首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
European sea bass (Dicentrarchus labrax) and gilthead sea bream(Sparus aurata) are amongst the most important finfish speciescultured in the Mediterranean region. Production of these species isnowadays a well-controlled process, but knowledge of their nutritionalrequirements is still very limited. Nevertheless, a considerable amountof data has been accumulated in recent years, and the purpose of thispaper is to review the recent advances on the nutritional requirementsof sea bass and sea bream. The optimum protein to energy ratio of thediets of sea bass and sea bream seem to be higher than for salmonids,and there is some evidence that high dietary lipid levels have nobeneficial effects on fish performances. Although the essential aminoacid requirements were estimated by the ideal protein method, data basedon the dose-response method is only available for a few amino acids.Essential fatty acid requirements were estimated for sea bream juvenilesbut data is lacking for sea bass. Vitamin and mineral requirements ofthese species are practically unknown. Although the importance ofbroodstock nutrition on gonadal development, spawning and egg quality isrecognized, few studies were done to elucidate these aspects. The recentdevelopment of microparticulate diets for larvae will contribute to theaccurate evaluation of their nutritional requirements.  相似文献   

2.
Nutritional amino acid requirements of varying size classes of largemouth bass were estimated using A/E ratios. Nutrient and amino acid contents of roe and carcass of the different size classes were determined and compared to results of selected, classic works related to the concept of ideal protein and relationship between the contents of individual, essential amino acids and the total contents of essential amino acids – A/E ratios. Protein content in the roes of the largemouth bass were higher in comparison to the carcass, but the content of lipids of the roes and of the carcass didn’t present significant difference (P<0.05). Largemouth bass showed higher muscle protein content in comparison to other species. Although some authors report variation in the contents of some amino acids in the carcass of selected species, differences observed in this study regarding carcass amino acid contents of tilapia, speckled catfish and largemouth bass were not significant (P<0.05), values of the ratio A/E followed the same trend. Results, herein presented, indicate that the amino acid profile of largemouth bass could be used as complementary tool for balancing amino acids in formulated feed for the species, and in the validation of amino acid requirements determined in performance studies.  相似文献   

3.
Four semi-purified diets, containing crystalline amino acids (CAAs), were fed to juvenile red sea bream, Pagrus major in order to ascertain the ideal dietary amino acid pattern for this species. A control diet containing 50% casein–gelatin as protein sources, but no CAAs were fed to the fish. The other diets contained 30% casein–gelatin and 20% CAAs. CAAs were added to diets to simulate with amino acid pattern of the red sea bream eggs protein (REP), red sea bream larvae whole body protein (RLP), red sea bream juvenile whole body protein (RJP), and brown fishmeal protein (BFP). The juveniles (average initial body weight, 1.58 ± 0.01 g) were maintained in triplicate tanks and fed twice daily for 30 days. The highest weight gain was observed in juveniles fed the RJP diet. No significant difference was observed in juveniles fed the RLP and BFP diet. Feed efficiency ratio, protein efficiency ratio and amino acid retention in the whole body were significantly (p < 0.05) affected by the simulated dietary amino acid patterns. The essential amino acid profile and A/E ratios of the whole body after the growth trial showed little difference among the dietary treatments. The results suggest that red sea bream juveniles are able to utilize high amounts of CAA in coated form. The amino acid pattern of RJP could be used as an appropriate of reference dietary amino acid for this species.  相似文献   

4.
The indispensable AA profile of fish carcass has been commonly used as a good indicator of fish amino acids requirements. Amino acid composition of the whole body tissue of Diplodus sargus was determined for the larval ages of 0, 2, 5, 8, 12, 17, 25, 35 and 45 days after hatching (DAH). No significant differences were found during this species ontogeny, except for phenylalanine. A comparative analysis of amino acid profiles from larvae and respective diet was performed. Low correlation was found to rotifers (R2 approximately 0.5), while higher correlations were found for Artemia nauplli, metanauplii (R2 approximately 0.8) as well as for the dry feed. These results suggest that D. sargus are subjected to higher nutritional imbalances during the first 10 days of feeding when larvae are fed on rotifers alone. Arginine, threonine, lysine, cysteine and histidine appeared to be limiting amino acids at 2, 12, 25 and 45 DAH, respectively. Similar results were reported in literature for Sparus aurata and Solea senegalensis, although D. sargus diets seem to have more amino acids in deficiency as well as more severe differences between larval and diet amino acid profiles. To solve these apparent nutritional imbalances, amino acid supplementation should be considered. The use of inert diets in early larvae ages seems to be most adequate as live feed supplementation appears to be more difficult.  相似文献   

