首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
针对基于可见光视频的奶牛跛行检测系统易受光线、环境变化因素影响的问题,该研究提出了一种基于热红外视频的奶牛跛行运动特征获取与检测的方法.该研究利用深度学习与传统图像处理方法,分别对热红外相机与可见光相机所拍摄的奶牛行走视频进行了奶牛跛行运动特征的提取检测.通过检测结果分析可知,相较于可见光图像,算法对于热红外图像中的奶...  相似文献   

2.
计算机视觉技术在作物生长监测中的研究进展   总被引:8,自引:3,他引:8  
该文从作物外部生长参数测量、果实成熟度检测、作物营养状态监测及作物形状描述与识别等几个方面介绍了国内外计算机视觉技术在作物生长监测中的研究进展,认为具有启发式、智能化特点的彩色图像处理技术将会成为计算机视觉技术应用于设施农业领域的研究热点。  相似文献   

3.
为了后续加工便利,需要对打捞上来的淡水鱼进行分类,而且分类是淡水鱼加工前处理的重要工序之一。为了实现淡水鱼的自动分类,该研究通过收集常见的4种淡水鱼240条为试验样本,分别为鲢鱼、鲫鱼、鳊鱼和鲤鱼。通过运用机器视觉技术采集各种淡水鱼的图像,并运用数字图像处理技术对图像进行处理,提取其各个颜色分量及长短轴之比等特征值,最后运用该特征值建立有关淡水鱼的品种识别模型。研究表明,通过该识别模型可以完全实现对鲢鱼、鲫鱼、鳊鱼和鲤鱼这4种淡水鱼的品种的识别,准确率达到96.67%。机器视觉技术可以快速准确对常见的淡水鱼进行品种识别,具有较强的实际应用价值。  相似文献   

4.
基于机器视觉的田间杂草识别技术研究进展   总被引:7,自引:2,他引:7  
田间杂草识别技术是实现变量喷洒除草剂以保护环境的关键所在。针对国内外在精细农业的杂草识别领域,全面、系统地分析了基于机器视觉的田间杂草识别技术的研究进展与应用状况,以促进该项技术在中国的应用和发展。分别阐述了利用植物和背景形状特征、纹理特征、颜色特征和多光谱特征识别田间杂草技术的理论依据、特征参数、研究状况和问题所在,并指出了实现田间实时识别的难点。  相似文献   

5.
基于头颈部轮廓拟合直线斜率特征的奶牛跛行检测方法   总被引:1,自引:3,他引:1  
针对人工跛行检测不够及时,难以发现突发中、重度跛行及轻度跛行行为的问题,该文提出了一种基于正态分布背景统计模型(normal background statistical model,NBSM)与局部循环中心补偿跟踪模型(local circulation center compensation track,LCCCT)和线性斜率最近邻分类(distilling data of KNN,DSKNN)技术的奶牛跛行检测方法。首先利用NBSM模型对奶牛序列图像中的目标奶牛像素区域进行分割,然后对得到的奶牛像素区域利用LCCCT模型提取目标奶牛身体前部像素区域,用其区域通过DSKNN模型提取目标奶牛的头部、颈部以及与颈连接的背部轮廓线拟合直线斜率数据,基于大样本视频序列帧数据将视频集制成轻度跛行、中重度跛行及正常等3类标签的斜率数据集。为了验证算法的有效性,对随机选取的18段奶牛视频进行了验证,其中正常奶牛、轻度跛行奶牛及中重跛行奶牛视频段各6段,获得头部、颈部及背部连接处的拟合直线斜率数据集。在未清洗的数据集上,分别利用SVM、Naive Bayes以及KNN分类算法进行了奶牛跛行的分类检测试验,试验结果表明,SVM与Naive Bayes跛行分类检测正确率均为82.78%,KNN奶牛跛行检测正确率为81.67%。将未清洗的数据集进行清洗后,3类算法的结果表明,KNN分类算法的跛行检测正确率达93.89%,高于SVM分类算法的91.11%及Naive Bayes分类算法的86.11%。上述结果表明通过头部、颈部及背部连接处的拟合直线斜率特性可以正确检测奶牛跛行,未清洗的数据经数据清洗后,KNN分类算法可以取得更好的检测结果。该研究结果对于奶牛跛行疾病的预防、诊断具有重要意义。  相似文献   

