首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
Cultural methods such as crop fertilization can affect susceptibility of plants to insect pests by altering plant tissue nutrient levels. Research shows that the ability of a crop plant to resist or tolerate insect pests and diseases is tied to optimal physical, chemical and mainly biological properties of soils. Soils with high organic matter and active soil biology generally exhibit good soil fertility. Crops grown in such soils generally exhibit lower abundance of several insect herbivores, reductions that may be attributed to a lower nitrogen content in organically farmed crops. On the other hand, farming practices, such as excessive use of inorganic fertilizers, can cause nutrient imbalances and lower pest resistance. More studies comparing pest populations on plants treated with synthetic versus organic fertilizers are needed. Understanding the underlying effects of why organic fertilization appears to improve plant health may lead us to new and better integrated pest management and integrated soil fertility management designs.  相似文献   

2.

Purpose  

Soil microorganisms directly affect the growth of plants. Especially, plant growth-promoting rhizobacteria (PGPR) play an important role in plant growth. There are many studies about the effects of different fertilization treatments on soil microbial community structure; however, the effects on PGPR, including indole-3-acetic acid (IAA)-producing bacteria have not been previously reported. The objective of this study is to determine the effects of different types of fertilizers on IAA-producing bacteria.  相似文献   

3.
植物对氨基酸的吸收利用及氨基酸在农业中的应用   总被引:10,自引:2,他引:10  
植物对氨基酸的吸收、转运、代谢以及氨基酸在肥料和农药上的应用国内外已有报道。已有研究证明,植物可直接吸收土壤中的氨基酸分子,其吸收后的转运、分配、代谢因氨基酸种类而异,产生的生理效应也不相同;氨基酸农药易被日光分解或被自然界微生物降解,在土壤中、植物体内不留残毒,其降解产物还可作为农作物的营养物质,提高农作物的品质和产量,施用这类农药,人畜安全,没有公害;氨基酸肥具有促进植株生长发育、增强抗逆性、改善土壤状况和提高作物产量的作用。  相似文献   

4.
Plant roots influence the biological, chemical and physical properties of rhizosphere soil. These effects are a consequence of their growth, their activity and the exudation of organic compounds from them. In natural ecosystems, the linkages between inputs of carbon from plants and microbial activity driven by these inputs are central to our understanding of nutrient cycling in soil and the productivity of these systems. This coupling of plant and microbial productivity is also of increasing importance in agriculture, where the shift towards low‐input systems increases the dependence of plant production on nutrient cycling, as opposed to fertilizers. This review considers the processes by which plants can influence the cycling of nutrients in soil, and in particular the importance of organic inputs from roots in driving microbially mediated transformations of N. This coupling of plant inputs to the functioning of the microbial community is beneficial for acquisition of N by plants, particularly in low‐input systems. This occurs through stimulation of microbes that produce exoenzymes that degrade organic matter, and by promoting cycling of N immobilized in the microbial biomass via predation by protozoa. Also, plants increase the cycling of N by changes in exudation in response to nitrogen supply around roots, and in response to browsing by herbivores. Plants can release compounds in exudates that directly affect the expression of genes in microbes, and this may be an important way of controlling their function to the benefit of the plant.  相似文献   

5.
Influence of fertilization, nitrogen transformation and plant growth on the long-term proton balance in soils In view of results of recent publications the influence of fertilization, nitrogen transformation and plant growth on proton balance in soil is discussed. One reason, why acidity in the soil increases after plant growth can be traced back to the fact, that plants take up more N-free cations than N-free Anions from the soil. Thus the more nitrogen fertilization as well other fertilization practices will increase plant yield the more the process of soil acidification will be enhanced. There ist no influence on soil pH by forms of applied fertilizer nitrogen like NH4NO3, HNO3, NH4OH, urea or biologically fixed N. However, accompanying ions of nitrogen fertilizers depending whether they are metal cations or sulfate or chlorid anions will decrease or increase proton production. For the calculation of the amount of produced acid in the soil during the uptake of nutrients by plants the yield of the plants and the alcalinity of plant ash will be needed. The calculation of the amount of produced acid both from the fertilization and the plant growth will be falsified by the unknown amount of nitrate which is leached beneath the rooting zone.  相似文献   

6.
7.
Chelates are compounds that are applied to improve nutrition, especially the micronutrients status of plant tissues. During past decades, various chelating agents have been synthesized and introduced to agricultural systems. The recent formulas are aminochelates that are synthesized using various amino acids and a single or several nutrient ions aimed at improving fertilizer use efficiency and more adaptation to environment protection. Apart from their primary use as a micronutrient source, aminochelates represent an effective nitrogen (N) fertilizer in plant nutrition that can avoid negative effects from simple N fertilizers, such as urea. In various studies, higher yield and quality as well as higher concentration of nutrient elements have been obtained by application of aminochelates rather than simple chemical fertilizers. These compounds claimed to be more natural and safer forms of chelating agents, with higher use efficiency and without environmental side effects. However, there is lack of sufficient knowledge especially regarding their detailed impacts and their fate within the soil and plant system. This review provides information concerning the role of aminochelates in plant nutrition and to summarize the previous recent studies that have been done using these fertilizers.  相似文献   

