首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A UV exclusion experiment was conducted on durum wheat (Triticum durum Desf. var. Claudio) grown in pots. Plants were grown under three different radiative treatments in greenhouses covered with plastic filters: Teflon, transparent to the entire region of natural UV‐visible sunlight (TEF); polyester, transparent above 312 nm (MYL, excluding UVB) and Lee, transparent above 400 nm (LEE, excluding both UVA and UVB). Analyses have been carried out to determine the concentration of photosynthetic pigments in leaves, UV‐absorbing compounds, nitrogen and carbon in leaves, culms and spikes and proteins and gluten in grains. In particular, plants grown under UV exclusion showed a reduction in protein and dry gluten content (consequently without variation in the ratio dry gluten/protein), but at the same time, a significant increase of gluten index, which is a parameter to define the quality of gluten, was observed. The results highlighted the influence played by UV radiation on some biochemical parameters, mainly UV‐absorbing compounds, leaf nitrogen and grain protein characteristics of durum wheat cultivated under Mediterranean conditions. In particular, natural level of UV in the Mediterranean improves the characteristics of durum wheat flour important for pasta production (high dry gluten level), while the UV exclusion could improve characteristics of flour important for bread production (high gluten index).  相似文献   

2.
Drought stress and zinc (Zn) deficiency are serious abiotic stress factors limiting crop production in Turkey, especially in Central Anatolia. In this study, the effects of Zn deficiency and drought stress on grain yield of 20 wheat cultivars (16 bread wheat, Triticum aestivum; four durum wheat, Triticum durum cultivars) were investigated over 2 years under rainfed and irrigated conditions in Central Anatolia where drought and Zn deficiency cause substantial yield reductions. Plants were treated with (+Zn: 23 kg Zn ha−1, as ZnSO4·7H2O) and without (−Zn) Zn under rainfed and irrigated conditions. Both Zn deficiency and rainfed treatments resulted in substantial decreases in grain yield. Significant differences were determined between both bread wheat and durum wheat cultivars in terms of drought stress tolerance. Considering drought sensitivity indices over 2 years, the bread wheat cultivars Yayla‐305, Gerek‐79, Dagdas‐94 and Bolal‐2973 were found to be more drought‐tolerant than the other cultivars under both −Zn and +Zn treatments. Especially the durum wheat cultivars Cakmak 79 and Selcuklu 97 showed much greater drought susceptibility under Zn deficiency, and irrigation alone was not sufficient to obtain satisfying grain yield without Zn application. The results indicate that sensitivity to Zn deficiency stress became more pronounced when plants were drought‐stressed. The effect of irrigation on grain yield was maximized when Zn was adequately supplied, leading to the suggestion that efficient water use in Central Anatolia seems to be highly dependent on the Zn nutritional status of plants.  相似文献   

3.
The wheat progenitors and other wild relatives continue to be important sources of genes for agronomically desirable traits, which can be transferred into durum wheat (Triticum turgidum; 2n = 4x = 28; AABB genomes) cultivars via hybridization. Chromosome pairing in durum × alien species hybrids provides an understanding of genomic relationships, which is useful in planning alien gene introgression strategies. Two durum cultivars, ‘Lloyd’ and ‘Langdon’, were crossed with diploid wheatgrass, Thinopyrum bessarabicum (2n = 2x = 14; JJ), to synthesize F1 hybrids (2n = 3x = 21; ABJ) with Ph1. ‘Langdon’ disomic substitution 5D(5B) was used as a female parent to produce F1 hybrids without Ph1, which resulted in elevation of pairing between durum and grass chromosomes – an important feature from the breeding standpoint. The F1 hybrids were backcrossed to respective parental cultivars and BC1 progenies were raised. ‘Langdon’ 5D(5B) substitution × Th. bessarabicum F1 hybrids were crossed with normal ‘Langdon’ to obtain BC1 progeny. Chromosome pairing relationships were studied in F1 hybrids and BC1 progenies using both conventional staining and fluorescent genomic in situ hybridization (fl‐GISH) techniques. Multicolour fl‐GISH was standardized for characterizing the nature and specificity of chromosome pairing: A–B, A–J and B–J pairing. The A–J and B–J pairing will facilitate gene introgression in durum wheat. Multicolour fl‐GISH will help in characterizing alien chromosome segments captured in the durum complement and in their location in the A and/or B genome, thereby accelerating chromosome engineering research.  相似文献   

