首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soil properties and surface characteristics affecting wind erosion can be manipulated through tillage and crop residue management. Little information exists, however, that describes the impact of long term tillage and residue management on soil properties in the subarctic region of the United States. This study examines the impact of 20 years of tillage and residue management on a broad range of physical properties that govern wind erosion processes on a silt loam in interior Alaska. A strip plot experimental design was established in 1983 and included intensive tillage (autumn and spring disk), spring disk, autumn chisel plow, and no tillage with straw either retained on or removed from the soil surface. Soil and residue properties measured after sowing barley (Hordeum vulgare L.) in May 2004 included penetration resistance, soil water content, shear stress, bulk density, random roughness, aggregate size distribution, and residue cover and biomass. No tillage was characterized by larger aggregates, greater soil strength (penetration resistance and shear stress), wetter soil, and greater residue cover compared to all other tillage treatments. Despite crop failures the previous 2 years, crop residue management influenced residue biomass and cover, but not soil properties. Autumn chisel and spring disk appeared to be viable minimum tillage options to intensive tillage in controlling erosion. Autumn chisel and spring disk promoted greater roughness, aggregation, and residue cover as compared with intensive tillage. Although no tillage appeared to be the most effective management strategy for mitigating wind erosion, no tillage was not a sustainable practice due to lack of weed control. No tillage also resulted in the formation of an organic layer on the soil surface over the past 20 years, which has important ramifications for long term crop production in the subarctic where the mean annual temperature is <0 °C.  相似文献   

2.
A potential for reduced soil macroporosity (below 12% soil volume) under direct drilling, with a concomitant increase in soil relative saturation, is associated with an increase in crown and root rots in Prince Edward Island field crops. Four long-term tillage systems (moldboard plowing, paraplowing-direct drilling, rotary cultivation and direct drilling) were compared in relation to the pathogenic fungal complexes formed in a two crop rotation in spring barley (Hordeum vulgare L.) and soybean (Glycine max L. Merrill) over a 3 year period in a cool humid region of eastern Canada. The principal phytopathogenic fungal complex of Rhizoctonia solani Kühn, Fusarium avenaceum (Fr.) Sacc. and F. oxysporum Schl. remained constant over the treatments. Tillage practice did not affect the number of colony forming units of R. solani in the rhizosphere. The recovery of R. solani from root tissues tended to be lower following conservation tillage and was attributed to antagonism associated with elevated numbers of saprophytic trash microflora concentrated at the soil surface. Disease levels in potato (Solanum tuberosum L.) plantlet bioassays were not influenced significantly by soil source or tillage regime. However, plantlet growth tended to be depressed following transplantation into soil from soybean plots in 1993. Under optimum soil physical conditions conservation tillage did not appear to influence disease levels in barley and soybean rotations.  相似文献   

3.
《Soil & Tillage Research》2007,92(1-2):75-81
Soil properties and surface characteristics affecting wind erosion can be manipulated through tillage and crop residue management. Little information exists, however, that describes the impact of long term tillage and residue management on soil properties in the subarctic region of the United States. This study examines the impact of 20 years of tillage and residue management on a broad range of physical properties that govern wind erosion processes on a silt loam in interior Alaska. A strip plot experimental design was established in 1983 and included intensive tillage (autumn and spring disk), spring disk, autumn chisel plow, and no tillage with straw either retained on or removed from the soil surface. Soil and residue properties measured after sowing barley (Hordeum vulgare L.) in May 2004 included penetration resistance, soil water content, shear stress, bulk density, random roughness, aggregate size distribution, and residue cover and biomass. No tillage was characterized by larger aggregates, greater soil strength (penetration resistance and shear stress), wetter soil, and greater residue cover compared to all other tillage treatments. Despite crop failures the previous 2 years, crop residue management influenced residue biomass and cover, but not soil properties. Autumn chisel and spring disk appeared to be viable minimum tillage options to intensive tillage in controlling erosion. Autumn chisel and spring disk promoted greater roughness, aggregation, and residue cover as compared with intensive tillage. Although no tillage appeared to be the most effective management strategy for mitigating wind erosion, no tillage was not a sustainable practice due to lack of weed control. No tillage also resulted in the formation of an organic layer on the soil surface over the past 20 years, which has important ramifications for long term crop production in the subarctic where the mean annual temperature is <0 °C.  相似文献   

