首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The uneven distribution of solar radiation is one of the main reasons for the variations in the yield gap between different regions in China and other countries of the world.In this study,different solar radiation levels were created by shading and the yield gaps induced by those levels were analyzed by measuring the aboveground and underground growth of maize.The experiments were conducted in Qitai,Xinjiang,China,in 2018 and 2019.The maize cultivars Xianyu 335 (XY335)and Zhengdan 958 (ZD958) were used with planting density of 12×10~4 plants ha~(–1) under either high solar radiation (HSR)or low solar radiation (LSR,70%of HSR).The results showed that variation in the solar radiation resulted in a yield gap and different cultivars behaved differently.The yield gaps of XY335 and ZD958 were 8.9 and 5.8 t ha~(–1) induced by the decreased total intercepted photosynthetically active radiation (TIPAR) of 323.1 and 403.9 MJ m~(–2) from emergence to the maturity stage,respectively.The average yield of XY335 was higher than that of ZD958 under HSR,while the average yield of ZD958 was higher than that of XY335 under LSR.The light intercepted by the canopy and the photosynthetic rates both decreased with decreasing solar radiation.The aboveground dry matter decreased by 11.1% at silking and 21% at maturity,and the dry matter of vegetative organs and reproductive organs decreased by 9.8 and 20.9%at silking and by 12.1 and 25.5% at physiological maturity,respectively.Compared to the HSR,the root weights of XY335 and ZD958 decreased by 54.6 and 45.5%,respectively,in the 0–60 cm soil layer under LSR at silking stage.The aboveground and underground growth responses to different solar radiation levels explained the difference in yield gap.Selecting suitable cultivars can increase maize yield and reduce the yield gaps induced by variation of the solar radiation levels in different regions or under climate change.  相似文献   

2.
In the regions where crops were mostly produced by smallholder farmers, the analysis of yield gap is difficult due to diverse cultivars, crop managements and yield levels. In order to find an effective method that can reasonably verify the yield gap and the limiting cultivation factors in narrowing yield gaps in areas that are dominanted by smallholder farmers, we worked out a method consisting five progressive procedures as follows: questionnaire investigation of farmer cultivation regime, identification of yield levels and yield gaps, generalization of key cultivation measurements, reconstruction of representative maize populations, and process-based analysis of yield gap. A case study was carried out in Jiangsu Province, China, in which maize is mostly produced by smallholder farmers. A questionnaire investigation of 1 023 smallholder farmers was carried out firstly, then the frequency distribution of maize yield was simulated by an normal distribution function, and then the covering range and average value of the basic yield, farmer yield and high-yield farmer yield levels were calculated out from the equation. Hereby, the yield gaps 1, 2 and 3 were calculated along with the record highest yield from literature and experts, which were 2 564, 2 346 and 2 073 kg ha~(–1), respectively. Moreover, with the covering range of each yield level, the suveyed farmers belonging to each yield level were grouped together and then their major cultivation measures were traced and generalized. With the generalized cultivation measures, representative maize populations of the four yield levels were reconstructed, and thereby clarifing lots of characters of the populations or single plant of each population with processbased analysis of the reconstructed populations. In this case, the main factors causing the yield gap were plant density, fertilizer application rate, logging caused by hurricane, and damages caused by pests. The case study primarily indicated that this five-step method is feasible and effective in yield gap study, especially in smallholder farmers dominant regions.  相似文献   