5.
The probable amino acid and fatty requirements of larval Dover sole [Solea solea (L.)] were assessed by analysis of the amino acid and fatty acid content of the yolk of Dover sole eggs. The amino acid and fatty acid contents of the brine shrimp, Artemia salina, and the the rotifer, Brachionus plicatilis, were analysed to assess their suitability for rearing sole larvae. The fatty acid composition of the egg yolk was found to be dominated by large quantities of fatty acids of the 22:6ω3 series, but these were present only in trace amounts in Artemia and Brachionus. Similarly, the amino acid proline, which is present in the yolk in significant quantities, is almost completely absent from both the food organisms.Experiments were carried out, using fatty acid enriched media to rear yeast species under a variety of conditions, to establish whether the yeasts might absorb some of the molecules required by the sole larvae so that these molecules could then be transferred to the food species by feeding them on the enriched yeasts. It was found that whilst the total lipid content of the yeasts could not be significantly increased, their fatty acid composition was influenced by the culture media. It was also found that the fatty acid composition of the yeasts was reflected in the fatty acid composition of the Artemia cultured on them, although the larger molecules were absorbed less readily. Trials showed that growth rates of Dover sole larvae were significantly increased by the addition of ω3 or 18:3ω3 fatty acids to the yeasts used to feed Artemia.Brachionus alone proved to be an inadequate diet for the sole larvae. In terms of amino acid composition, decapsulated Artemia cysts appeared to be a promising food, but unfortunately these were not readily digested by the sole larvae.  相似文献   

6.
Abstract— A pair of experiments were performed to assess amino acid supplementation of pet food grade poultry by‐product meal for utilization as the sole protein source for hybrid striped bass Morone chrysops×M. saxatilis. The first experiment determined the available amino acids from menhaden fishmeal and poultry by‐product meal for hybrid striped bass. The second experiment determined the efficacy of supplementing poultry by‐product meal with amino acids based on an ideal amino acid profile of hybrid striped bass muscle. The positive control diet contained 40% digestible protein solely from menhaden fishmeal and the negative control diet contained 40% digestible protein solely from pet food grade poultry by‐product meal. The negative control diet was additively supplemented with lysine, methionine, threonine, and leucine at 1.16,0.57,0.31 and 0.47% of the diet, respectively. Lysine supplementation alone did not improve fish performance based on any measured response. Moreover, the negative control diet and the lysine supplemented diet had lower weight gain and feed efficiency than the positive control diet. Supplementation of the diet containing pet food grade poultry by‐product with lysine and methionine; lysine, methionine, and threonine; or lysine, methionine, threonine, and leucine improved weight gain and feed efficiency above that of the negative control diet. The diet containing poultry by‐product supplemented with lysine, methionine, and threonine produced weight gains statistically indistinguishable from those of the positive control diet. Protein and energy retention efficiencies also improved with supplementation of at least lysine and methionine and were statistically indistinguishable from those observed in fish fed the positive control diet. Supplementation with lysine and methionine reduced the hepatosomatic index to levels similar to those found in fish fed the menhaden fishmeal diet. Intraperitoneal fat levels were similar among treatments (6.1‐6.6%) with the exception that fish fed the diet supplemented with lysine, methionine, and threonine exhibited lower (5.5%) fat levels. Supplementing the poultry by‐product meal diet with only lysine and methionine increased muscle ratio to levels equivalent to those found in fish fed the positive control (fishmeal) diet. In conclusion, amino acid supplementation of pet food grade poultry by‐product meal can be used to replace fishmeal in diets for hybrid striped bass without a reduction in fish performance.  相似文献   

