首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
High temperature is a major determinant of grain growth and yield formation in wheat. The present study was undertaken to investigate the effects of high temperature regimes on the activities of key regulatory enzymes involved in starch and protein accumulation in grains of two winter wheat (Triticum aestivum L.) cultivars Yangmai 9 and Xuzhou 26 with different protein contents. Four day/night temperature regimes of 34 °C/22 °C, 32 °C/24 °C, 26 °C/14 °C and 24 °C/16 °C were established after anthesis, resulting in two daily temperature levels of 28 °C and 20 °C and two diurnal temperature differences of 12 °C and 8 °C. The activities of glutamine synthase (GS) in flag leaves and glutamate pyruvic aminotransferase (GPT), sucrose synthase (SS), soluble starch synthase (SSS) and granule‐bound starch synthase (GBSS) in grains were measured during the periods of grain filling. High temperature reduced both content and yield of starch in grains, while enhanced protein content and reduced protein yield in grains. High temperature significantly enhanced the activities of SS and GBSS on 14 days after anthesis (DAA). High temperature affected SSS slightly in Yangmai 9, but reduced SSS activity markedly in Xuzhou 26 on 14 DAA. However, at the middle and late stages of grain filling, high temperature reduced the activities of SS, GBSS and SSS significantly in the two wheat cultivars. High temperature reduced GPT activity in grains in the two wheat cultivars, but reduced GS activity in flag leaves of Yangmai 9 and enhanced GS activity of Xuzhou 26 on 14 DAA. In addition, under the same high temperature level, SS activity was higher at 34 °C/22 °C, whereas the activities of SSS and GBSS were higher at 32 °C/24 °C. Also, diurnal temperature differences affected GPT and GS activities differently between the two cultivars. Under optimum temperature level, the activities of key enzymes for starch and protein synthesis were higher at 26 °C/14 °C. The activities of SS, SSS and GBSS significantly correlated with starch accumulation in grains, except for GBSS activity to starch content on 14 DAA. GPT activity was positively correlated with protein yield, and GS activity was negatively correlated with protein yield on 14 DAA, while the activities of both GPT and GS were negatively related to protein content in grains.  相似文献   

2.
The reproductive stage of flowering plants is sensitive to high-temperature stresses. High temperature is a major factor influencing pollen grain viability in upland cotton (Gossypium hirsutum). The objective of this study was to identify the relationship between cotton pollen germination percentage and temperature by assaying the pollen germination of four upland cotton cultivars in vitro at different temperatures during the blooming period. The results showed that in vitro pollen germination percentage was related to the culture temperature of pollen germination and the temperature of the square development process. High temperature affected pollen development and germination, and high-temperature tolerance differed among the cotton cultivars. The pollen germination percentage decreased rapidly with changes in the culture temperature from 30 to 39 °C. A culture temperature of 35 °C might be a critical temperature for the pollen viability transition and could be used to screen cotton cultivars that have pollen grains with high-temperature resistance. Before the high-temperature stage, cultivars with rates of decrease in the percentage of pollen germination of less than 41 % at 35 °C relative to the rates at 30 °C might be considered as high-temperature tolerance cultivars, and cultivars with rates of decrease in the percentage of pollen germination greater than 41 % might be considered as susceptible cultivars. The high-temperature stress for pollen grain germination in vitro was greater than 30 °C, and the high-temperature stress for square development might be greater than 33 °C. Boll retention was significant; it was positively correlated with the pollen germination percentage and negatively correlated with temperature during the high-temperature stage. This study provided a method for rapidly screening cultivars (lines) with high-temperature tolerance pollen in upland cotton breeding.  相似文献   

