首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Herpesviruses can establish a persistent infection in the cells and tissues of their natural hosts and thus may produce diseases due to cytolytic infections. We have isolated a herpesvirus from a bovine vascular endothelial cell culture after continuous subculturing. Typical cytopathic changes were observed in bovine endothelial cell cultures 2 days after inoculation of the virus. The virus had an icosahedral nucleocapsid of 100-150 nm in diameter and an envelope. The sequences of some DNA fragments of the virus were highly homologous to those of the bovine herpesvirus type 4 (BHV-4) strains. The DNA restriction maps of the virus and the reference strains of BHV-4, DN 599 and Movar 33/63 were very similar but not identical. Therefore, the newly isolated virus has been designated Taiwan strain. The presence of BHV-4 DNA in apparently normal bovine endothelial cell cultures was shown by Southern blot hybridization with the BamHI fragment of the newly isolated BHV-4 and was further confirmed by digestion of the DNA with BamHI plus AccI. In conclusion, we have demonstrated that BHV-4 persisted in the bovine endothelial cell cultures and continuous subcultures could lead to the production of infectious viral particles.  相似文献   

2.
A field strain (87-8363) of bovid herpesvirus-4 (BHV-4) isolated from an aborted bovine fetus was used to inoculate pregnant rabbits. Eleven rabbits in midgestation were alloted to 4 groups consisting of 3 infected groups and 1 control group. Rabbits were inoculated with BHV-4 or mock-infected cell culture preparations via IV, intravaginal, and intrauterine routes. Mild vulvovaginitis and endometritis were observed after intravaginal and IV inoculation of BHV-4, whereas intrauterine inoculation of BHV-4 resulted in abortion of hemorrhagic fetuses and nonsuppurative endometritis. Virus was successfully isolated from organ explants of fetal tissues. Rabbits seroconverted 1 week after infection as detected by results of an indirect immunofluorescence assay.  相似文献   

3.
OBJECTIVE: To determine whether a combination viral vaccine containing modified-live bovine herpesvirus-1 (BHV-1) would protect calves from infection with a recent field isolate of BHV-1. DESIGN: Randomized controlled trial. ANIMALS: Sixty 4- to 6-month-old beef calves. PROCEDURE: Calves were inoculated with a placebo 42 and 20 days prior to challenge (group 1; n = 10) or with the combination vaccine 42 and 20 days prior to challenge (group 2; 10), 146 and 126 days prior to challenge (group 3; 10), 117 and 96 days prior to challenge (group 4; 10), 86 and 65 days prior to challenge (group 5; 10), or 126 days prior to challenge (group 6; 10). All calves were challenged with BHV-1 via aerosol. Clinical signs, immune responses, and nasal shedding of virus were monitored for 14 days after challenge. RESULTS: Vaccination elicited increases in BHV-1-specific IgG antibody titers. Challenge with BHV-1 resulted in mild respiratory tract disease in all groups, but vaccinated calves had less severe signs of clinical disease. Extent and duration of nasal BHV-1 shedding following challenge was significantly lower in vaccinated calves than in control calves. In calves that received 2 doses of the vaccine, the degree of protection varied with the interval between the last vaccination and challenge, as evidenced by increases in risk of clinical signs and extent and duration of viral shedding. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that this combination vaccine provided protection from infection with virulent BHV-1 and significantly reduced nasal shedding of the virus for at least 126 days after vaccination.  相似文献   

4.
Venereal infection of bulls with bovine herpesvirus type 1.2 (BHV-1.2) may result in acute balanoposthitis followed by the establishment of latent infection, presumably in dorsal root nerve ganglia. We herein report the characterization of the acute and latent infection of young bulls with a Brazilian BHV-1.2 isolate and the investigation of neural and non-neural sites in which viral DNA persists during latent infection, i.e. 110 days after inoculation and 50 days after experimental reactivation. Intrapreputial inoculation of BHV-1.2 isolate SV-56/90 (10(6.5)pfu per animal) resulted in severe balanoposthitis, characterized by redness of the penis and preputial mucosa, coalescent vesicles and fibrinous exsudate in all four infected bulls. Virus shedding was detected in preputial secretions and semen up to days 14 and 13 pi, respectively. Dexamethasone administration at day 60 pi led to reactivation of the infection in all animals, resulting in virus shedding in preputial secretions and/or in semen. At day 50 post-reactivation (pr), the animals were euthanized and regional tissues were collected for PCR and virus isolation. Viral DNA was consistently detected in the dorsal root ganglia of nerves genito-femoral (4/4) and obturator (4/4); frequently in the pudendal (3/4), sciatic (3/4) and rectal caudal nerve ganglia (2/3). In addition, viral DNA was detected in the pelvic sympathetic plexus of one bull and in regional lymph nodes (deep inguinal (2/4); sacral (1/4); medial iliac (1/4)) of two bulls. No infectious virus could be recovered from homogenates of DNA positive tissues, indicating the absence of actively replicating virus. These results demonstrate that BHV-1.2 DNA may persist in several sacral nerve ganglia and in regional lymph nodes as well during latent infection, i.e. 50 days after experimental reactivation. These findings may help in understanding the pathogenesis of acute and latent genital infection by BHV-1.2.  相似文献   