7.
The purpose of this study was to investigate the effect of freshwater rearing on the fatty acid profiles of the whole body and muscle tissue of the European sea bass (Dicentrarchus labrax). Half of initial fish were gradually acclimated to freshwater (FW) kept at the same temperature to salt water and grown in same conditions as their counterparts in saltwater (SW). The decrease in salinity caused an increase in the percentages of 18:1n − 9, 24:1n − 9, 18:3n − 3, 18:2n − 6 and decrease in the percentages of 14:0, 15:0, 20:0, 21:0, 20:5n − 3 and 22:6n − 3 both in the whole body and in the muscle tissue fatty acid profiles. The lipids of FW-reared fish contained significantly (P < 0.01) higher percentages of 18:2n − 6 and 18:3n − 6 than that of SW-reared fish. However, percentages of 20:5n − 3 and 22:6n − 3 fatty acids decreased significantly (P < 0.05) compared with those of salt water-reared European sea bass. There was a clear trend of decrement in the percentages of n − 3 PUFA fatty acids due to the decrease in water salinity. However, the percentages of n − 6 PUFA fatty acids were also increased with the decrease in water salinity. We concluded that the FW acclimation is followed by changes in certain lipid classes of sea bass muscle tissue and whole body samples. n − 3/n − 6 PUFA ratios were characteristic to previously reported ratios for both FW- and SW-reared European sea bass. In addition, EPA/DHA ratios were basically similar for the fish reared in both SW and FW indicating the equal nutritional value of the final products in terms of providing PUFA’s for human nutrition.  相似文献   

8.
Like marine fish freshwater fish are an important source of essential fatty acids for human nutrition. However, the fatty acid composition of pond fish can vary considerably and strongly depends on that of the ingested food. Investigations on the fatty acid composition of common carp (Cyprinus carpio) and tench (Tinca tinca) have shown that different methods of rearing and feeding cause substantial variations in the proportions of the n-6 and n-3 polyunsaturated fatty acids of these fish species. Carp reared on the basis of natural food in ponds exhibit high contents of n-6 as well as n-3 fatty acids in their muscle triacylglycerols. On the other hand carp fed supplementary wheat in ponds resulted in somewhat lower levels of these essential fatty acids. High amounts of n-3 fatty acids can be found in carp fed high-energy diets containing high levels of fish oil. Analogous results were obtained in experiments with tench reared under different nutritional conditions. While rearing on the basis of only natural food in ponds as well as feeding supplementary wheat yielded in similar levels of n-3 and n-6 polyunsaturated fatty acids, higher contents of n-3 fatty acids were recorded in tench fed pellets. High levels of n-3 polyunsaturated fatty acids in foodstuffs have positive effects on human health. Experiments with different cultured fish species proved that the fatty acid composition of the edible parts can be influenced by the diet. Therefore, a finishing diet with a suitable fatty acid profile can be used to improve the nutritional quality of fish products of farmed origin.  相似文献   

9.
The effects of dietary amino acid profile (based on muscle (M) or whole body composition (WB) and the balance between indispensable (IAA) and dispensable amino acids (DAA) in the diet, on plasma levels of insulin and glucagon, were analysed in rainbow trout and gilthead sea bream. Plasma insulin values (baseline and 6 h postfeeding) were higher in trout than in sea bream, but the relative postfeeding increase was more pronounced in sea bream. Within the same dietary amino acid profile, diets with lower IAA/DAA, had a lower effect on the postfeeding secretion of insulin in both species. Circulating levels of glucagon (baseline and postfeeding relative increases) were higher in sea bream. In trout, diets with WB amino acid profile had a greater secretory effect on postfeeding glucagon than did diets with M profile, while gilthead sea bream showed an inverse response to circulating glucagon with respect to diet. Muscle insulin and insulin growth factor-I binding parameters were not affected by the dietary regimen. The postfeeding glucagon response depends on both the dietary AA profile and the fish species, while that of insulin seems to be more uniform, and is affected in a similar way regardless of the species.  相似文献   