4.
Conservation tillage practices are intended to minimize soil erosion. Yet little is known concerning changes in physical properties of subarctic soils subject to tillage practices. This study ascertained whether physical properties of a newly cleared subarctic soil are altered after 7 years of continuous barley (Hordeum vulgare L.) using different tillage and straw management strategies. Tillage and straw treatments were established in 1983 near Delta Junction, Alaska, and consisted of conventional fall and spring disk, fall chisel plow, spring disk, and no-tillage. Tillage plots were split by straw management practices, which included straw and stubble, stubble only, and no straw or stubble. Soil samples were collected from the upper 0.15 m of the profile in the spring of 1990 to assess water content, bulk density, saturated hydraulic conductivity, dry aggregate and mechanical stability, penetration resistance, water retention, and particle size distribution. Percent non-erodible aggregates, mechanical stability, and penetration resistance were greater for no-tillage compared to conventional tillage, chisel plow, and spring disk. No-tillage soils were also typically wetter, denser, and had a greater hydraulic conductivity. The spring disk treatment was least susceptible to erosion and also conserved soil water compared with chisel plow. Straw maintained on the surface conserved water and promoted soil stability.  相似文献   

5.
Tillage and crop management effects on soil erosion in central Croatia   总被引:4,自引:0,他引:4  
Soil erosion continues to be a primary cause for soil degradation and the loss of soil quality throughout the world. Our objectives were to quantify soil erosion (referred to as erosional drift) and to assign erosion risk to six tillage and crop management treatments evaluated from 1995 to 1999 for a 5-year maize (Zea mays L.), soybean (Glycine hyspida L.), winter wheat (Triticum aestivum L.), oil-seed rape (Brassica napus var. oleifera L.), and spring barley (Hordeum vulgare L.) plus double-crop soybean rotation on Stagnic Luvisols in central Croatia. Standard black fallow (tilled, unsown, and without any vegetative cover) Universal Soil Loss Equation (USLE) plots were used to establish the erosion potential associated with the rainfall pattern for each year. Soil loss from the check plots was several times greater than the T value, which is estimated to be 10 t ha−1 per year. During the 2 years when spring seeded maize or soybean were grown (1995 and 1996) erosion risk was extremely high, especially for treatments where tillage and planting (row direction) were up and down the slope. When autumn seeded winter wheat or oil-seed rape were grown (1996/1997 or 1997/1998), soil erosion was insignificant. Also, except when plowing and sowing were up and down slope, erosion loss for the spring barley plus double-crop soybean crops in 1999 was insignificant. With no-tillage, soil erosion from the maize and soybean crops was reduced 40 and 65% compared to plowing up and down slope, even though the planting direction was still up and down the slope. With the exception of maize in 1995, erosion losses were moderate to insignificant when plowing and planting were performed across the slope. We conclude that erosion risk can be used as a reliable indicator of sustainable land management and that using no-tillage or plowing and planting perpendicular to the predominant slope are effective soil conservation practices for this region.  相似文献   

6.
The weed seed bank of a long-term tillage study in subarctic Alaska was studied at the end of 10 years of continuous spring barley (Hordeum vulgare L.). Tillage treatments were: no-till, disked once (spring), disked twice (spring and fall), and chisel plow (fall). Soil cores were obtained from each tillage treatment and seeds were manually separated from soil after washing through sieves. Tillage treatment had a significant effect on seed density of shepherds purse (Capsella bursa-pastoris (L.) Medic.), cinquefoil (Potentilla norvegica L.), foxtail barley (Hordeum jubatum L.), and on total seed density. Seed density was higher for these species and total seed density was greater under no-till than under other tillage treatments. Seed density was higher near the soil surface under no-till and chisel plow treatments than under disked treatments, which helps explain the greater difficulty of controlling weeds under reduced tillage.  相似文献   