3.
Low-temperature adapted Andean potato clones and low-temperature sensitive European clones cultivated at 20/10°C were compared during stress occuring as the result of low-temperature treatments. The stress response of leaf tissue was assessed by measuring the decrease in chlorophyll fluorescence (Fv/Fm) in detached leaves during a period of six days. After temperature stress combined with light Fv/Fm decreased only slightly in the Andean clones, but was markedly lower than the initial values in the European clones, However, after a 2°C treatment in darkness no difference between clones of different origins was detected. In general, chlorophyll and carotenoid contents of the Andean clones were higher than those of the European clones. They were markedly lower in all clones in treatments where low temperature was combined with light, than at 20/10°C and at 2°C in the dark. The contents of carotenoids and total chlorophylls decreased more in the European than in the Andean clones when leaves were transferred to a higher light intensity and then the lowest temperature used was combined with light. Thus carotenoids and chlorophylls in the Europeans clones were more sensitive to photo-oxidation at low temperatures than in the Andean clones. The changes in chlorophyll fluorescence in illuminated, detached leaves induced by a decrease in temperature were found to correlate with the low temperature performance of the genotypes. The correlation between low temperature performance and photosynthetic activity was highly significant and could be used by plant breeders to identify plants that perform well at low temperatures.  相似文献   

4.
Gas exchange and chlorophyll a fluorescence transient were examined in leaves of sorghum at high temperatures. No changes were found in photosynthetic rate (Pn) and photosystem II (PS II) performance index on absorption base (PI(abs)) at 40 °C for 1 h. But transpiration rate was enhanced significantly, which served as a self‐protection response for dissipating heat. The Pn decreased significantly at 40 °C for 3 h, and the decrease became greater at 45 °C. Decrease in Pn mainly resulted from stomatal limitation at 40 °C for 3 h, whereas it was due to non‐stomatal limitation at 45 °C. Decline in PS II function indicated by the significant decrease in PI(abs), trapped energy flux and electron transport flux were responsible for the decrease in Pn at 45 °C. PS II reaction centre and oxygen‐evolving complex in the donor side were not affected at high temperatures, but electron transport in the acceptor side was sensitive to high temperature. The PS II function recovered completely 1 day after high temperature stress even as high as 45 °C, which is favourable for sorghum to meet the challenge of global warming. However, Pn did not completely recover possibly due to heat‐induced irreversible damage to CO2 fixation process.  相似文献   

5.
Genotypic variability in relation to growth and photosynthetic CO2 assimilation rate (Pn) is well known for maize (Zea mays L.) under heat stress conditions. This study was, however, initiated to test whether genotypic growth variation is related to variations in individual leaf size, leaf extension rate (LER), and photosynthesis of the single leaf at high temperature. Six tropical maize genotypes selected from the International Maize and Wheat Improvement Centre (CIMMYT) with contrasting growth responses were grown for 9 days after emergence (DAE) in the first and for 15 DAE in the second experiment at 25/22 °C and 42/30 °C. High temperature caused a marked decrease in the growth parameters, and the genotypes showed high growth variations irrespective of temperature levels. Interestingly, genotypes did not follow a similar ranking in relation to biomass production between 9 DAE (heterotrophic growth phase) and 15 DAE (autotrophic growth phase) at 25/22 °C, but the pattern was similar at 42/30 °C. Total leaf area and daytime LER of leaves 2 (l2), 3 (l3), and 4 (l4) showed a tight correlation with biomass production at both temperatures, while the LER of the youngest leaf (l4) at night also showed the same correlation at 42/30 °C. A significant relationship between the areas l2 and l3 and biomass was observed only at high temperature and not at 25/22 °C. The Pn decreased markedly at high temperature and genotypic variability was pronounced. The genotypes maintained a similar ranking of Pn measured from l2 at 8 DAE and from l3 at 13 DAE under unfavourable conditions only and not at 25 °C. Of the six genotypes, F250 outperformed the others in relation to growth and Pn activity. A tight correlation between photosynthesis of different leaves and growth was detected at high temperature but not at the optimal temperature for growth. It is concluded that the areas l2 or l3, daytime LER and Pn, all measured at high temperature stress conditions, can be regarded as good indicators of the thermo‐tolerance of tropical maize genotypes at the seedling stage.  相似文献   