10.
Three experiments were conducted that were designed to evaluate our ability to predict essential amino acid (EAA) needs of hybrid striped bass using the quantified lysine requirement and whole‐body amino acid concentrations. In the first experiment, six diets containing various amino acid profiles were fed to triplicate groups of fish initially weighing 7.7 g per fish. At the end of the 8‐week experiment, no significant differences were detected in growth rates or feed efficiencies (FE) between fish fed a practical diet containing 510 g kg?1 herring fish meal (FM) and fish fed a purified diet containing the amino acid profile of herring fish meal (CAA‐FM). Growth responses of fish fed purified diets containing 100 (HSB), 110 (HSB110), 120 (HSB120) or 140 g 100 g?1 (HSB140) of the amino acid profile of hybrid striped bass whole‐bodies were significantly lower than those of fish fed diet FM. In the second experiment, triplicate groups of fish (5.6 g per fish) were fed diets containing various energy : protein (E : P) ratios (34.8, 41.2, 47.5 and 53.9 kJ g?1 protein) and one of two amino acid profiles (CAA‐FM and HSB120) in a 4 × 2 factorial design. Carbohydrate concentration was varied to achieve the desired energy concentrations. At the end of the 8‐week experiment, weight gain and FE were significantly higher in fish fed diets formulated to simulate the amino acid profile of herring fish meal (CAA‐FM) compared with fish fed diets formulated to contain 120 g 100 g?1 of the amino acid profile of hybrid striped bass whole‐bodies (HSB120). Weight gain, FE and survival data indicated the optimum dietary E : P was 41.2 kJ g?1 protein. Dietary treatments in the final experiment included three amino acid profiles and four levels of lipid in a 3 × 4 incomplete factorial design. Dietary amino acid treatments included the amino acid profile of herring fish meal (CAA‐FM) or 120 g 100 g?1 of the predicted EAA requirement profile for hybrid striped bass (HSB120). The amino acid profile of the remaining dietary treatment (PRED+) was similar to that of the HSB120 treatment, but contained additional threonine, isoleucine and tryptophan. Diets CAA‐FM and HSB120 contained either 90, 130, 170 or 210 g kg?1 lipid, whereas diet PRED+ contained 130 g kg?1 lipid. Dietary treatments were fed for 10 weeks to triplicate groups of fish initially weighing 81.0 g per fish. Weight gain and FE were not significantly affected by dietary amino acid profile. Feed efficiency was significantly reduced in fish fed diets containing 210 g kg?1 lipid compared with fish fed diets containing 90–170 g kg?1 lipid. Intraperitoneal fat (IPF) ratio and hepatosomatic index (HSI) values generally increased as dietary lipid concentrations increased. Total liver lipid concentrations were significantly reduced in fish fed diets containing 210 g kg?1 lipid compared with those of fish fed 90–130 g kg?1 lipid. Results of this study indicate an appropriate dietary amino acid profile can be predicted for hybrid striped bass using the quantified lysine requirement and whole‐body amino acid concentrations. Further, the optimum E : P appears to be 40 kJ g?1 protein.  相似文献   

11.
Three bivalve mollusks—clam (Meretrix meretrix), oyster (Crassostrea rivularis), and paphia (Paphia papilionacea) from the Beibu Gulf, China—were analyzed for amino acid profile. Essential amino acids were used for nutritional quality evaluation, and free amino acids were used for taste impact evaluation. The amino acid compositions of the mollusks were quite similar; however, the contents of glycine, alanine, and tryptophan were different. Tryptophan seemed to be the limiting amino acid in clam and paphia meat protein. Oyster, on the other hand, seemed to be a source of high quality protein with well-balanced composition in essential amino acid. Glutamic acid, alanine, glycine, and arginine were the major taste-active amino acids found in the mollusks. According to the taste activity values of free amino acids, paphia was assumed to be the best savory food, followed by clam and oyster.  相似文献   