3.
Water scarcity has become a limiting factor for increasing crop production. Finding ways to improve water use efficiency (WUE) has become an urgent task for Chinese agriculture. To understand the response of different maize populations to changes in precipitation and the effects of changes in maize populations on WUE, this study conducted maize population experiments using maize hybrids with different plant types (compact and semi compact) and different planting densities at 25 locations across China. It was found that, as precipitation increased across different locations, maize grain yield first increased and then decreased, while WUE decreased significantly. Analyzing the relationship between WUE and the main climatic factors, this study found that WUE was significantly and negatively correlated with precipitation ($$ (daily mean precipitation) and R (accumulated precipitation)) and was positively correlated with temperature (TM (daily mean maximum temperature), TM–m (Tm, daily mean minimum temperature) and GDD (growing degree days)) and solar radiation ($$ (daily mean solar radiation) and Ra (accumulated solar radiation)) over different growth periods. Significant differences in maize grain yield, WUE and precipitation were found at different planting densities. The population densities were ranked as follows according to maize grain yield and WUE based on the multi-site experiment data: 60 000 plants ha–1 (P2)>90 000 plants ha–1 (P3)>30 000 plants ha–1 (P1). Further analysis showed that, as maize population increased, water consumption increased significantly while soil evaporation decreased significantly. Significant differences were found between the WUE of ZD958 (compact type) and that of LD981 (semi-compact type), as well as among the WUE values at different planting densities. In addition, choosing the optimum hybrid and planting density increased WUE by 21.70 and 14.92%, respectively, which showed that the hybrid played a more significant role than the planting density in improving WUE. Therefore, choosing drought-resistant hybrids could be more effective than increasing the planting density to increase maize grain yield and WUE in northern China. Comprehensive consideration of climatic impacts, drought-resistant hybrids (e.g., ZD958) and planting density (e.g., 60 000 plants ha–1) is an effective way to increase maize grain yield and WUE across different regions of China.  相似文献   

4.
夏玉米产量与光温生产效率差异分析——以山东省为例   总被引:1,自引:0,他引:1  
【目的】研究夏玉米各产量层次之间的物质生产及资源利用能力,量化山东省夏玉米籽粒产量与光、温资源利用效率的差异,明确农业生产条件和栽培措施对产量差及效率差的贡献率,探讨产量差、效率差协同缩减的可能性,为缩小夏玉米产量差距、提升资源利用效率提供理论依据。【方法】本试验于2017—2018年在山东省泰安、淄博和烟台3市进行,针对山东夏玉米生产调研出的问题,在同一地块采用综合管理模式,从合理密植、优化肥水、增产增效的角度设计了4种管理模式,模拟超高产水平(SH)、高产高效水平(HH)、农户水平(FP)和基础产量水平(CK)4个产量层次,定量分析不同产量层次之间的产量差及光温资源生产效率差。结合光温生产潜力分析和作物产量性能分析,探究产量差和效率差的影响因素及缩差增效途径。【结果】当前山东省夏玉米光温潜力与超高产水平、超高产水平与高产高效水平、高产高效水平与农户生产水平、农户生产水平与基础产量水平之间的产量差分别为5.85、0.82、1.90、1.35 t·hm -2,光能生产效率差分别为1.74、0.15、0.28、0.45 g·MJ -1,温度生产效率差分别为1.09、0.10、0.17、0.28 kg·hm -2·℃ -1;当前不可控因素对产量差和光、温生产效率差的贡献率分别为58.49%和66.09%,可控因素对产量差和光、温生产效率差的贡献率分别为41.51%和33.91%,地域差异因素对产量差、光能生产效率差和温度生产效率差的贡献率分别为1.98%、2.49%和3.24%;产量差与光温资源生产效率差之间有显著相关性;SH和HH处理较FP处理和CK有较高的地上部生物量、生育期平均叶面积指数(MLAI)和冠层光能截获率。 【结论】当前山东省夏玉米农户生产水平与光温潜力水平之间的产量差、光能生产效率差、温度生产效率差分别为8.56 t·hm -2、2.17 g·MJ -1、1.35 kg·hm -2·℃ -1,产量与光、温资源利用效率仍有较大的提升空间。玉米籽粒产量差和光、温资源利用效率差显著相关,在现有农户管理措施的基础上,应用高产高效管理模式(种植密度增加1.5×10 4株·hm -2,适当增加施肥量,将一次性施肥改为于播种期、大喇叭口期、开花期和乳熟期采用水肥一体化方式分次施肥)能够缩小产量差距1.90 t·hm -2,提高光、温资源生产效率14.74%和14.41%,是协同缩差增效的有效技术途径。  相似文献   