6.
机器视觉识别单只蛋鸡行为的方法   总被引:1,自引:6,他引:1  
动物行为是一个重要的动物福利评价指标。为了实现对蛋鸡行为的自动监控,该文提出了利用计算机视觉技术对单幅蛋鸡图像进行行为识别的方法,可自动识别单只蛋鸡的运动、饮水、采食、修饰、抖动、休息、拍翅膀、探索、举翅膀的行为,并可长时间追踪蛋鸡的活动情况及运动轨迹。运动、采食和饮水通过追踪蛋鸡的位移和位置直接识别;拍翅膀、修饰、休息、探索、抖动、举翅膀则使用贝叶斯分类法基于10个特征量进行识别,所引入的蛋鸡上下轮廓到最小二乘拟合椭圆长轴距离的相关系数可有效追踪蛋鸡头部,从而提高了修饰和探索的识别率。对9219幅图像进行蛋鸡行为识别的识别率分别为:运动99.4%、饮水80.7%、采食87.3%、修饰81.6%、抖动69.8%、休息86.2%、拍翅膀100%、探索(包括啄食)54.0%、举翅膀64.6%。  相似文献   

7.
基于计算机视觉的粒度检测方法研究   总被引:8,自引:0,他引:8  
利用计算机视觉技术进行超微粉碎物料粒度检测方法的研究。采用非线性变换对图像进行对比度增强处理,利用自动取阈值算法分割目标和背景,设计了识别算法用于去除凝聚颗粒,以得到样本真实粒度和分布。实验证明用显微图像进行粒度检测,测定分布状态直观明了,检测结果稳定,可测量0.1~150 μm颗粒粒径。  相似文献   

8.
农业自动化领域中计算机视觉技术的应用   总被引:24,自引:9,他引:24  
计算机视觉技术的应用已扩展到农业自动化领域。该文介绍了计算机视觉系统的组成,概述了国内外计算机视觉技术在农业生产自动化中的应用状况,并对计算机视觉技术应用于农业自动化中存在的问题及发展前景做了概括  相似文献   

9.
基于计算机视觉的大米裂纹检测研究   总被引:13,自引:0,他引:13  
针对人工目测的传统方法在进行米粒裂纹检验时存在主观性及随意性较大、效率较低、可重复性较差等缺点,在分析大米裂纹光学特征的基础上,在Visual C++ 6.0环境下开发了一套大米裂纹计算机识别系统,通过图像二值化、区域标记等方法从原始图像中提取单体米粒图像,并对提取出的单体米粒图像进行灰度拉伸变换处理以突出米粒裂纹特征,然后提取单体米粒的行灰度均值变化曲线,并对曲线进行加权滤波处理,提出了一种基于单体裂纹米粒图像行灰度均值变化特征的大米裂纹检测算法。运用该算法对从金优974、菲优600、冈优182、中优205、89-94等5类大米品种中各选取的6 组特殊类样品和5 组随机样品进行裂纹检测。试验结果表明,该系统对特殊类大米样品和随机大米样品裂纹率的判断准确率分别为98.37%和97.88%,为进一步完善大米品质的计算机视觉检测提供了理论和实践基础。  相似文献   

10.
作为水产养殖集成信息化管理的主要信息源,水产动物视觉属性信息的测量不仅是判定水产动物生长状况,调控水质环境的主要信息依据,也是对水产动物进行喂养、用药、捕获、选别和分级等操作的前提基础。近年来,计算机视觉技术作为一项快速、客观、无损的检测方法,已被逐渐用于水产动物视觉属性的测量中,许多研究学者开展了大量的研究工作。该文更新和总结了国内外近20多年来有代表性的相关研究和解决方案,在描述计算机视觉检测系统的概念和组成结构的基础上,围绕尺寸测量、形状分析、颜色识别和质量估计等方面详细分析了计算机视觉技术在水产动物(以鱼类为主)视觉属性测量方面的国内外研究现状,着重阐述总结了研究人员在水产动物视觉检测的图像采集、轮廓提取、特征标定与计算等方面的具体改进措施,并对基于计算机视觉测量的水产动物疾病诊断,识别分类等综合应用现状也进行了分析探讨,以评估计算机视觉技术在水产动物视觉质量检测领域的总体应用情况和现存的主要问题,同时给出了今后的研究趋势与发展方向。  相似文献   

11.
奶牛站立、喝水、行走、躺卧等日常行为与其生理健康密切相关,高效准确识别奶牛行为对及时掌握奶牛健康状况,提高养殖场经济效益具有重要意义。针对群体养殖环境下奶牛行为数据中,场景复杂、目标尺度变化大、奶牛行为多样等对行为识别造成的干扰,该研究提出一种改进YOLOV5s奶牛多尺度行为识别方法。该方法在骨干网络顶层引入基于通道的Transformer注意力机制使模型关注奶牛目标区域,同时对奶牛多尺度行为目标增加路径聚合结构的支路与检测器获取底层细节特征,并引入SE(Squeeze-and-Excitation Networks)注意力机制优化检测器,构建SEPH(SE Prediction Head)识别重要特征,提高奶牛多尺度行为识别能力。试验验证改进后的奶牛行为识别模型在无权重激增的同时,多尺度目标识别结果的平均精度均值较YOLOV5s提高1.2个百分点,尤其是对奶牛行走识别结果的平均精度4.9个百分点,研究结果为群体养殖环境下,全天实时监测奶牛行为提供参考。  相似文献   

12.