6.
Abstract It is a challenge to obtain the appropriate protein concentration in cereals for the intended end‐use. This study examined ambient temperature effects on two spring malting barley cultivars (Henley and Tipple) grown in soil or in solution culture with controlled nitrogen supply in daylight chambers with low temperature (day 18 °C, night 12 °C), and high temperature (23 °C/17 °C) to/after anthesis. In soil‐grown plants, high temperature to anthesis resulted in higher grain nitrogen amount (GNA), grain nitrogen concentration (GNC) and straw nitrogen concentration (SNC). In plants grown in solution, high temperature to anthesis resulted in lower GNA and higher GNC. A temperature rise of 1 °C during the growing period in solution cultivation increased GNC, root nitrogen concentration (RNC) and SNC, by 1.20, 1.35 and 0.33 mg g?1, respectively. In solution culture, GNC was positively correlated with RNC and SNC (P < 0.01). Cv. Henley had higher GNC but lower SNC than cv. Tipple. Cv. Henley was more stable in grain size and cv. Tipple in GNC. The results showed that temperature has a direct effect on GNC. Accounting for temperature fluctuations up to the latest possible nitrogen fertilisation occasion can therefore help when deciding appropriate nitrogen supply for intended end‐use.  相似文献   

7.
High temperature and drought stress are among the two most important environmental factors influencing crop growth, development and yield processes. These two stresses commonly occur in combination. Objectives of this research were to investigate the independent and combined effects of high temperature and drought stress during grain filling on physiological, vegetative and yield traits and expression of a chloroplast protein synthesis elongation factor (EF‐Tu) of wheat (Triticum aestivum L.). Two spring wheat cultivars (Pavon‐76 and Seri‐82) were grown at control temperatures (CT; day/night, 24/14 °C; 16/8 h photo/dark period) from sowing to heading. Thereafter, one half of the plants were exposed to high temperature stress (HT; 31/18 °C in Exp. 1 and 34/22 °C in Exp. 2), drought stress (withholding water), or a combination of both HT and drought stress. There were significant influences of HT and/or drought stress on physiological, growth and yield traits. There was no cultivar or cultivar by temperature or cultivar by drought interaction effects on most traits. The decreases in leaf photosynthesis were greater at HT compared with drought alone throughout the stress period, and the combination of HT and drought had the lowest leaf photosynthetic rates. Overall, HT or drought had similar effects (about 48–56 % decrease) on spikelet fertility, grain numbers and grain yield. High temperature decreased grain numbers (by 56 % averaged across both experiments) and individual grain weight (by 25 %), while, respective decreases due to drought were 48 % and 35 %. This suggests that the grain numbers were more sensitive to HT and grain weights to drought for the range of temperatures tested in this research. The interaction between HT and drought stress was significant for total dry weights, harvest index and spikelet fertility, particularly when HT stress was severe (34/22 °C). The combined effects of HT and drought were greater than additive effects of HT or drought alone for leaf chlorophyll content, grain numbers and harvest index. High temperature stress and the combination of HT and drought stress but not drought stress alone resulted in the overexpression of EF‐Tu in both spring wheat cultivars.  相似文献   