12.
In diet formulation for fish, it is critical to assure that all the indispensable amino acids (IAA) are available in the right quantities and ratios. This will allow minimizing dietary AA imbalances that will result in unavoidable AA losses for energy dissipation rather than for protein synthesis and growth. The supplementation with crystalline amino acids (CAA) is a possible solution to correct the dietary amino acid (AA) profile that has shown positive results for larvae of some fish species. This study tested the effect of supplementing a practical microdiet with encapsulated CAA as to balance the dietary IAA profile and to improve the capacity of Senegalese sole larvae to utilize AA and maximize growth potential. Larvae were reared at 19 °C under a co-feeding regime from mouth opening. Two microdiets were formulated and processed as to have as much as possible the same ingredients and proximate composition. The control diet (CTRL) formulation was based on commonly used protein sources. A balanced diet (BAL) was formulated as to meet the ideal IAA profile defined for Senegalese sole: the dietary AA profile was corrected by replacing 4 % of encapsulated protein hydrolysate by CAA. The in vivo method of controlled tube-feeding was used to assess the effect on the larvae capacity to utilize protein, during key developmental stages. Growth was monitored until 51 DAH. The supplementation of microdiets with CAA in order to balance the dietary AA had a positive short-term effect on the Senegalese sole larvae capacity to retain protein. However, that did not translate into increased growth. On the contrary, larvae fed a more imbalanced (CTRL group) diet attained a better performance. Further studies are needed to ascertain whether this was due to an effect on the voluntary feed intake as a compensatory response to the dietary IAA imbalance in the CTRL diet or due to the higher content of tryptophan in the BAL diet.  相似文献   

13.
ABSTRACT

On-growing of horse mackerel is not known in the world. Recently, we have initiated on-growing of the Mediterranean horse mackerel in the Black Sea. Therefore, we aim to compare proximate composition and fatty acid profile of on-growing and wild horse mackerels to evaluate the effect on their nutritional value. Captured horse mackerels less than 13 cm were kept on-growing in sea cages and fed sea bass feed for a year in the southern Turkish Black Sea. Results showed seasonal variations in the proximate contents and fatty acid profile of both on-growing and wild fish groups (p < 0.05). Protein contents of the wild horse mackerel group were significantly higher than the on-growing mackerel group, while the opposite situation was observed for lipid contents (p < 0.05). Despite higher eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) levels (as fatty acid methyl esters %) of wild horse mackerel in comparison with on-growing group, much higher EPA + DHA contents were accounted for in on-growing fish in the edible portion resulting from higher lipid contents of these samples. The results suggest that lower amounts of fish meat, 50–90 g, from on-growing mackerel would cover the daily suggested value of EPA + DHA; this level is calculated as 51–150 g for wild fish meat.  相似文献   

14.
A study was conducted to investigate the muscle amino acid profiles of five species of marine fish, Pseudosciaena crocea (large yellow), Lateolabrax japonicus (common sea perch), Pagrosomus major (red seabream), Seriola dumerili (Dumeril's amberjack) and Hapalogenys nitens (black grunt). These carnivorous fishes, all of which belong to the Perciforms, were sampled from Xiamen Bay. Chemical analysis shows significant difference (P < 0.01) among the five species in the muscle total amino acids (TAA). Lateolabrax japonicus has the highest level of TAA in muscle tissues. Significant difference in muscle total essential amino acid (TEAA) and total non‐essential amino acid (TNEAA) were also found among the five species. Lateolabrax japonicus has the highest TEAA level, and H. nitens has the highest level of TNEAA level. Significant difference (P < 0.01) existed in specific EAA except for lysine (P > 0.05). The significant difference (P < 0.05) of the A/E ratios [(each essential amino acid content/total essential amino acid content including cystine and tyrosine) ×1000] based on the essential amino acid composition of muscle tissue from the five species were found in lysine, histidine, methionine, cystine, valine, leucine, isoleucine, and arginine, except for threonine, phenylalanine and tyrosine. These differences indicate that the amino acids profile is species specific for the five species and their essential amino acid requirements are greatly different although they were fed similar feed. In contrast to the reference amino acid profile recommended by FAO/WHO, muscle proteins of each fish were all rich in lysine, the S‐containing amino acids and threonine, but histidine, valine, leucine, isoleucine, phenylalanine and tyrosine were deficient for children's diets. The first limiting amino acid was histidine for P. crocea and L. japonicus, valine for P. major and H. nitens, leucine for S. dumerili. The amino acid score was 66.8, 76.7, 78.4, 84.0 and 95.7 for P. crocea, L. japonicus, P. major, H. nitens and S. dumerili, respectively. In the adult human diet the muscle protein of the five species of marine fish can almost fulfil the requirements of all essential amino acids except for the histidine of P. crocea and L. japonicus and thus can serve as supplemental source of protein in cereal‐based adults diets if we reinforce the histidine correspondingly. Therefore, increasing the proportion of marine fish in the diet of the people in the area where paddy rice and wheat are the main protein sources is an effective way to enhance the nutrition value of food and improve the nutrition status of the developing countries. Moreover, all of five marine fish species contained a comparatively high content of glutamic acid and arginine, which are beneficial to the patients under such conditions as trauma, burn injury, massive small‐bowel resection and renal failure.  相似文献   