4.
Manganese (Mn) deficiency is a major constraint of alkaline soils around the world, particularly for cultivation of durum wheat, which is more intolerant of low Mn levels than either common wheat or barley. Genetic variation for Mn efficiency exists in the current germplasm of durum wheat. Several restriction fragment length polymorphisms (RFLPs) previously shown to be linked to the Mel1 locus for Mn efficiency on chromosome 4HS of barley were tested on 88 selected F2 plants of the durum cross, ‘Stojocri 2’ (Mn efficient) בHazar’ (Mn inefficient). The Mel1‐linked RFLP marker Xcdo583a was closely linked to the trait and explained over 42% of the total variation for Mn efficiency in the ‘Stojocri 2’/‘Hazar’ F2 progeny. This marker has the potential to provide a valuable tool for the marker‐assisted selection of Mn‐efficient durum progeny derived from crosses with ‘Stojocri 2’.  相似文献   

5.
Canada was the largest durum wheat (Triticum turgidum var durum) producer in 1994, and in recent years supplied over 70% of world export trade in durum. Breeding for pasta quality is, therefore, a primary objective in Canadian durum breeding programs. Control of cultivar registration and stringent grading standards ensure that durum of consistent high quality is produced for domestic and export markets. The objectives of breeding programs include: improvement of traits related to production concerns, such as grain yield, disease resistance and sprouting resistance, and those related to end-use quality, such as protein concentration and quality; milling quality factors, such as semolina yield; colour of the wheat, semolina and pasta; and cooking quality. Selection and testing for quality begins at very early generations and becomes more stringent for advanced inbred lines. Selection is practised at the F1 or F2, where appropriate, using monoclonal antibodies to identify desirable gamma gliadins (γ-45 ) or low molecular weight glutenin subunits (LMW 2) that have been shown to be related to end-use quality. Grain from early generation yield trials, starting at F4, is screened for protein concentration and pigment content by Near Infrared reflectance, and for gluten strength by sodium dodecyl sulphate (SDS) sedimentation and micro-mixograph. Promising lines entered into multi-location yield trials are screened with more time-consuming procedures to fully assess suitability for pasta processing. These tests include semolina yield, ash and colour, and predictions of gluten strength such as mixograph and alveograph, and cooking quality. Candidate cultivars with quality equal to or better than the mean of the check cultivars can be proposed for registration after three years in the Durum Cooperative Test. It takes approximately 10 years from performing a cross to registrating a new cultivar. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
A set of bread wheat and durum wheat cultivars adapted to Spanish conditions was tested for resistance against leaf rust caused by different pathotypes of Puccinia triticina in field trials and in growth chamber studies. Lower levels of resistance were found in durum wheat than in bread wheat. The most frequent Lr genes found in bread wheat were Lr1, Lr10, Lr13, Lr20, Lr26 and Lr28. In durum wheat, additional resistance genes that differed from the known Lr genes were identified. The level of partial resistance to leaf rust was in general low, although significant levels were identified in some bread wheat and durum wheat cultivars.  相似文献   