7.
Biannual surface application of potassium (K) fertilizer prior to corn (Zea mays L.) in a corn–soybean (Glycine max (L.) Merr.) rotation has been common in conventional-till crop production in North America; however, whether this traditional K management practice is effective for soybean when both corn and soybean are grown with conservation tillage is largely unknown. This study evaluated the residual effects of spring K fertilizer placement in conservation tillage systems applied to previous corn on subsequent no-till soybean. Experiments involving a corn–soybean rotation were conducted from 1997 to 2000 on a silt loam soil (Albic Luvisol) with 12 years of continuous no-till management near Paris, Ontario, Canada. The fields had low initial soil-test K levels (<61 mg l−1) and evident soil K stratification in the top 20 cm. In the “corn” years from 1997 through 1999, spring K fertilizer placement methods of deep band (76 cm centers), surface broadcast, broadcast plus shallow band, and no K were evaluated for no-till, spring zone-till, and spring mulch-till tillage systems (1997 and 1998) but for no-till alone in 1999. From 1998 to 2000, soybean was no-till planted in 19 cm row widths on the respective previous-year corn treatments without further K fertilizer application. Soybean leaf K concentrations responded more frequently and positively to K application in no-till corn than in zone-till and mulch-till corn. Deep band and surface broadcast K placements were similar in their residual effects on soybean leaf K. Positive soybean yield responses to residual K fertilizer were observed in only 1 out of 3 years despite consistent increases in both soil K and soybean leaf K concentrations where K was applied to previous corn. On long-term no-till fields with low soil K levels, interrupting a continuous no-till corn–soybean system with mulch-till corn production provided residual benefits in soil K availability and leaf K nutrition for subsequent no-till soybean. Furthermore, the residual effects of K fertilizer applied to previous corn on subsequent no-till soybean were not affected by K placement method.  相似文献   

8.
In the U.S. Southeastern Coastal Plains conservation tillage (CT) became useful as a management system with the development of in-row subsoiling systems capable of planting into heavy residues. Research priorities associated with the development of CT included: reducing cover crop water loss, improving stand establishment, assessing nutrient and water management requirements, determining optimal subsoiling strategies, understanding long-term conservation tillage effects on soil properties, evaluating the interaction of crop residue removal with tillage systems, and documenting tillage impact on pests and beneficial organisms. Since the late 1970s the Coastal Plains Soil and Water Conservation Research Center in Florence, SC has made a concerted effort to study these interactions and alleviate them as obstructions to the use of CT management. These studies showed that for Coastal Plain soils such as Norfolk sandy loam (fine-loamy, siliceous thermic, Typic Paleudults) winter cover crops such as rye (Secale cereale L.) desiccated the soil profile by evapotranspiration in the spring. This delayed emergence and early season growth of corn (Zea mays L.) but not full-season soybean (Glycine max (L.) Merr.). Conservation tillage helped manage soil strength by gradually increasing soil organic matter content, restricting traffic patterns and maintaining higher soil water contents. Laboratory studies demonstrated a negative correlation (R2=0.85) between proctor soil strength and organic matter content. Conservation tillage affected nematode, Bradyrhizobium japonicum and Heliothis species populations. Alternate cropping systems using rapeseed (Brassica napus L.) as a winter crop or sunflower (Helianthus annuus L.) either before soybean or after corn provided crop cover against potential soil loss from late autumn through early spring, when bare soil is exposed to intense rainfall. Water quality questions associated with CT have been raised but remain unanswered. Although CT can reduce runoff and erosion, the crop residues can support higher insect populations and pathogen inoculum levels, and thus prompt greater pesticide use. Quantifying relationships between soil strength, macropore formation and persistence, and water infiltration with surface and subsurface water quality is the focus of new long-term evaluations. The findings of these studies, published to date, are summarized in this paper.  相似文献   