5.
采用二次回归正交旋转组合设计研究了不同生态区玉米新杂交种成单13号籽粒产量与密度、氮肥、磷肥的定量关系,建立了产量形成的密度、肥料反应模型,并通过对模型的解析,求出了各因素对产量影响的主次关系及相互作用,寻出定量生产水平下的最佳农艺措施。本文得出的玉米高产栽培综合农艺措施为:盆中及盆周东南亩植3500—4000株,亩施有效氮10公斤左右.有效磷7.0公斤左右;盆周西北亩植2922—3324株,亩施有效氮6.9—8.6公斤,有效磷3.4—6.0公斤。  相似文献   

6.
Leaf growth and its interaction with the growing environment critically affect leaf area, distribution, and function, and ultimately affects grain yield of maize(Zea mays L.). To detect the effects of leaf area dynamics, growth periods, and the environment on maize grain yield, a three-year field experiment was conducted using two maize varieties, medium plant-size variety Zhengdan 958(ZD958) and large plant-size variety Zhongnongda 4(ZND4), and three to five sowing dates. The sowing date significantly affected maize yield as a result of changes in leaf area, growth stage, and growing environment. Prior to the 12 th leaf stage, significant correlations between leaf area dynamics, environment, and yield were seldom detected. The expansion of leaf area from 12 th leaf stage to silking stage was significantly positively correlated with growing degree days(GDD), solar radiation, and grain yield, indicating the importance of leaf area dynamics during this period. After silking, solar radiation played a more important role in inducing leaf senescence than GDD, particularly in the 2 nd half of the grain filling stage. Accelerated leaf senescence in late growth period can increase maize yield. The environment affected leaf area dynamics and yield of the large plant-size variety(ZND4) more easily than the medium plant-size variety(ZD958) at the optimum plant density, reflecting the difference in varietal capacity to adapt to the growing environment. This study indicates that optimizing the interaction among leaf area dynamics, growth periods, and environment is a sound strategy to increase maize yield. Favorable interactions are useful to determine the optimal sowing date of a given variety.  相似文献   

7.
Understanding yield potential, yield gap and the priority of management factors for reducing the yield gap in current intensive maize production is essential for meeting future food demand with the limited resources. In this study, we conducted field experiments using different planting modes, which were basic productivity(CK), farmer practice(FP), high yield and high efficiency(HH), and super high yield(SH), to estimate the yield gap. Different factorial experiments(fertilizer, planting density, hybrids, and irrigation) were also conducted to evaluate the priority of individual management factors for reducing the yield gap between the different planting modes. We found significant differences between the maize yields of different planting modes. The treatments of CK, FP, HH, and SH achieved 54.26, 58.76, 65.77, and 71.99% of the yield potential, respectively. The yield gaps between three pairs: CK and FP, FP and HH, and HH and SH, were 0.76, 1.23 and 0.85 t ha~(–1), respectively. By further analyzing the priority of management factors for reducing the yield gap between FP and HH, as well as HH and SH, we found that the priorities of the management factors(contribution rates) were plant density(13.29%)fertilizer(11.95%)hybrids(8.19%)irrigation(4%) for FP to HH, and hybrids(8.94%)plant density(4.84%)fertilizer(1.91%) for HH to SH. Therefore, increasing the planting density of FP was the key factor for decreasing the yield gap between FP and HH, while choosing hybrids with density and lodging tolerance was the key factor for decreasing the yield gap between HH and SH.  相似文献   