8.
The influence of different initial phenolic contents in pak choi (Brassica campestris L. ssp. chinensis var. communis) leaves, obtained by pre-harvest treatment with and without UV-B, on storage behaviour was investigated. The storage conditions were controlled (1.5–2.5% O2 and 5–6% CO2) or normal air atmospheres at 2 °C and 99% relative humidity. A complementary pre-harvest experiment was conducted to investigate the effect of temperature and UV-B irradiation on the level of phenolic compounds. Both UV-B treatment and temperature showed significant effects regarding polyphenolic contents determined by HPLC-DAD; total polyphenolic content increased under low temperature even without UV-B. UV-B irradiation resulted in a distinct increase in hydroxycinnamic acid derivatives at low temperature (9 °C) and of flavonoids at ambient temperature (22 °C), which might be related to the enhanced level of flavonoid precursors, i.e. hydroxycinnamic acids, which are not utilized for flavonoids in the biosynthesis pathway at low temperature. This hypothesis is supported by the strong increase in the concentration of coumaric acid derivatives under UV-B treatment and low temperature. The epidermal UV-A absorption by PAM fluorometry (pulse amplitude modulation) increased after cultivation under UV-B irradiation and this effect was more pronounced at 22 °C than at 9 °C due to the increases of flavonoid contents and their good correlation with epidermal absorption. Polyphenols are responsible for the epidermal absorption of leaves in the UV range of irradiation. The non-destructive PAM fluorometry of epidermal screening and HPLC-DAD analysis for flavonoids of leaf extracts correlated well and both methods were also applied in the postharvest storage experiment. Plants with a higher initial polyphenolic content showed an increasing effect in epidermal UV-A absorption data and a significantly increasing concentration for flavonoids over the storage period, which is assumed to be due to ongoing biosynthesis induced by the pre-harvest UV-B treatment. The level of flavonoids increased more in controlled atmospheres than in normal air, but hydroxycinnamic acids were unaffected. Fresh weight and chlorophyll content of the plants as markers of postharvest senescence changed only marginally during storage, but UV-B treated plants lost significantly more weight than plants without this treatment.  相似文献   

9.
We investigated heat tolerance at the reproductive stage in six spring‐type B. rapa accessions and one B. juncea accession as a control. Plants were subjected to two temperature treatments for seven days in controlled environmental rooms, beginning one day before the first open flower on the main stem inflorescence. The high‐temperature treatment ranged from 25 °C to 35 °C during 16 h light and 25 °C during 8 h dark. The control temperature treatment was set at 23 °C during 16 h light and 15 °C during 8 h dark. Soil moisture was maintained at close to field capacity to avoid drought stress. Main stem buds that emerged during the treatment period were tagged, and pod and seed production was recorded at each reproductive node. Leaf temperature depression and leaf conductance increased in the high‐temperature treatment which indicated that plants were not drought stressed. A leafy vegetable type of B. rapa from Indonesia was the most tolerant to high temperature, as defined by its ability to set seed equally well in the control and high‐temperature treatments, followed by an oilseed type from Pakistan. Pollen viability remained above 87 % in all accessions and treatments. We conclude that bud number and length, and pod number produced under high temperatures, might provide a useful preliminary screen for high‐temperature tolerance and that B. rapa may be a valuable source of heat tolerance in canola (B. napus).  相似文献   

10.
High temperature is a major environmental factor that limits wheat (Triticum aestivum L.) productivity. Climate models predict greater increases in night‐time temperature than in daytime temperature. The objective of this research was to compare the effects of high daytime and high night‐time temperatures during anthesis on physiological (chlorophyll fluorescence, chlorophyll concentration, leaf level photosynthesis, and membrane damage), biochemical (reactive oxygen species (ROS) concentration and antioxidant capacity in leaves), growth and yield traits of wheat genotypes. Winter wheat genotypes (Ventnor and Karl 92) were grown at optimum temperatures (25/15 °C, maximum/minimum) until the onset of anthesis. Thereafter, plants were exposed to high night‐time (HN, 25/24 °C), high daytime (HD, 35/15 °C), high daytime and night‐time (HDN, 35/24 °C) or optimum temperatures for 7 days. Compared with optimum temperature, HN, HD and HDN increased ROS concentration and membrane damage and decreased antioxidant capacity, photochemical efficiency, leaf level photosynthesis, seed set, grain number and grain yield per spike. Impact of HN and HD was similar on all traits. Greater impact on seed set, grain number and grain yield per spike was observed at HDN compared with HN and HD. These results suggest that HN and HD during anthesis cause damage of a similar magnitude to winter wheat.  相似文献   