9.
Soil management practices are needed in the subarctic that stabilize the soil against the forces of wind and water as well as conserve soil water for crop production. There is a paucity of information, however, regarding the long-term effects of conservation tillage on soil hydraulic properties in subarctic Alaska. The objective of this study was therefore to characterize infiltration, water retention, and saturated hydraulic conductivity of a soil 20 years after establishing tillage and straw management treatments in interior Alaska. The strip plot experimental design, established on a silt loam and maintained in continuous barley (Hordeum vulgare L.), included tillage as the main treatment and straw management as the secondary treatment. Tillage treatments included no tillage, autumn chisel plow, spring disk, and intensive tillage (autumn and spring disk) while straw treatments included retaining or removing stubble and loose straw from the soil surface after harvest. Soil properties were measured after sowing in spring 2004; saturated hydraulic conductivity was measured by the falling-head method, infiltration was measured using a double-ring infiltrometer, and water retention was assessed by measuring the temporal variation in in-situ soil water content. No tillage resulted in greater saturated hydraulic conductivity and generally retained more water against gravitational and matric forces than other tillage treatments. Infiltration was greater in autumn chisel plow than other tillage treatments and was presumably suppressed in no tillage by an organic layer overlying mineral soil. Infiltration was also enhanced by retaining straw on rather than removing straw from the soil surface after harvest. No tillage is not yet a sustainable management practice in this region due to lack of weed control strategies. In addition, the formation of an organic layer in no tillage has important ramifications for the soil hydrological and thermal environment. Therefore, minimum tillage (i.e., autumn chisel plow or spring disk) appears to be a viable management option for maximizing infiltration in interior Alaska.  相似文献   

10.
Tillage and residue management practices are sought in the subarctic where small grain production is often curtailed by the lack of soil water. Barley (Hordeum vulgare L.) grain yield and evapotranspiration were compared among four tillage and three residue management practices near Delta Junction, Alaska, USA from 1988 through 1991. Barley was hand-harvested in the fall whereas soil water content was determined biweekly during the growing season by neutron attenuation. Grain yield was similar for spring disk, fall chisel, and conventional (fall and spring disk) tillage across years. No tillage, however, resulted in a 260 kg ha−1 greater yield as compared with fall chisel and conventional tillage in 1990 when evaporative demand exceeded that in other years by nearly 10%. In 1990 and 1991, grain yield from plots devoid of stubble and loose straw was at least 200 kg ha−1 greater than from plots with stubble or stubble and loose straw. Barley consumed at least 15 mm more water to achieve the greater yield on no tillage or no stubble and loose straw plots. Water-use efficiency did not vary among tillage treatments, but was greatest in 1990 for plots devoid of stubble and loose straw. This study suggests that, in dry years with high evaporative demand, no tillage or removal of stubble and loose straw from the soil surface will enhance grain production and water-use efficiency of barley in the subarctic.  相似文献   

11.
The term ‘Konservierende Bodenbearbeitung’ has a somewhat different meaning than conservation tillage as used worldwide. In Germany the term is used not only in relation to the retention of surface residues to reduce erosion but in association with compaction control by carefully timed loosening operations.Field experiments were conducted from 1985 to 1990 on a loamy sand (Dystric-Luvisol) in north-central Germany. The effect of crop rotation-specific soil loosening on some soil physical properties and crop yields was studied in the presence and absence of wheel-induced soil compaction when growing sugar beet, winter wheat, winter barley and a cover crop. Five tillage treatments were studied in a 3-year crop rotation: sugar beet; winter wheat; winter barley; cover crop. These included conventional mouldboard ploughing, conservation tillage with no loosening and conservation tillage where loosening was carried out with a wide blade chisel plough, (1) before winter barley, (2) before the cover crop (mustard or California bluebell) and (3) before winter barley and the cover crop.Wheel-induced compaction decreased the pore space and in most cases eliminated differences due to tillage practice. Pore space on the wheel-tracked plots of the conventional treatment was considerably lower than on the non-wheel-tracked plots. Similar results were obtained for the conservation tillage plots but only where loosening had been carried out within the last 18 months.In summary of the 6 years experiment, there was in general no evidence that conventional tillage was superior to conservation tillage with respect to the yields of sugar beet, winter wheat, or, within certain limits, winter barley on loamy sand.Accordingly, conservation tillage with crop rotation-specific non-inverting soil loosening, promises to be a potential strategy not only with regard to reducing soil erosion, but a programme for reducing costs and alleviating traffic-induced soil compaction.  相似文献   