8.
 为了筛选出适合煤矸石山废弃地的造林树种和复垦措施,在辽宁省抚顺市,初步研究了不同植物复垦措施对煤矸石山废弃地土壤化学性质和植物生长的影响。结果表明:不同供试植物在煤矸石山废弃地的成活率在21%~85%之间,其中白榆和沙打旺的成活率分别为81%和85%,而小叶杨、刺槐、栾树的成活率均在70%左右,这些植物均适合于在煤矸石山废弃地生长。植物措施能明显提高煤矸石山废弃地不同土层的有机质、全N、全P和全K含量,但提高程度随土壤层厚度和养分种类而不同。在植物复垦中,配合应用生物复合肥料、生物菌剂和保水剂,能改善主要造林树种的生长状况。  相似文献   

9.
Soil acidification is caused by a number of factors including acidic precipitation and the deposition from the atmosphere of acidifying gases or particles, such as sulphur dioxide, ammonia and nitric acid. The most important causes of soil acidification on agricultural land, however, are the application of ammonium‐based fertilizers and urea, elemental S fertilizer and the growth of legumes. Acidification causes the loss of base cations, an increase in aluminium saturation and a decline in crop yields; severe acidification can cause nonreversible clay mineral dissolution and a reduction in cation exchange capacity, accompanied by structural deterioration. Soil acidity is ameliorated by applying lime or other acid‐neutralizing materials. ‘Liming’ also reduces N2O emissions, but this is more than offset by CO2 emissions from the lime as it neutralizes acidity. Because crop plants vary in their tolerance to acidity and plant nutrients have different optimal pH ranges, target soil pH values in the UK are set at 6.5 (5.8 in peaty soils) for cropped land and 6.0 (5.3 in peaty soils) for grassland. Agricultural lime products can be sold as ‘EC Fertiliser Liming Materials’ but, although vital for soil quality and agricultural production, liming tends to be strongly influenced by the economics of farming. Consequently, much less lime is being applied in the UK than required, and many arable and grassland soils are below optimum pH.  相似文献   

10.
Copper (Cu) contamination in the environment has been increased during the years with agricultural and industrial activities.Biotechnological approaches are needed for bioremediation in these areas. The aims of this study were i) to evaluate the phytoremediation capacity of the high-yielding bioenergy plant castor bean (Ricinus communis L.) in vineyard soils (Inceptisol and Mollisol) contaminated with Cu and a Cu mining waste; ii) to characterize the castor bean as a Cu phytoremediation plant; and iii) to evaluate the nutrient uptake by castor bean. Castor bean plants cultivated in soil with toxic levels of Cu for 57 d exhibited high phytomass production, a high tolerance index of roots’ fresh mass and shoots’ dry mass, a high level of Cu phytoaccumulation in the roots and also, a robust capacity for Cu phytostabilization. Furthermore, castor bean plants did not significantly deplete soil nutrients(such as N, P, and Mg) during cultivation. Plants cultivated in Inceptisol, Mollisol and Cu mining waste exhibited a strong potential for Cu phytoaccumulation, with values of 5 900, 3 052 and 2 805 g ha-1, respectively. In addition, the castor bean’s elevated phytomass production and strong growth in Cu-contaminated soils indicated a high level of Cu phytoaccumulation and a potential application in biofuels. These findings indicate that the castor bean is a efcient hyperaccumulator of Cu and a potential candidate plant for the phytoremediation of Cu-contaminated soil.  相似文献   