11.
H. Funatsuki    S. Matsuba    K. Kawaguchi    T. Murakami  Y. Sato 《Plant Breeding》2004,123(6):558-563
Several evaluation methods for soybean chilling tolerance at the reproductive stage were examined under artificial climatic conditions. Comparisons were made on plants in control and treated plots using three cultivars differing in the level of chilling tolerance. In all methods, plants were grown at 22/17°C (day/night) until first flowering, and then transferred to growth chambers at 24/17°C for control and 15/15°C for chilling treatment, respectively. A method, in which plants were grown at 20/16°C after 4 weeks of the different temperature treatments, proved comparable to the conventional one, in which chilling tolerance at the flowering stage is evaluated using natural and artificial conditions. Another method, in which the plants in chilling treatment plots were grown at 15°C until maturity, also proved usable to evaluate genotypic differences in chilling tolerance independently of maturity time.  相似文献   

12.
Heat tolerant mutants were obtained in two commercial potato cultivars, `Kufri Jyoti' and `Kufri Chandramukhi' through in vitro mutagenesis of in vitro propagated plantlets. Gamma-irradiated (20 and 40 Gy) shoots were micropropagated for three cycles (M1V3). A large number of the micropropagated shoots produced microtubers at 28 °C. Microtubers induced at high temperature had distorted shape but showed normal germination in field. Under stress conditions of high temperature, the frequency of chlorophyll variants increased in the gamma irradiation-derived material, however, nearly 40% of the plants had normal leaf tissue, whereas control plants showed completely damaged leaves. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Rice is most sensitive to heat stress at the flowering stage, with different degrees of heat damage in spikelets and leaves. To investigate the heat damage in spikelets and flag leaves, two rice genotypes, N22 (heat‐tolerant) and GT937 (heat‐sensitive), were subjected to a heat‐stress treatment (40 °C for 15 days). The results showed that more damaging was found in spikelets than in flag leaves and the heat stress significantly decreased the seed‐setting rate by 12.41 % in N22 and by 65.02 % in GT937. However, the difference in the net photosynthetic rate of the flag leaf between heat‐stressed and control was not significant. Moreover, the difference of temperatures in spikelets and flag leaves was attributed to the differences in heat dissipating. Under heat stress, the transpiration rate was significantly higher in flag leaves than in spikelets, and the temperature in flag leaves were at least 4 °C cooler than in spikelets. Although the spikelet temperatures did not differ significantly between the two genotypes under heat stress, spikelets of GT937 were more severely damaged than those of N22, which might result from the differences in the antioxidant capacities between genotypes. Results showed that little difference of superoxide dismutase, peroxidase and catalase activities of spikelets was found in N22, while significant reduction was found in GT937 under heat stress, compared with control. These results suggest that organ temperature is controlled mainly by transpirational cooling, and that heat stress is an indirect result of oxidative stress, rather than a direct result of heat damage.  相似文献   

14.
Gametophytic selection has potential to increase the efficiency of breeding for temperature tolerance. Here, we describe orchid seedlings after application of low and high temperatures during gametophytic development. In addition to phenotypic traits, amplified fragment length polymorphism (AFLP) markers were used to determine the genetic variability in seedlings. Two hybrid Phalaenopsis were cross-pollinated and exposed to 30°C day/25°C night for 3 days for a warm pollination or 15°C day/10°C night for 7 days as a cold pollination treatment. The plants were returned to the greenhouse after pollination and green capsules were collected after 150 days. Protocorms obtained from these treatments were evaluated 72 days after initial plating for germination and size on a thermogradient table ranging from 10 to 30°C. Seedlings were then evaluated 1 year after initial plating. The mean number of roots per seedling (4.2) was greater for plantlets that derived from the cold pollination treatment compared to those from warm pollination (3.6). Weight of the seedlings, number of roots and the average root length were significantly affected by the interaction between pollination treatment and germination temperature. The weight, number of leaves, and average root length were significantly affected by the interaction between pollination treatment and incubator/growth chamber. The results indicated that seedlings derived from warm pollination were more vigorous under warm growing conditions and those derived from cold pollination were more vigorous under cold growing conditions. Genetic variation among 16 F1 seedlings randomly selected from various temperature treatments was analyzed. A dendrogram based on 651 loci resulted in three major groups and one subgroup. The groups and subgroup revealed common selection pressure during the gametophytic stage. The AFLP data support genetic differentiation of Phalaenopsis hybrids pollinated under different temperatures.  相似文献   