12.
Despite being one of the most profitable crops for the southeastern USA, cotton (Gossypium hirsutum L.) is considered to create a greater soil erosion hazard than other annual crops such as corn (Zea mays L.) and soybeans (Glycine max (L.) Merr.). Reduced tillage systems and cover cropping can reduce soil erosion and leaching of nutrients into ground water. The objectives of this study, which was conducted in north Alabama from 1996 to 1998, were to assess the impact of no-till and mulch-till systems with a winter rye (Secale cereale L.) cover crop and poultry litter on soil erosion estimates in cotton plots using the revised universal soil loss equation (RUSLE). Soil erosion estimates in conventional till plots with or without a winter rye cover crop and ammonium nitrate fertilizer were double the 11 t ha−1 yr−1 tolerance level for the Decatur series soils. However, using poultry litter as the N source (100 kg N ha−1) gave soil erosion estimates about 50% below the tolerance level under conventional till. Doubling the N rate through poultry litter to 200 kg N ha−1 under no-till system gave the lowest soil erosion estimate level. No-till and mulch-till gave erosion estimates which were about 50% of the tolerance level with or without cover cropping or N fertilization. This study shows that no-till and mulch-till systems with cover cropping and poultry litter can reduce soil erosion in addition to increasing cotton growth and lint yields, and thus improve sustainability of cotton soils in the southeastern USA.  相似文献   

13.
In the hills of north–west India, maize (Zea mays L.)-wheat (Triticum aestivum L.) is the dominant cropping system. However, rainfed wheat suffers from lack of optimum moisture at sowing. Field experiments were conducted for 3 years on a silty clay loam (Typic Hapludalf) to evaluate the effectiveness of mulches and conservation tillage for rainfed wheat in mitigating this problem. The treatments were ten factorial combinations of five mulch-tillage practices and two nitrogen levels (N60 and N120 kg ha−1). Mulch treatments consisted of application of 10 Mg ha−1 (dry weight basis), to previous standing maize, of either wild sage (Lantana camara L.) or eupatorium (Eupatorium adenophorum Sprengel) in combination with either conventional or conservation (minium) tillage prior to wheat sowing. These alternative practices were compared to the conventional farmer practice of soil tillage after harvest of maize with no mulch. The application of these weed mulches to standing maize maintained friable soil structure owing to a five fold higher mean population of earthworms underneath mulch. Mulches resulted in 0.06–0.10 m3 m−3 higher moisture in the seed-zone when wheat was sown compared with the conventional farmer practice of soil tillage after maize harvest. Mulch-conservation tillage treatments favourably moderated the hydro-thermal regime for growing a wheat crop. The mean root mass density under these treatments at wheat flowering was higher by 1.27–1.40 times over the conventional farmer practice during the 3 year study. Conservation tillage holds promise because it does not require elaborate tillage and may ultimately reduce animal draught in the hilly regions. Recycling available organic materials having no fodder value coupled with conservation tillage may help enrich the soil environment in the long-term. The practice also offers gainful use of these obnoxious weeds that cause great menace in grass and forest lands in the region.  相似文献   

14.
保护性耕作对土壤风蚀的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
保护性耕作能够有效减少农田土壤风蚀.通过室内风洞模拟试验,研究秸秆覆盖、留茬和垄作3种保护性耕作措施对黄土高原北部农田土壤风蚀的影响.结果表明:1)秸秆覆盖和留茬能有效降低土壤风蚀速率,秸秆覆盖量为4 210 kg/hm2时土壤风蚀速率最小,与对照相比减少62.8%;垄作在低风速下能够降低土壤风蚀率,垄向与风向垂直时降...  相似文献   