8.
主要栽培措施对北方春玉米产量贡献的定量评估   总被引:2,自引:1,他引:1  
【目的】定量化解析主要栽培措施对春玉米产量的贡献,探索北方春玉米缩差增产增效技术途径。【方法】通过综合分析2000年以来我国北方春玉米在品种耐密性、种植密度、耕作方式、养分管理、病害防治等114篇论文数据,同时结合大田栽培措施因子替换试验,定量解析主要栽培措施对春玉米产量的贡献及其优先序。【结果】文献统计分析结果与大田栽培因子替换试验结果基本一致,当前生产主要应用的5项主要栽培措施对春玉米产量贡献的优先序为种植密度、养分管理、品种耐密性、防病(兼化控)、耕作方式,对产量的贡献率分别为12.6%、9.2%、6.7%、6.3%和5.5%,对氮肥偏生产力(PFPN)的贡献分别为16.7%、4.1%、3.4%、3.8%和3.3%。各措施因子对玉米产量差的影响主要通过影响群体物质生产能力和群体库容量实现,当群体LAI饱和后,如何优化群体同化性能、提高光能利用效率和单位叶面积籽粒生产效率是缩差增产的关键。【结论】产量和资源效率协同提高15%—20%的高产高效目标,通过密度和养分管理这2项措施的优化即可实现,若要使产量和资源效率均增加30%—50%,则需要综合优化至少4个因子甚至全部5个因子。  相似文献   

9.
玉米新杂交种川农单交9号高产栽培综合农艺措施研究   总被引:2,自引:0,他引:2  
采用二次回归正交旋转组合设计研究了不同生态区玉米新杂交种川农单交9号籽粒产量与密度、氮肥、磷肥的定量关系,建立了产量形成的密度,肥料反应模型,并通过对模型的解析,求出了各因素对产量影响的主次关系及相互作用,寻出定量生产水平下的最佳农艺措施。本文得出的玉米高产栽培综合农艺措施为:盆中、盆周和盆东高产区亩植密度3500株左右,亩施有效氮约11.0公斤,有效磷约5.0公斤;盆东低产地带亩植2813—3271株,亩施有效氮9.6—11.6公斤,有效磷3.2—5.2公斤。  相似文献   

10.
黑龙江省春玉米产量潜力及产量差的时空分布特征   总被引:12,自引:3,他引:12  
【目的】研究黑龙江省春玉米不同水平产量潜力及各级产量潜力之间产量差的时空分布特征,分析研究区域制约春玉米生产的限制因素。【方法】以黑龙江省春玉米种植区为研究区域,利用当地气候资料、作物生育期、栽培管理措施和土壤资料,使用区域尺度验证后的农业生产系统模型(APSIM),分析研究区域春玉米1981-2010年不同水平产量潜力,明确春玉米产量潜力及各级产量差的时空分布特征。【结果】研究区域内春玉米产量潜力与玉米生长季内日照时数分布趋势一致,西部高于东部,产量潜力年际变化趋势有增有减;春玉米雨养产量分布特征与生长季降水量分布特征相似,表现为中部高于东西部的趋势,降水量愈少的地区,雨养产量低且稳产性愈差;最近30年研究区域82%的站点雨养产量呈下降趋势,雨养产量的不稳定性远高于产量潜力的不稳定性,气候土壤生产力区域特征为西部齐齐哈尔和绥化地区最低。近30年因降水变化造成的产量差呈增加趋势,表明生长季干旱发生风险加大。【结论】降水是制约黑龙江省西部玉米产量的主要因素,可通过灌溉提高产量;中部伊春地区、通河地区和牡丹江地区,水分不是限制春玉米产量的因素,提高产量的途径是改良土壤条件及优化栽培管理措施;在雨养条件下,东部的三江平原通过改良土壤物理性状,可提高产量16%-22%。  相似文献   

11.
采用3因素最优饱和设计,系统地研究了氮肥、磷肥与种植密度3因素对不同收获时期粮饲兼用玉米干草产量的影响。结果表明,氮、磷与密度对饲用玉米干草产量的影响因收获期而异,但均以氮的作用居于首位。获得较高植株干草产量的适宜收获时期为乳熟末期至完熟期。以密度、施氮量、施磷量3项栽培措施为决策变量,以干草产量为目标函数,建立了呼和浩特地区饲用玉米主要农艺栽培措施与产量关系的二次多项式回归模型,通过产量频数寻优,定量化地提出了粮饲兼用玉米实现高产的栽培措施优化组合方案,可作为指导呼和浩特地区饲用玉米生产的参考依据。  相似文献   

