reach Cmax) 1.04 ± 0.67 and 3.25 ± 0.71 h; and AUC0‐∞1.33 ± 0.55 and 9.28 ± 2.69 μg?h/mL. The oral bioavailability (F) of diaveridine in pigs or chickens was determined to be 34.6% and 72.2%, respectively. There were significant differences between the pharmacokinetics profiles in these two species.  相似文献   

13.
14.
15.
16.
Fluconazole (100 mg) was administered to six adult cats as an intravenous infusion over 30 minutes, and the same cats received 100 mg of the drug orally 16 weeks later. The cats were bled repeatedly through an indwelling jugular catheter, the plasma fluconazole concentrations were assayed by high performance liquid chromatography, and the concentration-time data were subjected to a non-compartmental pharmacokinetic analysis. The mean (SD) intravenous half-life (13·8 [2·6] hours) was similar to that observed after oral dosing (12·4 [3·0] hours). The plasma clearances (intravenous 0·9 [0·1], oral 0·9 [0·2] ml min−1 kg−1) and the volumes of distribution at steady state (intravenous 1·1 [0·1], oral 1·0 [0·1] litre kg−1) were also similar after the two routes of dosing. The peak plasma concentration was reached 2·6 hours after oral dosing and the drug was completely bioavailable (1·09 [0·05]). On the basis of this single dose study, the administration of 50 mg fluconazole every eight hours to a 4 kg cat should produce average steady state plasma fluconazole concentrations of approximately 33 mg litre−1.  相似文献   

17.
OBJECTIVE: To determine the pharmacokinetics of acetazolamide administered IV and orally to horses. ANIMALS: 6 clinically normal adult horses. PROCEDURE: Horses received 2 doses of acetazolamide (4 mg/kg of body weight, IV; 8 mg/kg, PO), and blood samples were collected at regular intervals before and after administration. Samples were assayed for acetazolamide concentration by high-performance liquid chromatography, and concentration-time data were analyzed. RESULTS: After IV administration of acetazolamide, data analysis revealed a median mean residence time of 1.71 +/- 0.90 hours and median total body clearance of 263 +/- 38 ml/kg/h. Median steady-state volume of distribution was 433 +/- 218 ml/kg. After oral administration, mean peak plasma concentration was 1.90 +/- 1.09 microg/ml. Mean time to peak plasma concentration was 1.61 +/- 1.24 hours. Median oral bioavailability was 25 +/- 6%. CONCLUSIONS AND CLINICAL RELEVANCE: Oral pharmacokinetic disposition of acetazolamide in horses was characterized by rapid absorption, low bioavailability, and slower elimination than observed initially after IV administration. Pharmacokinetic data generated by this study should facilitate estimation of appropriate dosages for acetazolamide use in horses with hyperkalemic periodic paralysis.  相似文献   

18.
19.
OBJECTIVE: To compare pharmacokinetics of enrofloxacin administered IV and in various oral preparations to ewes. ANIMALS: 5 mature Katahdin ewes weighing 42 to 50 kg. PROCEDURE: Ewes received 4 single-dose treatments of enrofloxacin in a nonrandomized crossover design followed by a multiple-dose oral regimen. Single-dose treatments consisted of an IV bolus of enrofloxacin (5 mg/kg), an oral drench (10 mg/kg) made from crushed enrofloxacin tablets, oral administration in feed (10 mg/kg; mixture of crushed enrofloxacin tablets and grain), and another type of oral administration in feed (10 mg/kg; mixture of enrofloxacin solution and grain). The multiple-dose regimen consisted of feeding a mixture of enrofloxacin solution and grain (10 mg/kg, q 24 h, for 7 days). Plasma concentrations of enrofloxacin and ciprofloxacin were measured by use of high-performance liquid chromatography. RESULTS: Harmonic mean half-life for oral administration was 14.80, 10.80, and 13.07 hours, respectively, for the oral drench, crushed tablets in grain, and enrofloxacin solution in grain. Oral bioavailability for the oral drench, crushed tablets in grain, and enrofloxacin in grain was 4789, 98.07, and 94.60%, respectively, and median maximum concentration (Cmax) was 1.61, 2.69, and 2.26 microg/ml, respectively. Median Cmax of the multiple-dose regimen was 2.99 microg/ml. CONCLUSIONS AND CLINICAL RELEVANCE: Enrofloxacin administered orally to sheep has a prolonged half-life and high oral bioavailability. Oral administration at 10 mg/kg, q 24 h, was sufficient to achieve a plasma concentration of 8 to 10 times the minimum inhibitory concentration (MIC) of any microorganism with an MIC < or = 0.29 microg/ml.  相似文献   

20.
This study describes the pharmacokinetics of vitacoxib in healthy rabbits following administration of 10 mg/kg intravenous (i.v.) and 10 mg/kg oral. Twelve New Zealand white rabbits were randomly allocated to two equally sized treatment groups. Blood samples were collected at predetermined times from 0 to 36 hr after treatment. Plasma drug concentrations were determined using UPLC‐MS/MS. Pharmacokinetic analysis was completed using noncompartmental methods via WinNonlin? 6.4 software. The mean concentration area under curve (AUClast) for vitacoxib was determined to be 11.0 ± 4.37 μg hr/ml for i.v. administration and 2.82 ± 0.98 μg hr/ml for oral administration. The elimination half‐life (T1/2λz) was 6.30 ± 2.44 and 6.30 ± 1.19 hr for the i.v. and oral route, respectively. The Cmax (maximum plasma concentration) and Tmax (time to reach the observed maximum (peak) concentration at steady‐state) following oral application were 189 ± 83.1 ng/ml and 6.58 ± 3.41 hr, respectively. Mean residence time (MRTlast) following i.v. injection was 6.91 ± 3.22 and 11.7 ± 2.12 hr after oral administration. The mean bioavailability of oral administration was calculated to be 25.6%. No adverse effects were observed in any rabbit. Further studies characterizing the pharmacodynamics of vitacoxib are required to develop a formulation of vitacoxib for rabbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号