15.
民勤绿洲灌区保护性耕作对土壤风蚀的影响   总被引:1,自引:0,他引:1  
[目的]研究绿洲灌区保护性耕作对土壤风蚀的影响,评估保护性耕作在该区防治农田土壤风蚀的作用,为揭示相关机理提供参考。[方法]以甘肃省民勤治沙综合试验站为例,通过野外风洞试验,以传统耕作为对照,分析保护性耕作对风速廓线、风沙流结构(输沙量)、风蚀量的影响。[结果]保护性耕作近地表风速降低,大风时近地表风速随高度增加仍均匀增大,与传统耕作迅速增大不同,从而阻止风沙流结构出现"象鼻效应",输沙量在0—20 cm减小最为明显,土壤风蚀量减小。随试验风速的增大,保护性耕作土壤风蚀减小的程度越大。[结论]绿洲灌区保护性耕作能有效防止土壤风蚀,其中,立茬地表风速降低最多,输沙量、风蚀量较小,实施简便,适宜推广应用。  相似文献   

16.
A better understanding of tillage effects on soil organic matter is vital for development of effective soil conservation practices. The objective of this research is to determine the effect of tillage and crop sequence on soil organic carbon (OC) and total nitrogen (TN) content in an irrigated southern Alberta soil. A field experiment was conducted using a split–split plot design from 1994 to 1998 in Alberta, Canada. There were two crop sequences (Sequence 1: spring wheat (Triticum aestivum L.)–sugar beet (Beta vulgaris L.)–spring wheat–annual legume; and Sequence 2: spring wheat–spring wheat–annual legume–sugar beet) and two tillage practices (CT: conventional tillage and MT: minimum tillage). Surface soil under MT had significantly higher OC (30.1 Mg ha−1) content than under CT (28.3 Mg ha−1) after 4 years of treatment. The MT treatment retains crop residue at the soil surface, reduces soil erosion and slows organic matter decomposition, which are key factors in enhancing the soil fertility status of southern Alberta irrigated soils.  相似文献   

17.
Long-term influence of N fertilizer, tillage and straw on crop production and soil properties are not well known in central Alberta. Field experiments were established in autumn 1979, on a Black Chernozemic soil and on a Gray Luvisolic soil in north-central Alberta to determine the long-term effect of tillage, straw and N fertilizer on yield and N uptake of barley (Hordeum vulgare L.). Fertilizer N was applied annually at 56 kg ha−1. The 11 year averages of barley yields and N uptake under zero tillage were lower than under conventional tillage. Retention rather than removal of straw tended to reduce barley yield for the initial 6 years and 2 year at Site 1 and Site 2, respectively. A simple mathematical model of average annual plant N uptake and grain yield could account for most of the variation in the data observed at both sites (R2 = 0.907; P < 0.01). Final values of soil N, calculated using a mass balance approach, agree closely with values measured at the end of the eleventh year. Conventional tillage and zero tillage, with addition of fertilizer N and retention of straw, were the only treatments with apparent but small net addition of N to soil at Site 1 (40 kg ha−1 and 117 kg ha−1, respectively). At Site 2, only the zero tillage treatment with addition of fertilizer and retention of straw gained soil N (29 kg ha−1). In conclusion, soil ecosystems functioning in subhumid environments with slight to moderate heat limitations such as those in central Alberta can adapt, within a few years, to zero tillage practices with full retention of straw.  相似文献   