15.
High temperatures, whether of shoot or root, are reported to affect shoot and root growth of various plant species. The scanty information available on the differential response of wheat genotypes to high shoot and root‐zone temperatures triggered this investigation to study the response and adaptation of shoot and root growth of three wheat genotypes to high shoot and root‐zone temperatures during early growth stages. Three wheat genotypes; Fang (heat tolerant), Siete Cerros (heat sensitive) and Imam (recent cultivar adapted to a hot irrigated environment) were grown in soil and hydroponically. Three shoot/root‐zone temperatures (23/23, 23/35 and 35/35 °C for the soil experiment and 22/22, 22/38 and 38/38 °C for the hydroponic experiment) were applied at three‐leaf growth stage. High root‐zone temperature alone or combined with high shoot temperature reduced xylem sap flow rate, root dry weight, root length and root/shoot ratio. Unexpectedly, shoot fresh and dry weights and relative growth rate (RGR) were not significantly affected by the high root‐zone temperature except for the susceptible genotype, Siete Cerros, after prolonged exposure in the hydroponic experiment. In contrast, high shoot/root‐zone temperature significantly reduced shoot fresh and dry weights from as early as the first week of the hydroponic experiment. The 38/38 °C treatment also caused significant reduction in RGR and net assimilation rate during the first 2 weeks, but no significant differences were found during the last 2 weeks compared with 22/22 °C. Interesting responses were observed among genotypes in terms of shoot and root dry weights and root/shoot ratio at 38/38 °C treatment. The heat‐sensitive Siete Cerros showed the least reduction in these traits during the first 2 weeks while the heat‐tolerant Fang and Imam responded by greatly reducing their shoot and root weights. The situation was almost reversed with the duration of treatments such that Siete Cerros became the most affected genotype while Fang and Imam were better adapted to high shoot/root‐zone temperature. Specific root weight was the exceptional trait that increased under high temperature treatments. Results indicate that despite the reduction in root length and weight observed under high root‐zone temperature, shoot growth was not much affected suggesting that the use of suitable cultivar coupled with proper management could alleviate most of high root‐zone temperature effects during early growth stages.  相似文献   

16.
 以叶片衰老快慢不同的两个棉花品系L21和L22为材料,研究了NaCl胁迫对棉花叶片衰老的影响及其相应的生理学机制。温室内水培棉苗,待第5片真叶展开20 d后用含125 mmol·L-1 NaCl的营养液处理棉苗,以不含NaCl的营养液处理为对照。结果显示,NaCl胁迫下L21和L22叶片中叶绿素含量和光合作用速率下降,叶片和根中的Na+含量上升、K+含量降低;NaCl胁迫还增加了棉株体内脱落酸(ABA)含量、降低了玉米素核苷(ZR)含量。表明K+含量降低以及ABA含量升高、ZR含量下降是NaCl胁迫促进棉花叶片衰老的重要原因。  相似文献   

17.
Precipitation has generally increased in Norway during the last century, and climate projections indicate a further increase. The growing season has also become longer with higher temperatures, particularly in autumn. Previous studies have shown negative effects of high temperatures and, depending upon temperature conditions, contrasting effects of waterlogging on hardening capacity of timothy. We studied effects of waterlogging on seedlings of timothy (Phleum pratense, cv. Noreng) under three pre-acclimation temperatures: 3°C, 7°C, 12°C, and in autumn natural light in a phytotron at Holt, Tromsø (69°N). After temperature treatments, all plants were cold acclimated at 2°C for three weeks under continued waterlogging treatments. Freezing tolerance was determined by intact plants being frozen in pots at incremental temperature decreases in a programmable freezer. Waterlogging resulted in a higher probability of death after freezing, and a significantly reduced regrowth after three weeks at 18°C, 24 hrs light in a greenhouse. Increasing pre-acclimation temperatures also had a clear negative effect on freezing tolerance, but there was no interaction between temperatures and waterlogging. The results indicate that waterlogging may have negative implications for hardening of timothy and may contribute to reduced winter survival under the projected increase in autumn temperatures and precipitation.  相似文献   