为提高自然环境下生姜叶片病虫害的识别精确率,提出一种基于改进YOLOv5s的生姜叶片病虫害识别模型。建立了田间不同自然环境条件下的生姜叶片病虫害数据集,为保证模型在田间移动设备上流畅运行,实现网络模型的轻量化,在YOLOv5s中引入GhostNet网络中的Ghost模块和Ghost BottleNeck结构。同时,为避免生姜叶片病虫害图像小目标特征丢失的情况,增强图像特征提取,加入CA注意力机制模块,提升生姜叶片病虫害的识别准确率和定位精确度。改进后的模型参数量、计算量和权重文件大小分别为YOLOv5s模型的52.0%、50.6%和55.2%,对生姜叶片病虫害识别平均精度均值达到了83.8%。与Faster-RCNN、SSD、YOLOv4、YOLOv5s、Tea-YOLOv5s等算法相比,平均精度均值分别提高37.6、39.1、22.5、1.5、0.7个百分点,将改进后的目标检测模型部署在Jetson Orin NX开发板上,并使用TensorRT、Int8量化和CUDA等方法对检测模型加速,加速后的模型检测速度为74.3帧/s,满足实时检测的要求,测试结果显示,改进后的模型减少了漏检、误检的情况,并且对目标定位更加精准,适用于自然环境下生姜叶片病虫害的精准识别,为后续生姜机械自动化施药作业提供技术理论支持。

  相似文献   

13.
计算机视觉技术在水产养殖中的应用与展望   总被引:5,自引:6,他引:5  
该文从养殖动物的生物量测量、行为监测和应激状态评估等方面综述了计算机视觉技术在水产养殖中生物信息获取方面的研究进展,并提出了进一步研究的方向是用图像处理技术量化鱼的行为的新方法,鱼在各种应激和养殖条件下行为变化的量化研究和人工智能技术的应用等方面。  相似文献   

14.
实时准确地识别奶牛个体身份是构建完善的奶牛精准养殖技术架构的先决条件。如何在快速精准识别奶牛个体的同时保证模型的轻量化是至关重要的。本文提出了一种在低计算量和低参数量条件下快速准确识别奶牛个体身份的方法。研究采用YOLOv5s作为原始模型,利用BN层中缩放因子对模型中通道的重要性进行判断并剪除不重要的通道,从而降低网络复杂度。为了更加有效地压缩模型,本研究在损失函数中增加稀疏损失项,实现模型通道的稀疏化。测试试验结果表明,剪枝后的模型平均精度mAP为99.50%,计算量为8.1 G,参数量为1.630 M,每秒帧数为135.14 帧。相比其他具有代表性的目标检测模型,本文方法拥有最小的模型复杂度。此外,相比其他模型,本文方法对奶牛斑纹特征依赖程度更低,在低照度条件下有着更加出色的表现。考虑该方法具有快速、准确、鲁棒、低计算量和低参数量的特点,在推进养殖场中奶牛精细化养殖方面具有巨大潜能。  相似文献   

15.
为解决奶牛隐性乳房炎难以防治的问题,构建了一种基于计算机视觉技术的快速检测系统。通过电脑与USB摄像头采集牛奶p H测试纸图像,提出了一种融合颜色特征与形态学处理的分割方法,分割化学反应区并获取RGB值,使用Foss5000牛乳体细胞分析仪得到牛奶体细胞实测值,采取幂回归法建立RGB值与牛奶体细胞数的预测模型,并基于Android技术开发了便携式移动终端设备。牛场实测20组数据试验结果显示,牛奶体细胞数估测值与实测值相关系数为0.970,估测平均相对误差为3.67%,标准差为1.88%。系统估测牛奶体细胞数较为准确,可用于奶牛隐性乳房炎快速检测。  相似文献   

16.
基于姿态与时序特征的猪只行为识别方法   总被引:2,自引:1,他引:2  
生猪行为监测是生猪养殖管理过程中的一个重要环节。该研究提出了基于姿态与时序特征的猪只行为识别方法。首先采集和标注猪栏内猪只图像,分别构建了猪只目标检测数据集、猪只关键点数据集和猪只行为识别数据集;利用构建的数据集,分别训练了基于YOLOv5s的猪只检测模型、基于轻量化OpenPose算法的猪只姿态估计模型和基于ST-GCN算法的猪只行为识别模型,并搭建了猪只行为识别系统。经测试,文中训练的YOLOv5s猪只检测模型mAP(mean Average Precision)最高达到0.995,姿态估计模型平均精度和平均召回率达到93%以上,基于ST-GCN的猪只行为识别模型的平均准确率为86.67%。文中构建的猪只行为识别系统中基于LibTorch推理猪只检测模型和猪只姿态估计模型的单帧推理耗时分别约为14和65 ms,单只猪行为识别推理耗时约为8 ms,每提取200帧连续姿态进行一次行为识别推理,平均17 s更新一次行为识别结果。证明提出的基于姿态与时序特征的猪只行为识别方法具有一定可行性,为群养猪场景下的猪只行为识别提供了思路。  相似文献   