18.
The potential benefits of conservation tillage practices depend mainly on the soil and climatic conditions of the site. A study was conducted to determine the effects of three tillage systems (conventional, CT; reduced, RT; zero, ZT) on spring wheat (Triticum aestivum L.) and weed growth on a clay soil in temperate continental climate, northern Alberta (55°43′N, 118°41′W), Canada. A medium duty cultivator with 25 cm sweeps spaced 22 cm apart and a working depth of 8–10 cm was used for tillage in the CT (once in fall and twice in spring) and RT (once in spring) plots. The ZT plots received a harrowing to spread straw and a preseeding application of Roundup (glyphosate) to control weeds. Experimental design was a randomized complete block with four replications and the tillage systems were fixed in space for the 1989, 1990 and 1991 seasons. The RT treatment resulted in higher yields than the CT or ZT treatments. However, the differences were not always significant. The ZT treatment produced higher yields than CT in 1989 and 1991, whereas its yields were lower than CT in 1990. The 3 year means of total dry matter (TDM) were 3899 kg ha−1, 3640 kg ha−1 and 3331 kg ha−1 for the RT, ZT and CT treatments, respectively. The corresponding grain yields were 1728 kg ha−1, 1573 kg ha−1 and 1530 kg ha−1. The concentration of total N in plants and grains of wheat, amounts of extractable NO3-N, NH4-N and P in soil and soil moisture and bulk density were not significantly affected by tillage. The mean weight diameter of aggregates in surface soil was significantly greater under ZT than under the other systems. Wild buckwheat (Polygonum convolvulus L.) was more abundant under CT, but common groundsel (Senecio vulgaris L.), dandelion (Taraxacum officinale Weber), hemp nettle (Galeopsis tetrahit L.), field horsetail (Equisetum arvense L.) and smartweed (Polygonum scabrum Moench) tended to have higher populations under the ZT system. The populations of foxtail barley (Hordeum jubatum L.) wild rose (Rosa sp.), stinkweed (Thlaspi arvense L.) and wild oats (Avena fatua L.) showed no consistent effect of tillage. Tillage or preseeding application of glyphosate did not provide an effective control of all weed species. The spring tillage of the RT system improved crop yields and weed control relative to ZT, whereas the fall tillage of the CT system (in addition to spring tillage) reduced crop yields and had no significant effect on weed population relative to RT. The overall results showed that tillage intensity could be reduced to the level of RT without any adverse influence on crop yields, soil properties or weed populations. The RT system is also economical and environmentally desirable owing to lower tillage and herbicide requirements.  相似文献   

19.
Integrating livestock with cotton (Gossypium hirsutum L.) and peanut (Arachis hypogaea L.) production systems by grazing winter-annuals can offer additional income for producers provided it does not result in yield-limiting soil compaction. We conducted a 3-year field study on a Dothan loamy sand (fine-loamy, kaolinitic, thermic plinthic kandiudults) in southern Alabama, USA to determine the influence of tillage system prior to cotton–peanut planting on soil properties following winter-annual grazing. Two winter-annual forages [oat (Avena sativa L.) and annual ryegrass (Lolium mutiflorum L.)] and four tillage practices [chisel + disk, non-inversion deep tillage (paratill) with and without disking and no-till] were evaluated in a strip-plot design of four replications. We evaluated cone index, bulk density, infiltration, soil organic carbon (SOC), and total nitrogen (N). Paratilling prior to cotton or peanut planting, especially without surface soil tillage, reduced compaction initially to 40 cm and residually to 30 cm through the grazing period in winter. There were no significant differences in cone index, bulk density, or infiltration between forage species. No-tillage resulted in the greatest bulk density (1.65 Mg m−3) and lowest infiltration (36% of water applied), while paratilling increased infiltration in no-tillage to 83%. After 3 years, paratilling increased SOC 38% and N 56% near the soil surface (0–5 cm), as compared to concentrations at the beginning of the experiment, suggesting an improvement in soil quality. For coastal plain soils, integrating winter-annual grazing in a cotton–peanut rotation using a conservation tillage system of non-inversion deep tillage (paratill) with no surface tillage can improve soil quality by reducing cone index, increasing infiltration, and increasing SOC in the soil surface.  相似文献   

20.
国外农田风蚀发生机理与防治技术的研究   总被引:16,自引:1,他引:16  
土壤风蚀是全球性土地退化的主要原因之一,也是世界上许多国家和地区的主要环境问题之一。该文简要回顾了国外对土壤风蚀发生机理、防治理念和技术的研究,提出林业上植树造林,牧业上防止草原退化,农业上实行保护性耕作是人类可以用来治理和控制土壤风蚀的3个重要原则。我国土壤风蚀和土地退化问题日趋严重,应在全国进行大力宣传,转变土壤风蚀治理的观念,使人们从思想上认识风蚀防治要从植树、种草、农田保护3个方面综合进行。同时,国家要从政策上、资金上为农田保护性耕作的大规模实施提供保证,促进保护性耕作在全国范围内的推广应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号