12.
江西鹰潭地区早稻氮素营养光谱诊断模型的构建与应用   总被引:6,自引:0,他引:6  
 【目的】建立基于水稻冠层归一化植被指数NDVI的早稻氮素诊断模型,并利用模型指导水稻生产实践,实现水稻氮素追肥的精确定量。【方法】基于不同氮肥处理的田间试验数据,建立了水稻冠层NDVI与植株吸氮量之间的定量关系,并利用独立试验数据进行了检验,筛选出最佳的氮素光谱诊断模型。在此基础上,结合水稻高产栽培经验,对早稻的追肥用量进行了实时推荐,并和当地农户施肥模式及氮肥-产量曲线计算出的最佳氮肥用量和产量进行对比。【结果】水稻关键生育时期(苗期、分蘖期、拔节期、抽穗期和灌浆期)的冠层NDVI与水稻植株吸氮量都呈显著正相关,相关性高于整个生育期,指数函数拟合效果要优于线性函数。独立试验检验结果表明,单生育时期的预测效果高于整个生育期,指数模型优于线性模型;其中,分蘖期和拔节期的光谱诊断模型表现最佳,预测精度分别为0.907和0.941。推荐施肥应用表明,与常规农户施肥模式相比,光谱诊断施肥模式在产量不减少的情况下降低了氮肥用量,提高了氮素利用率,而产量与常规施肥没有显著差异。在低密度和高密度处理下,光谱推荐施肥模式的施氮量与最佳施氮量的误差分别为2.12%、-2.22%;而产量与最高产量的误差分别为-0.75%、-5.04%。【结论】光谱推荐施肥模式可在保证产量的情况下,降低氮肥用量,提高氮肥农学利用率,在水稻生产中有较好的推广利用价值。  相似文献   

13.
Intraspecific competition is a common phenomenon in agricultural production,and maize is one of the most sensitive grass species to intraspecific competition due to its low tillering ability.This study evaluated and analyzed intraspecific competition in maize,and screened competitive indices that could be used to evaluate intraspecific competition in a maize population.A 2-year field experiment was conducted using the maize hybrid Zhongdan 2 at 12 plant densities ranging from 1.5 to 18.0 plants(pl)m~(–2).The results showed that the response of single-plant grain yield and dry matter at harvest to increased plant density decreased exponentially and that the harvest index decreased linearly.The response of population-level grain yield to plant density was curvilinear,producing a maximum value at the optimum population density.However,the yielddensity equation agreed well with the Steinhart-Hart equation curves,but not with the quadratic equation curves reported by most previous studies.Competitive indices are used to evaluate competition in a plant population or plant species.The present results show that competitive intensity(CI)and absolute severity of competition(ASC)increased with increasing plant density;however,relative yield(RY)and relative reproductive efficiency(RR_(eff))decreased.The different responses of these indices reflect different aspects of competition.According to the analysis of CI,ASC,RY,and RR_(eff),higher CI and ASC values indicate higher intraspecific competition,whereas higher RY and RR_(eff) values indirectly reflect lower intraspecific competition.These competitive indices evaluate not only the intraspecific competitive intensity under different plant densities of the same cultivar but also those of different cultivars under the same plant density.However,some overlap exists in the calculations of ASC,CI,and RY,so one could simply select any one of these indices to evaluate intraspecific competition in a maize population.In conclusion,the present study provides a method to evaluate intraspecific competition in maize populations,which may be beneficial for breeding high-yield maize varieties in the future.  相似文献   