15.
The present study investigated the qualitative amino acid (AA) requirements of larval African catfish Clarias gariepinus. Yolk-sac larval AA profiles were measured at different temperatures and also in animals reared at 28 °C fed Artemia nauplii or an experimental dry diet. The AA profile of C. gariepinus larvae changed during ontogeny, especially before the start of exogenous feeding. The AA profiles of the food items (yolk, Artemia and the dry diet) differed considerably from that of the larvae. No selective absorption of yolk AA was detected. Higher temperatures led to increased absorption and depletion rates of AA, and also to a higher retention efficiency of yolk nutrients. However, changes in temperature did not induce preferential absorption or depletion of individual AA, and caused only small variations in the AA profile. Depletion rates of individual AAs varied, possibly due to differences between larval and yolk AA profiles, and also to changes in the larval AA profile during ontogeny. There was little regulation of catabolism of individual AA in yolk-sac and starved larvae, and no sparing of essential AA.  相似文献   

16.
The objective of the present study was to investigate the combined effect of several dietary contents of vitamin E and polyunsaturated fatty acids (PUFA), mainly docosahexaenoic acid (DHA), on growth, survival, biochemical composition and tissue morphology of sea bass along early development. A feeding experiment was conducted in sea bass larvae using five different diets with the same proximate composition and different ratios of DHA concentrated fish oil [10, 30 and 50 g kg?1 dry weight (DW)] and vitamin E (α‐tocopherol acetate) (1500 and 3000 mg kg?1 DW). DHA was readily deposited in fish tissues and associated with higher sea bass mortalities probably because of increased peroxidation risks. Besides, the elevation of dietary DHA contents up to 5% severely increased the incidence of muscular lesions and the presence of ceroid pigment within hepatocytes. However, elevation of dietary vitamin E levels markedly reduced the incidence of these symptoms in sea bass, increasing the tissue content in several PUFA and improving growth and stress resistance. Moreover, when sea bass was fed diets containing high vitamin E levels, fish showed a significant improvement in growth when dietary DHA was raised from 1% to 3%. Therefore, in sea bass larvae, a ratio of 30 g kg?1 DHA and 3000 mg kg?1 vitamin E seems to be adequate to achieve a good larval performance and to avoid muscular lesions.  相似文献   