11.
Abstract

Zinc (Zn) fertilizer application has increased during the past three decades. This increase has created the need for more information regarding the availability and agronomic effectiveness of Zn containing fertilizers because differences of opinions exist relating the relationships between Zn water solubility and plant availability. Plant availability of eight commercialized Zn fertilizer materials having different water solubilities was measured under greenhouse conditions. Corn (Zea mays L.) plants were grown for 40 days in a soil (loamy, mixed, mesic arenic Ustollic Haplargid) amended with lime to two pH's: 6.3 and 7.4. To evaluate the effect of pH, some Zn fertilizers were used at both soil pH levels while all Zn fertilizers were used in the pH 7.4 soil. The experimental design was a factorial combination of pH, Zn fertilizers, and Zn rates of 0,2.1,4.2,8.4 mg Zn kg?1 soil. Dry matter production and Zn uptake increased significantly when the soil pH decreased from 7.4 to 6.3. The highest dry matter production was obtained with ZnSO4 (ZnSO4 H2O, 99.9% total water soluble Zn), Zn20 (Zn oxysulfate, 98.3% total water soluble Zn), and Zn27 (Zn oxysulfate, 66.4% total water soluble Zn). While ZnFe (Zn iron ferrite, 0.3% total water soluble Zn), ZnK (Zn oxide, KO61, 1% total water soluble Zn), and ZnOS (Zn oxysulfate, 0.7% total water soluble Zn) were less effective followed by Zn40 (Zn oxysulfate, 26.5% total water soluble Zn) and ZnOxS (Zn oxysulfate, 11% total water soluble Zn). The same trend was observed for Zn concentration and uptake. Regression correlations showed that the higher the water solubility, the more effective the Zn fertilizer in increasing dry matter production. Assuming that 5 to 10 kg Zn ha?1 are the rates commonly recommended, about 50% water soluble Zn is required to adequately supply the crop's needs. Lower fertilizer rates were needed as Zn solubility increased. The cadmium (Cd) and lead (Pb) concentrations and uptakes in corn forage were not significant for any of the sources and rates.  相似文献   

12.
13.
In view of restrictions in the application of antibiotics in animal production, Lanthanum (La) is intended to be introduced as a new growth promoter for pigs. Because most of the supplied La is subsequently excreted, it will be found in organic fertilizers which are applied to agricultural land. Thus, we examined the effect of lanthanum on the growth and La contents of plants in nutrient solution and in soils as well as its extractability from different soils. In nutrient solutions with concentrations of available La of up to 20 μmol L–1, shoot growth of bush bean was markedly reduced by up to 60% of the control at 20 μM La. By contrast, growth was not affected in maize. Lanthanum was mainly accumulated in the roots, but maize shoot contained considerable amounts of La as well. In contrast to nutrient solution, shoot growth of bush bean and spinach in soils supplemented with La up to 360 μmol kg–1 (50 mg kg–1) was not decreased. In contrast to spinach, bush bean shoots showed an increased La content at the highest La level. Extractability of La with 0.1 mol L–1 acetic acid from 12 different soils previously spiked with La was related mainly to soil pH, CEC, and Corg. We therefore conclude that except of strongly acidic conditions, the application of La‐containing organic fertilizers does not represent a risk for plant growth for the next over 100 years, provided that the recommended doses of feed supplementation is not increased.  相似文献   

14.
Abstract

Methods are proposed for the determination of cadmium in soils, plants and fertilizers.

Soil is first dissolved by treatment with hydrofluoric and hydrochloric acids and plant material is digested with nitric‐perchloric‐sulphuric acids. The cadmium is then extracted from the resulting solutions as the dithizone complex. After destruction of the dithizone the cadmium is dissolved in dilute hydrochloric acid and determined by atomic absorption spectroscopy. Cadmium in phosphatic fertilizers is determined directly by atomic absorption measurement on hydrochloric acid digests of the fertilizer.

The proposed methods have precision adequate for the study of cadmium in soil‐plant systems, the limits of detection being: plant material, 0.004 ppm Cd; soils, 0.02 ppm; and phosphatic fertilizers, 1 ppm.  相似文献   

15.

Studies were made to assess the impact of a thermal power plant located at Obra on vegetation and soil in surrounding areas. Pollutant concentration in the area gradually decreased along a belt in the prevailing wind direction and a gradient of structural and functional changes in plants and soil was observed. Natural vegetation in the area varied significantly at different sites and on the basis of plant responses can be classified as insensitive, intermediate and sensitive.

The effect of the power plant emissions on soil and eco-physiological characteristics such as pH, organic matter and N, P, K and S concentrations in soil; leaf injury symptoms, number and distribution of plant species; chlorophyll content in leaves, percentages of photosynthetically active leaf area; accumulation of N, P, K, and S in leaves etc. seemed to be a function of the pollutant gradient existing in the area. There was a relationship between plant responses and changes in the chemical factors of soil and plants due to pollution. This study indicates possible elimination of plant species, first the trees then the shrubs and lastly the herbs and grasses from the environs of the thermal power plant. The increase in soil acidity in the area may cause cation-anion imbalance and microbe population reduction to affect soil fertility.