14.
【目的】量化山东省冬小麦产量差及氮肥利用效率差,分析产量差和效率差之间的关系,明确环境、栽培条件及生理因素对产量差的贡献,探讨协同缩差增效的可能途径,为冬小麦产量差缩减和资源利用效率提升提供理论依据。【方法】本试验于2016—2020年在山东济宁、德州、烟台和淄博4市进行,综合肥料投入、播种密度和灌溉水平等管理措施,设置了超高产水平(SH)、高产高效水平(HH)、农户水平(FP)和基础产量水平(ISP)4种模式,定量分析不同产量水平冬小麦产量差和氮肥利用效率差,分析产量差和效率差之间关系,讨论产量差和效率差形成的影响因素及缩差增效的可能途径。【结果】当前山东冬小麦高产纪录与SH、SH与HH、HH与FP以及FP与ISP之间的产量差分别为2 729.1、674.3、1 042.9和4 349.8 kg·hm-2,SH与HH、HH与FP之间的氮肥偏生产力差分别为-13.54和15.67 kg·kg-1;产量和氮肥偏生产力之间存在着二次抛物线关系。当前降水、光温等不可控因素和肥水投入等可控因素对产量差的贡献率分别为31.16%和68.84%。结果显示,平均叶面积指数(MLAI)、平均净同化率(MNAR)、单位面积穗数(EN)和粒重(GW)差与SH和HH之间的产量差呈显著正相关关系;而收获指数(HI)、穗粒数(GN)和粒重(GW)差与HH和FP之间的产量差呈显著正相关。SH和HH处理较FP处理有更高的地上部生物量、单株分蘖数以及分蘖成穗率。【结论】当前山东省冬小麦农户产量只实现了最高纪录产量的64.34%,通过优化水肥投入量、提高追肥比例、增施有机肥和锌肥等栽培措施可使冬小麦产量差缩减23.46%,氮肥偏生产力提高56.99%。花后物质生产能力仍然是小麦产量提升的限制因素,在保证花后光合同化的同时,提高花前物质的再转运以提高收获指数是农户模式向高产高效发展的有效途径。  相似文献   

15.
Maize(Zea mays L.) stands prominently as one of the major cereal crops in China as well as in the rest of the world. Therefore, predicting the growth and yield of maize for large areas through yield components under high-yielding environments will help in understanding the process of yield formation and yield potential under different environmental conditions. This accurate early assessment of yield requires accuracy in the formation process of yield components as well. In order to formulate the quantitative design for high yields of maize in China, yield performance parameters of quantitative design for high grain yields were evaluated in this study, by utilizing the yield performance equation with normalization of planting density. Planting density was evaluated by parameters including the maximum leaf area index and the maximum leaf area per plant. Results showed that the variation of the maximum leaf area per plant with varying plant density conformed to the Reciprocal Model, which proved to have excellent prediction with root mean square error(RMSE) value of 5.95%. Yield model estimation depicted that the best optimal maximum leaf area per plant was 0.63 times the potential maximum leaf area per plant of hybrids. Yield performance parameters for different yield levels were quantitatively designed based on the yield performance equation. Through validation of the yield performance model by simulating high yields of spring maize in the Inner Mongolia Autonomous Region and Jilin Province, China, and summer maize in Shandong Province, the yield performance equation showed excellent prediction with the satisfactory mean RMSE value(7.72%) of all the parameters. The present study provides theoretical support for the formulation of quantitative design for sustainable high yield of maize in China, through consideration of planting density normalization in the yield prediction process, providing there is no water and nutrient limitation.  相似文献   

16.
作物产量差研究进展   总被引:12,自引:8,他引:12  
杨晓光  刘志娟 《中国农业科学》2014,47(14):2731-2741
随着人口的增加以及生活水平的提高,人们对粮食的需求不断增加,因此增加粮食产量、确保粮食安全仍是未来永恒不变的课题。近年来随着育秧、覆膜等技术的应用,灌溉、施肥技术措施的提高以及作物品种的更替和技术的进步等使得农作物产量呈现增加的趋势。即便如此,作物实际产量与其潜在产量间仍然存在较大差距,而这种现象广泛存在于世界各国的农业生产中。文章在阐述产量差内涵的基础上,对目前国内外产量差的研究方法及主要研究进展等方面进行了综述,并对未来产量差的研究做了展望,以期为进一步开展产量差研究提供科学参考。产量差概念发展至今,虽然众多学者都对其做了不同的定义及阐述,但总体而言,作物的最大产量水平为潜在产量,实际产量与潜在产量之间的产量差为该作物的总产量差。造成作物产量差的原因主要包括不可能应用到田间的技术和环境因子、生物因素(品种、病虫害等)和经济因素(投入产出比)、政策、文化水平及传统观念等。为了进一步解析作物产量差,前人根据研究目的的不同,划分了不同等级的产量差。目前国内外产量差的研究方法主要有试验调查统计分析法和作物模拟模型法。前者概念简单,可操作性强,但是要求足够的试验数据,试验费用大,周期长;后者可以设置更多的情景和处理,但难以精确定量实际生产中的所有管理措施。因此,在实际进行产量差研究中,可综合利用统计方法、作物模拟模型及遥感方法,充分发挥各种方法的优势。世界各地主要作物产量差的研究结果显示,发达国家因栽培管理水平相对较高,作物产量提升空间较小。虽然各地学者对当地不同作物产量差进行了详细的研究,为提升该地区产量、缩小作物产量差提供了科学依据和参考。然而,由于产量估算方法不同,使得研究结果之间差异较大,可比性差。同时因数据和方法的限制,大多集中在解析农业生产过程中的气候、土壤、品种、栽培管理措施等因素对产量的限制程度,而往往忽略了在产量形成过程中农民意愿、政策和经济等因素的影响。总之,未来的产量差研究重点应包括准确计算各区域主要作物产量潜力上限,明确针对不同产量差计算方法,综合考虑气候、土壤、品种和栽培技术以及社会经济因素,解析产量差限制程度。  相似文献   