17.
基于计算机视觉技术的温室黄瓜叶片营养信息检测   总被引:27,自引:7,他引:27  
应用计算机视觉技术研究了诊断温室作物营养状态的方法。在日光条件下采集了温室黄瓜叶片图像,然后分别提取了红绿蓝(RGB)三色分量和它们的相对系数rgb,以及色度、饱和度和亮度指标(HSI)。在RGB和HSI颜色模型下分析了各分量与叶片含氮率、含磷率和含水率之间的相关特性。分析结果表明:叶片绿色分量G和色度H分量与氮含量线性相关,可用作利用机器视觉快速诊断作物长势的指标,而其它分量与氮含量没有明显的相关性;颜色各分量与磷含量和水分含量均没有表现出明显相关关系;在对单次数据进行分析和比较时发现在同一光照条件下,绿色分量G和色度H与氮含量之间存在较好的线性相关特性,而当光照条件不同时,对两变量之间的线性关系存在一些影响,需要在进一步的试验研究中通过使用人工光源和系统标定的方法改进,以提高线性回归的精度。  相似文献   

18.
基于机器视觉的马铃薯晚疫病快速识别   总被引:1,自引:6,他引:1  
晚疫病是马铃薯的一种严重病害,可造成减产甚至绝收。因此马铃薯晚疫病的识别与控制对提高其产量有非常重要的意义。该文基于机器视觉技术对马铃薯叶部晚疫病进行检测,根据马铃薯叶片上晚疫病斑的颜色、纹理和形状特征参数的不同,提取叶片表面的特征参数,并建立数学模型对病害程度做出评价。在RGB、HSV颜色空间中,根据马铃薯叶片在患病早期叶片颜色发生变化且与健康叶片不同,利用颜色特征,建立马铃薯晚疫病的无病和患病模型,该模型对马铃薯患病早期的识别率为67.5%。利用灰度共生矩阵,采用纹理统计参数进行病害等级评价,用熵值和能量值描述晚疫病的严重程度,纹理特征对患病程度的识别率比较稳定,对患病中期与后期的识别率分别为72.5%与80%。利用形状特征的相对特征,根据病斑面积比进行晚疫病诊断,该方法对马铃薯叶片晚疫病患病后期的诊断取得较好效果,识别率为90%,但由于叶片患病早期的病斑面积小且分散,识别难度大,识别率仅为50%。针对颜色、纹理及形状特征在识别马铃薯叶片晚疫病时的优势与局限性,提出颜色纹理形状特征结合的识别方法,对患病中期与后期的识别率分别为90%和92.5%。通常马铃薯晚疫病的理化值检测法耗时数天,但利用机器视觉识别马铃薯晚疫病患病情况非常快速,根据颜色特征进行病害识别的时间约为4 s,纹理特征识别的时间为7 s,形状特征特征识别的时间为3 s,综合颜色纹理形状特征的识别由于计算量较大,识别时间为9 s。该研究可为基于机器视觉的马铃薯晚疫病的快速检测提供理论依据。  相似文献   

19.
基于机器视觉的水稻杂质及破碎籽粒在线识别方法   总被引:3,自引:5,他引:3  
陈进  顾琰  练毅  韩梦娜 《农业工程学报》2018,34(13):187-194
为了解决目前国内联合收获机缺乏针对含杂率、破碎率的在线监测装置的问题,该文提出基于机器视觉的水稻图像采集,杂质与破碎籽粒分类识别方法。采用带色彩恢复的多尺度Retinex算法增强原始图像,对HSV颜色模型的色调、饱和度两个通道分别设定阈值进行图像分割,并结合形状特征得到分类识别结果。采用综合评价指标对试验结果进行量化评价,研究表明,茎秆杂质识别的综合评价指标值达到了86.92%,细小枝梗杂质识别的综合评价指标值为85.07%,破碎籽粒识别的综合评价指标值为84.74%,平均识别一幅图像的时间为3.24 s。结果表明,所提出的算法能够快速有效识别出水稻图像中的杂质以及破碎籽粒,为水稻含杂率、破碎率的在线监测提供技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号