7.
Tetraploid wheatgrass, Thinopyrum junceiforme(2n = 4x = 28; J1J1J2J2), a wild relative of wheat, is an excellent source of resistance to Fusarium head blight. Intergeneric F1 hybrids (2n = 4x = 28; ABJ1J2) between durum wheat (Triticum turgidum; 2n = 4x = 28; AABB) cultivars Lloyd or Langdon and Th. junceiforme were synthesized. Most of the pairing in F1 hybrids was between the J1- and J2-genome chromosomes. Some pairing occurred between wheat chromosomes and alien chromosomes, resulting in segmental exchange that was confirmed by fluorescent in situ hybridization (FISH). The F1hybrids were largely male-sterile and were backcrossed, as the female parent, to the respective durum cultivar. Backcrosses from Lloyd × Th. junceiforme hybrids yielded fertile partial amphiploids (2n = 6x = 42; AABBJ1J2) as a result of functioning of unreduced female gametes of the hybrid. Lloyd proved to be a more useful durum parent than Langdon in crosses with Th. junceiforme designed to transfer scab resistance genes. Pairing in the amphiploids was characterized by preferential pairing,which resulted in bivalent formation. However, some intergeneric pairing also occurred. Several fertile hybrid derivatives were produced by further backcrossing and selfing. The introduction of alien chromatin into the durum complement was confirmed by FISH. Hybrid derivative lines had significantly lower mean infection scores (p = 0.01), the best showing 10.93% infection, whereas the parental durum cultivars had 70.34% to 89.46% infection. Hybridization with wild relatives may offer an excellent means of introducing scab resistance into durum wheat. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Pre-harvest sprouting (PHS) causes significant yield loss and degrade the end-use quality of wheat, especially in regions with prolonged wet weather during the harvesting season. Unfortunately, the gene pool of Triticum durum (tetraploid durum wheat) has narrow genetic base for PHS resistance. Therefore, finding out new genetic resources from other wheat species to develop PHS resistance in durum wheat is of importance. A major PHS resistance QTL, Qphs.sicau-3B.1, was mapped on chromosome 3BL in a recombinant inbred line population derived from ‘CSCR6’ (Triticum spelta), a PHS resistant hexaploid wheat and ‘Lang’, a PHS susceptible Australian hexaploid wheat cultivar. This QTL, Qphs.sicau-3B.1, is positioned between DArT marker wPt-3107 and wPt-6785. Two SCAR markers (Ph3B.1 and Ph3B.2) were developed to track this major QTL and were used to assay a BC2F8 tetraploid population derived from a cross between the durum wheat ‘Bellaroi’ (PHS susceptible) and ‘CSCR6’ (PHS resistant). Phenotypic assay and marker-assisted selection revealed five stable tetraploid lines were highly PHS resistant. This study has successfully established that PHS-resistance QTL from hexaploid wheat could be efficiently introgressed into tetraploid durum wheat. This tetraploid wheat germplasm could be useful in developing PHS resistant durum cultivars with higher yield and good end-use quality.  相似文献   