17.
为了探讨晋北地区不同种植密度对春播绿豆产量的影响,以晋绿豆9号为试材,对6种种植密度下绿豆的农艺性状及产量进行分析。结果表明:随种植密度的增加,株高和产量均呈先增加后降低的趋势,分枝数、主茎节数、单株荚数、单株粒数、单株粒重均呈下降趋势,千粒重变化不显著;相关性分析及通径分析表明,绿豆的产量与分枝数、单株粒数和单株粒重呈显著正相关,在适宜的种植密度下,适当提高分枝数和单株粒数,可提高绿豆产量;通过曲线估计得到绿豆种植密度与产量关系的最佳预测模型为二次曲线模型y=246.23+169.66x-5.67x2,最适理论种植密度为14.96万株·hm-2,产量为1 515.37 kg·hm-2。  相似文献   

18.
玉米果穗轴截面在籽粒产量预测中的应用   总被引:1,自引:1,他引:1  
玉米杂交种田间测产是玉米育种和栽培科技成果评价的一项必要工作。研究了用果穗轴截面预测单株籽粒产量的方法,结果表明:(1)果穗轴截面承载力为2.02 g/cm2左右,是一个比较稳定的参数;(2)单株籽粒产量大约是果穗轴截面积的2.02倍;(3)单株籽粒产量的预测平均值与实际平均值十分接近,误差较少;(4)单株籽粒产量的预测平均值与种植密度的乘积能较准确地估计出单位面积籽粒产量,是一种简单易行、准确可靠的测产方法。  相似文献   

19.
群体密度对寒地青贮玉米产量性状的影响   总被引:2,自引:0,他引:2  
通过对青贮玉米群体密度与产量性状的关系研究表明:密度是影响青贮玉米产量的关键因素。不同密度处理间青贮玉米的百粒重、产量差异极显著,秃尖长、穗长、行粒数等性状不同处理间存在显著差异。而不同密度处理间青贮玉米的株高、穗行数差异不显著。高产密度不宜超过9.0万株/hm2。  相似文献   

20.
玉米自交系单株产量与相关农艺性状的灰色关联度分析   总被引:3,自引:1,他引:3  
采用随机区组试验设计,利用灰色关联度分析法对过去40年国内选育的37个骨干玉米自交系的单株籽粒产量与其主要相关农艺性状,进行了灰色关联度分析.结果表明,玉米自交系单株籽粒产量与其主要相关性状的关联度大小依次为:行粒数>穗粗>穗行数>穗长>出籽粒>株高>穗位高>千粒重>秃尖.指出在自交系选育过程中应注重对中大穗类型的选择,同时要求具有较高的出籽率和适当的株高和穗位高.为了进一步挖掘玉米自交系的产量潜力,应广泛采用高密度选系手段,通过创造适当的逆境以筛选无秃尖的自交系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号