  相似文献   

16.
Abstract

In two pot experiments, lettuce plant growth under different soil‐water conditions was examined. In the first experiment, the effect of soil conditioner in combination with slow‐release and water‐soluble fertilizers was considered. In the second experiment, lettuce plant resistance in moisture stress with the use of a soil conditioner was evaluated. The first experiment showed that the use of soil conditioner with slow‐release fertilizers gives greater yield than the use of water‐soluble fertilizers alone. The second experiment showed that there is no difference on the yield and quality of lettuce plants between the trials until the irrigation time of twenty days.  相似文献   

17.
We undertook what we believe to be a unique survey of the natural abundances of 13C and 15N in urban soils and plants in Karlsruhe (Germany), a European city of average size. We found broad patterns of these abundances in both soils and plants, which reflected geology and land use. In contrast with studies on smaller areas (showing the direct effect of human activities), our study first determined the extent to which the abundances correlated with land use or underlying geology and then assessed how we could further test such relationships. The spatial pattern of δ13C in surface soil correlated with that of the underlying parent material; construction activities superimposed a secondary signal. Maize cultivation was a source of less negative soil δ13C, whereas the C3 vegetation is a source of more negative soil δ13C. There was a footprint of less negative plant δ13C in the industrial and port areas; plant δ13C downwind of the city was less negative than upwind, which might relate to atmospheric pollution from the port area or to differences in soil properties. There was no significant effect of wind direction or geology on soil or plant δ15N, which was correlated mainly with land use. The largest soil δ15N was under agriculture and the smallest under woodland. The abundance of 15N in inner-urban soil and plants was intermediate between those of agriculture and forests. This study represents a major advance in the use of stable isotope geochemistry in understanding urban environments.  相似文献   

18.
The increasing global demand for food production, often causing excessive use of chemical fertilizers, has led to the deterioration of soil health. Immediate action is required to restore soil health in a sustainable manner. This review advocates switching to use of organic matter(manure and compost) that contains vital nutrients for plant growth and helps restore soil health. Humic substances(HSs), derived from degraded plant remains and found ubiquitously in nature,are an important source of o...  相似文献   

19.
Inoculants are of great importance in sustainable and/or organic agriculture. In the present study, plant growth of barley (Hordeum vulgare) has been studied in sterile soil inoculated with four plant growth-promoting bacteria and mineral fertilizers at three different soil bulk densities and in three harvests of plants. Three bacterial species were isolated from the rhizosphere of barley and wheat. These bacteria fixed N2, dissolved P and significantly increased growth of barley seedlings. Available phosphate in soil was significantly increased by seed inoculation of Bacillus M-13 and Bacillus RC01. Total culturable bacteria, fungi and P-solubilizing bacteria count increased with time. Data suggest that seed inoculation of barley with Bacillus RC01, Bacillus RC02, Bacillus RC03 and Bacillus M-13 increased root weight by 16.7, 12.5, 8.9 and 12.5% as compared to the control (without bacteria inoculation and mineral fertilizers) and shoot weight by 34.7, 34.7, 28.6 and 32.7%, respectively. Bacterial inoculation gave increases of 20.3–25.7% over the control as compared with 18.9 and 35.1% total biomass weight increases by P and NP application. The concentration of N and P in soil was decreased by increasing soil compaction. In contrast to macronutrients, the concentration of Fe, Cu and Mn was lower in plants grown in the loosest soil. Soil compaction induced a limitation in root and shoot growth that was reflected by a decrease in the microbial population and activity. Our results show that bacterial population was stimulated by the decrease in soil bulk density. The results suggest that the N2-fixing and P-solubilizing bacterial strains tested have a potential on plant growth activity of barley.  相似文献   

20.

Purpose

There have been a number of studies on the succession of vegetation; however, the succession of soil microbes and the collaborative relationships between microbes and vegetation during land restoration remain poorly understood. The objectives of this study were to characterize soil microbial succession and to explore the collaborative mechanisms between microbes and vegetation during the restoration of abandoned land through quantitative ecology methods.

Materials and methods

The present research was carried out in the succession of a 5-year abandoned land and its conversion to Hippophae rhamnoides shrubs, Larix principis-rupprechtii plantation, and a naturally regenerated forest (mixed forest). Soil bacterial, archaeal and fungal characteristics were tested by real-time quantitative PCR assays and terminal restriction fragment length polymorphism. The richness, diversity, and evenness indices were employed to analyze plant and microbial communities’ structure. The stability of plant and microbial communities was tested using Spearman’s rank correlation. The relationships between the regeneration scenarios and environmental factors were determined through canonical correspondence analysis.

Results and discussion

The aboveground biomass was significantly different among the sites. Soil bacterial, archaeal, and fungal rRNA gene abundances did not increase significantly with increasing soil organic carbon content. There were higher correlation coefficients between plant and total microbial communities on the richness, diversity, and evenness indices and ratios of positive to negative association compared to ones between plant and individual bacteria, archaea, and fungi. Soil bulk density, clay, pH, and litter were the primary significant environmental factors affecting the structure of plant and microbial communities. The positive relationships between plant and soil bacteria, fungi, and total microbe communities, as well as the negative relationships between plant and archaea, were demonstrated.

Conclusions

The results suggested that plants promote the growth of soil bacteria and fungi during the process of community succession on a small scale; however, plants inhibit the growth of soil archaea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号