9.
After the evaluation of numerous accessions of primitive wheats for yield components and morphophysiological traits related to drought tolerance (e.g., maintenance of high relative water content, RWC; photochemical quenching of chlorophyll fluorescence, qQ; and chlorophyll loss, chl, under moisture stress conditions), several accessions belonging to three species (Triticum dicoccum, T. polonicum, and T. carthlicum) were crossed with the improved durum wheat varieties Cham 1 and Om Rabi 5. A direct selection (F2 progeny) for yield and an indirect physiological trait were applied on interspecific T. durum x T. dicoccum, T. durum x T. polonicum, and T. durum x T. carthlicum populations. Divergent selection was applied to validate the possible use of morphophysiological traits (root parameters, RWC, photochemical quenching, proline content, and carbon isotope discrimination) in selection, and to evaluate the resulting effects on yield. Heritability and selection response of these traits has been evaluated, and the impact of divergent selection for morphological and agronomic characters was studied under field conditions. The divergent populations were evaluated under different environmental conditions in France, Syria, and Yemen. Selection for morphophysiological traits related to moisture stress, such as root parameters, RWC and carbon isotope discrimination was possible due to high h2 values and effective, resulting in high genetic gains. However, the effect of selection for these traits on yield stability needs to be further studied. Furthermore, a modified bulk method (F2 'progeny method') was developed. Direct selection for grain yield per plant in F2 was carried out and yield per line in F3 was evaluated under contrasting environmental conditions in France, Syria, and Tunisia. Results revealed that some F3 lines were higher yielding than the improved durum wheat varieties Cham 1 and Om Rabi 5 under both stressed (Aleppo) and favourable (Montpellier) environmental conditions. Lines were evaluated in preliminary yield trials at Montpellier (France), Aleppo (Syria), and Constantine (Algeria). Results indicated that the use of related species combined with the use of the modified bulk breeding method is promising not only for increasing durum wheat yield in drought prone environments, but also for improving durum wheat yield stability across contrasting environments. Results of both breeding strategies are presented, and the potential advantages of using related tetraploid species in durum wheat breeding for drought tolerance are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Triticum turgidum ssp. durum (tetraploid durum) germplasm is very susceptible to crown rot, caused by the fungus Fusarium pseudograminearum. Screening activities to date have failed to identify even moderately susceptible lines. In contrast partial resistance to this disease has been identified in a number of Triticum aestivum (hexaploid wheat) lines, including 2-49 and Sunco. This study describes the successful introgression of partial crown rot resistance from each of these two hexaploid wheat lines into a durum wheat background. Durum backcross populations were produced from two 2-49/durum F6 lines which did not contain any D-genome chromosomes and which had crown rot scores similar to 2-49. F2 progeny of these backcross populations included lines with field based resistance to crown rot superior to that of the parent hexaploid wheat.  相似文献   

11.
Summary Yield data obtained from a comparative small grain cereals trial, grown for five consecutive growing seasons at a total of 23 environments in Cyprus, were subjected to regression analysis. Within each environment, yield trials consisted of a standard set of three cultivars or elite lines of barley, triticale, durum and bread wheat. The regression coefficient (b) of crop mean on the environmental index (I) and the mean square deviation from regression (sd2) were calculated for each crop. Each crop tended to have its own characteristic value of sd2 and its magnitude was an excellent indicator of specific crop-environment interaction. The causes of large sd2, for two of the four crops, were the susceptibilith of barley to lodging, when favourable conditions were encountered at high yielding environments, and triticale dependence on late season precipitation. Durum wheat and triticale had an average response to different yielding environments (b>1.19) and both were significantly different from those of bread wheat (1.08) and barley (0.54). Hence, barley, bread and durum wheat are specifically adapted to low, average and high yielding Mediterranean environments, respectively. The cultivation of triticale at the expence of durum wheat is not feasible. Furthermore, interactions between crops and environments demonstrated by the regression parameters, should constitute the basis for decision making, regarding crop adaptation in a region. The average yield in all environments should not be considered as a proper criterion for adaptation. In this study, triticale had a similar mean grain yield (3,842 kg/ha) to that of bread wheat, but was significantly higher yielding than barley or durum wheat (5 and 7%, respectively).  相似文献   

12.
Most durum wheat (Triticum durum) varieties possess only low winter hardiness due to their frost susceptibility. In North America and Central Europe, durum wheat is therefore typically sown in spring to circumvent the local winter conditions. However, the yield potential of durum in these regions could be much better exploited if durum varieties with increased frost tolerance were available, which could be sown in autumn. A factor limiting breeding for increased frost tolerance is the variation in the occurrence of frost stress across years. The ‘Weihenstephaner Auswinterungsanlage’ is a semi‐controlled test that exposes the plants to all weather conditions. Snow coverage of the plants, serving as frost protection, is prevented by the movable glass lid of the semi‐controlled test. In this study, different scorings for frost tolerance based on this semi‐controlled test were evaluated and compared with frost tolerance data in the field. Our results illustrate the potential of the ‘Weihenstephaner Auswinterungsanlage’ as an indirect selection tool for frost tolerance in durum breeding programmes, especially when regular frost tolerance data from the field are not available.  相似文献   