17.
After feeding female Eriocheir sinensis on an optimized formulated diet or fresh razor clam Sinonovacula constricta for 7 months, their reproductive performance and offspring quality were compared. To evaluate diet nutrient contents, the proximate, fatty acid and amino acid compositions of the formulated diet and the razor clam were analysed. The nutritional value of the diets was determined by assessing survival, gonadosomatic index (GSI) and hepatosomatic index (HSI) of female crabs from both diet treatments, together with the percentage of females that spawned, total egg production per female and fecundity (number of eggs g?1 female wet weight). Furthermore, the quality of eggs and newly hatched larvae from the two dietary treatments were determined using the following parameters: egg diameter, wet weight and dry weight, hatchability, proximate and fatty acid profile of eggs, larval carapace length, resistant to starvation and osmotic shock, larval survival and development to the zoea II stage. Higher protein, phospholipids (PL) and amino acids (AA) contents were found in the razor clam while the formulated diet contains higher levels of ash, total lipid (TL) and 18:1n‐9, 18:2n‐6 and 22:6n‐3 fatty acids. Although female crabs fed the two different diets showed similar reproductive performances, newly hatched zoea I larvae produced by the crabs fed the formulated diet had significantly longer mean carapace length and shorter development time to the zoea II stage under identical culture condition (P<0.05). Moreover, dietary fatty acid appeared to have more significant effects on the fatty acid composition of the hepatopancreas than it did on mature ovaries or eggs. This suggests that the fatty acid profile of mature ovaries is indicative of the specific fatty acid required for ovarian development in E. sinensis. In conclusion, our results show that the optimized formulated diet developed in this laboratory can totally replace the razor clam, a broodstock food widely used in E. sinensis hatcheries in China. This encouraging result should facilitate more reliable hatchery production of this important aquaculture species.  相似文献   

18.
The effect of different dietary levels of docosahexaenoic acid (DHA, 22:6w-3) on the corresponding composition of lipid classes of the eyes of sea bass, Dicentraxrchus labrax, larvae was studied using Artemia nauplii enriched with different products: oil emulsions, liposomes, a dry microalga and baker's yeast. DHA was found to be a major constituent of phosphatidylserine and phosphatidylethanolamine of visual tissues. The different DHA dietary levels were markedly reflected in the fatty acid composition of the lipid classes of eyes, suggesting a dose-dependent relationship between DHA in the food and in visual tissue lipids of sea bass larvae. The possible implications of this dietary effect are discussed.  相似文献   

19.
This study evaluated the lipid content and fatty acid (FA) profile of the hepatopancreas, ovaries and tail muscle of Lysmata amboinensis broodstock, as well as newly hatched larvae subjected to a period of starvation or feed from hatch to Zoea 2. The hepatopancreas had a high lipid content, confirming its role as a process and storage organ in L. amboinensis. Lipids were also a major component of ovarian dry weight, in agreement with reports on other crustaceans during maturation. The tail muscle, being a functional rather than a storage organ, contained low total lipids and was the tissue that closely resembled the FA profile of the newly hatched larvae. Saturated fatty acids (SFAs) and highly unsaturated fatty acids (HUFAs) were the most abundant components of the lipid profiles in broodstock and larvae. The HUFAs docosahexaenoic and eicosapentaenoic were preferentially retained during nutritional stress, confirming their importance for marine cleaner shrimp during early larval development. It appeared polyunsaturated fatty acid and HUFA requirements were met through the larval diet. The SFAs stearic and palmitic were abundant in adult tissues and larvae, whereas monounsaturated fatty acids may have been preferentially catabolized to meet energetic and metabolic larval requirements.  相似文献   

20.
Microalgal biofilms with different amino acid profiles were investigated for their ability to induce abalone, Haliotis iris, attachment, metamorphosis, shell stage, and survival. Twenty microalgal strains, isolated from rocky shores and sandy estuaries, were grown in the laboratory to produce young and matured monospecific biofilms. Abalone larvae were exposed to the different biofilm treatments and controls (no biofilms) for 7 (attachment and metamorphosis) and 14 (shell stage and survival) d. The larvae performed significantly better in biofilms compared with controls across microalgal strains, but attachment, metamorphosis, shell stage, and survival were generally less than about 50, 35, 25, and 25%, respectively. Some microalgal strains belonging to the same species but collected from different sites had different effects on the larvae, likely due to variations in biochemical composition and activity among strains. Although no clear relationship was found between the microalgal amino acid profiles and larval processes, percentage biofilm cover and total amino acids were positively correlated with some of these processes. In addition, abalone performed significantly better when exposed to mature compared with young biofilms. These results may be due to the greater amounts of microalgal cells and their extracellular polymers within older biofilms, which may cue larvae toward more nutritionally favorable environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号