18.
以油茶优良无性系为试材,对油茶年生长周期(新稍生长期、果实生长期、果实成熟期、花期和休眠期)中光合特性的影响因子--叶龄、叶位进行了研究。结果表明:(1)不同叶龄叶片的净光合速率日变化曲线存在单峰和双峰两种类型,1年生叶片的平均净光合速率与最大净光合速率在果实成熟期达到最高值,2年生叶片的平均净光合速率与最大净光合速率均在新稍生长期达到最高值;(2)1年生叶片的叶绿素含量先升高后降低,2年生叶片的叶绿素含量一直降低,可溶蛋白含量随着叶龄的增加而减少,叶片全磷含量年变化趋势为“M”型;(3)上、下部叶片的净光合速率日变化趋势一致,上午上部叶片的净光合速率值高于下部叶片,下午下部叶片的净光合速率值高于上部叶片。  相似文献   

19.
In a pot experiment under controlled condition, Leymus chinensis was grown at five soil water contents and two diurnal temperature variation levels. The leaf relative water content of L. chinensis decreased under soil drought conditions, and increased at high diurnal temperature variation (30/20 °C). Severe and very severe soil drought remarkably reduced photosynthetic rate, stomatal conductance, transpiration rate and water use efficiency (WUE), especially at the low temperature variation. Severe drought mainly increased the specific radioactivity of 14C of sheaths, roots and rhizomes, but significantly decreased that of fed leaves and the not fully expanded leaves. Root percentage of total radioactivity remaining in the whole plant increased from 15 % at 30/25 °C to 28 % at 30/20 °C. Leaf carbon stable isotope composition (δ13C) increased with soil drought, ranged from ?26 ‰ of the well‐watered to ?24 ‰ of severe drought treatments. High diurnal temperature variation improved leaf water status, and increased partitioning of carbon to root and δ13C values, especially under severe soil drought conditions. In conclusion, higher diurnal temperature variation enhanced the resistance of the plant to drought.  相似文献   

20.
Freshly harvested leeks (Allium ampeloprasum L. var. porrum) were trimmed (leaf tips, roots), had the decayed leaves removed, washed with tap water, cut at 50 cm length and subjected to heat treatment at 55 °C for 0 and 17.5 min. They were then trimmed at the root base and leaves to produce stalks 22 cm in length with or without removal of a 2 cm portion of the base. Minimally processed leeks were tray-packaged, wrapped with 16 μm stretch film and stored at 10 °C for 7 days to determine the effects of base removal and heat treatment on visual (leaf growth, fresh weight loss and discoloration) and nutritional quality after storage. CO2 and ethylene concentrations of packages containing minimally processed leeks showed a wound-induced pattern typical of other fresh cut vegetable tissues. Base removal did not significantly affect respiration but increased ethylene production, while heat treatment increased respiration rate and suppressed ethylene production. Storage of minimally processed leeks at 10 °C for 7 days resulted in a slight decrease of chroma and hue angle of base cross section as well as a decrease of chroma of the upper cross section. Heat treatment prevented the decrease of chroma of the base and upper cross section. Base removal reduced, but did not totally control leaf growth of stored minimally processed leeks. Moreover, it resulted in a decrease of dry matter, soluble solids, total soluble phenols, antioxidant capacity and total thiosulfinates at the end of the storage. A combination of base removal and heat treatment efficiently controlled leaf growth, but these treatments resulted in increased fresh weight and total thiosulfinate loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号