13.
Summary Among the cultivars of bread wheat, durum wheat and barley grown in the South of Italy, genetic variation for adaptation to the high temperature and drought stress conditions typical of the Mediterranean environment has been found.The basic data have been extrapolated from 5 years of Italian national network cultivar trials, where 20–30 cultivars were grown in replicated plot trials in 30–50 locations per year, including some where stress strongly affected grain yield.After careful identification of the most representative years and testing sites it was possible to characterise the cultivars on the basis of the grain yield in stress conditions and the Fischer & Maurer (1978) susceptibility index and to find genotypic differences sufficiently repeatable in years.The cultivars giving the best yield under stress associated with low susceptibility indices were in bread wheat: Etruria, Spada, Pandas, Centauro, Oderzo, Costantino and Gladio, in durum wheat: Aldura, Arcangelo, Adamello, Vespro and Capeiti, in barley: Fleuret, Barberousse, Jaidor, Express, Trebbia, Georgie, Dahlia, Criter and Magie.  相似文献   

14.
Polymorphism of waxy proteins in Spanish durum wheats   总被引:3,自引:0,他引:3  
A collection of 547 durum wheats (103 cultivars and 444 landraces) from Spain was analysed for waxy protein composition. The electrophoretic patterns showed low polymorphism. At the Wx‐A1 locus, 99.8% of the wheats had the Wx‐Ala allele and only one had the null Wx‐Alb allele. The Wx‐Bl locus was more polymorphic and four different alleles were detected: Wx‐Bla (41.3%), Wx‐Blc (42.6%), a new allele, not detected before in bread wheat and named Wx‐Blf (16.0%), and the null Wx‐Blb allele, found for the first time in one durum wheat. Eleven durum wheats with different allelic composition at the Wx‐l loci were analysed for amylose content. Wheats with the Wx‐Bla allele had a lower amylose content than those with Wx‐Blc or Wx‐Blf. The lowest amylase content was found in the only durum wheat having the null Wx‐Blb allele.  相似文献   

15.
Cadmium (Cd) is a toxic heavy metal that occurs naturally in soils. Durum wheat is known to accumulate generally more Cd than other cereal crops. The uptake of Cd in durum wheat is governed by the gene Cdu1, which co‐segregates with several DNA markers, such as the co‐dominant marker usw47 and the dominant marker ScOPC20. A panel of 314 durum wheat cultivars or lines originating from 16 countries or regions were assessed with usw47. The plant material was mainly comprised of cultivars and modern breeding lines. From this set, 165 durum wheat lines were classified as low‐Cd accumulators, 144 high‐Cd accumulators and five were heterogeneous. A smaller subset of 16 cultivars had previously been evaluated for Cd accumulation in replicated field trials. Lines with the high‐Cd allele showed a 2.4‐fold higher Cd content in the seeds than lines with the low‐Cd allele. We also compared the utility of markers usw47 and ScOPC20 as selection tools. Marker‐assisted selection appears as a robust and practicable tool for breeding durum cultivars with low‐Cd content.  相似文献   

16.
C. Planchon 《Euphytica》1979,28(2):403-408
Summary Net photosynthesis, transpiration, and resistances to CO2 and water vapour transfer of two cultivars of each of four types (Triticum durum, Triticum aestivum. hexaploid Triticale, octaploid Triticale) were analysed. Hexaploid triticales have the highest net photosynthesis and the best water efficiency. Water efficiency was defined by the CER/transpiration ratio measured under saturating irradiance corresponding to full stomatal opening. Cultivated bread and durum wheat cultivars (Capitole, Champlein, Bidi 17) are characterised by a low CER associated with a large flag leaf area and a high mesophyll resistance. There is a close correlation between CER., flag leaf area, mesophyll resistance and total chlorophyll content.  相似文献   

17.
Parental, F1, F2, BC1, BC2, BC11, BC12, BC21, BC22, BC1 self and BC2 selfed generations of three crosses involving six cultivars of durum wheat (Triticum durum Desf.) were studied for grains per spike under normal and late sown environments to analyze the nature of gene effects. A 10-parameter model did not fully account for the differences among the generation means. In two cases more complex interactions or linkage were involved in the inheritance of grains per spike in durum. Both digenic and trigenic epistatic interactions had a role in controlling the inheritance of grains per spike, however, trigenic interactions contributed more than digenic interactions. Non-fixable gene effects were many times higher than fixable ones in all three crosses and in both sowing environments indicating a major role of non-additive gene effects in the inheritance of this trait. Duplicate epistasis between sets of three genes under both environments was recorded for the cross Raj 911 × DWL 5002. Epistatic interactions, particularly the trigenic ones, contributed the maximum significant heterosis. Epistatic interactions involving dominance in the F2 generations caused significant inbreeding depression. Selective diallel mating and/or biparental mating could be used for amelioration of grains per spike in durum wheat.  相似文献   

18.
In this study, doubled haploid lines generated from the durum wheat varieties, selections from Middle Anatolian landraces, ‘Çakmak-79’, ‘Berkmen-469’ and ‘Kunduru-1149’ (Savaskan et al., 1997), were analyzed using ten highly polymorphic microsatellite markers for genotyping and evaluation of genetic relationships between and within the doubled-haploid (DH) lines. The average PIC value was found to be 0.531. Populations of doubled-haploid lines of landrace selected cultivars ‘Çakmak-79’ and ‘Kunduru-1149’, were the two most distant populations with (δ μ)2 = 1.42. ‘Berkmen-469’ x ‘Çakmak-79’ and ‘Berkmen-469’ x ‘Kunduru-1149’ yielded similar genetic distances, (δμ)2 of 0.84 and 0.85, respectively. In addition, the genetic relationship between the progenitors of the DH lines together with other durum wheat varieties was analyzed. A meaningful relationship was obtained based on available pedigree information on the cultivars.  相似文献   

19.
Hexaploid tritordeum, the amphiploid Hordeum chilense x Triticum turgidum conv. durum has a higher grain carotene content than durum wheat. In order to decide strategies for introgressing this character into durum wheat, the effect on the carotene content of tritordeum synthesized with H. chilense and durum wheat differing in carotene content was analysed. Carotene content was evaluated in 35 primary tritordeum lines and their parents, 27 H. chilense accessions and 19 durum wheat cultivars. Some amphiploids have either one barley or wheat parent in common. In general, the influence of H. chilense is more important than that of wheat in the amphiploid carotene content. Nevertheless, the interactions between both parents on the amphiploid carotene content are also important.  相似文献   

20.
Over recent years, quality has become an important commercial issue for durum wheat breeders. Modern breeding methods are most efficient for producing and supplying the best quality raw materials to the pasta industry. Here we assessed the effectiveness of molecular marker-assisted selection of quality traits in durum wheat. To this end, DNA and quality trait markers were jointly used to analyze quality-related traits in a durum wheat collection. A total of 132 durum wheat (Triticum turgidum ssp. durum) Mediterranean landraces, international lines, and Moroccan cultivars were analyzed for seven important qualityrelated traits including thousand-kernel weight (TKW), test weight (TW), gluten strength, yellow pigment (YP), and grain protein content (GPC). Additionally, 18 simple sequence repeat (SSR) markers previously reported to be associated with different quality traits were analyzed. Of these, 14 (78%) were polymorphic and four were monomorphic. There were between two and seven alleles per locus, with an average of four alleles per locus. The average phenotypic variation value (R2) ranged from 2.81 to 20.43%. Association analysis identified nine markers significantly associated with TKW, TW, and YP, followed by eight markers associated with GPC, six markers associated with yellow index b, four markers associated with brightness L, and three markers associated with SDS-sedimentation volume. This study highlights the efficiency of SSR technology, which holds promise for a wide range of applications in marker-assisted wheat breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号