5.
The biology of bovine herpesvirus-4 (BHV-4) infection of cattle is reviewed. The infection is distributed worldwide. Most of isolated viruses are non-pathogenic in cattle; some of them are able to produce a genital disease. Twenty-nine structural polypeptides were described; ten of them are glycosylated. Two major glycoproteins were characterized by monoclonal antibodies. Restriction maps of BHV-4 DNA are available for the enzymes EcoRI, BamHi and HindIII. The strain variations studied by restriction analysis are very weak. The virus is able to persist in a latent state after primary infection. The identified sites of latency are nervous ganglia and mononuclear blood cells. The immune response of cattle after BHV-4 infection is characterized by low or undetectable levels of neutralizing antibodies. Four envelope proteins are recognized by convalescent sera and are the main antigenic components. Skin test remains negative in immunized cattle. Bovine herpesvirus-4 is not strictly species-specific: infection was proved in American bison (Bison bison), African buffalo (Syncerus caffer), sheep and probably cat, because feline herpesvirus-2 is in fact a BHV-4 strain. Finally BHV-4 shares antigenic and genomic relationships with alcelaphine herpesvirus-1, the causal agent of the African form of malignant catarrhal fever.  相似文献   

6.
Latent infection with bovine herpesvirus type-5 (BHV-5) was established in rabbits inoculated with two South American isolates (EVI-88 and 613) by intranasal or conjunctival routes. Nine rabbits (613, 8/27; EVI-88, 1/34) developed neurological disease and died during acute infection and other three (613, n=2; EVI-88, n=1) developed a delayed neurological disease, at days 34, 41 and 56 post-inoculation (p.i.). Between days 56 and 62 p.i., the remaining rabbits were submitted to five daily administrations of dexamethasone (Dx) to reactivate the infection. Twenty-five out of 44 rabbits (56.8%) shed virus in nasal or ocular secretions after Dx treatment. Virus shedding was first detected at day two post-Dx and lasted from one to 11 days. The highest frequencies of virus reactivation were observed in rabbits inoculated conjunctivally (10/15 versus 15/29); and among rabbits infected with isolate 613 (12/16 versus 13/28). Virus reactivation upon Dx treatment was accompanied by neurological disease in nine rabbits (20.4%), resulting in six deaths (13.6%). Virus in moderate titers and mild to moderate non-suppurative inflammatory changes in the brain characterized the neurological infection. Three other rabbits showed severe neurological signs followed by death after 31 to 54 days of Dx treatment. Virus, viral nucleic acids and inflammatory changes were detected in their brains. The late-onset neurological disease, after acute infection or Dx treatment, was probably a consequence of spontaneous virus reactivation. These results demonstrate that BHV-5 does establish a latent infection in rabbits and that clinical recrudescence may occur upon reactivation.  相似文献   

7.
Five 13- to 18-month old Belgian Blue bulls were used in this experiment. Four bulls (Nos. 2, 3, 4 and 5) were inoculated intratesticularly with 10(5) plaque-forming units of bovine herpesvirus-4 (BHV-4) in each testicle (Day 0). The challenge BHV-4 strain was previously isolated from testicle cells of a bull exhibiting orchitis and azoospermia. The fifth bull (No. 1) was used as a control and received the same volume of uninfected cell culture supernatant. For 5 days, beginning on Day 51 post-infection, two bulls (Nos. 4 and 5) and the control bull (No. 1) received 0.1 mg kg-1 of dexamethasone. Unilateral castrations were then performed at regular intervals for viral examination. Treatment with dexamethasone reactivated latent BHV-4, but no clinical signs were observed in treated bulls until the end of the experiment (Day 93). Only Bull 3 showed conjunctivitis and temporary azoospermia. The virus was recovered from various samples showing that: (i) BHV-4 can be present in a latent state in the testicles and mononuclear blood cells; (ii) dexamethasone reactivates the virus; (iii) the virus is excreted by nasal and ocular routes. Each infected bull seroconverted and a booster antibody response appeared after dexamethasone treatment as shown by immunofluorescence. Neutralizing antibodies were detected in each bull by complement-dependent neutralization test with titres higher than those obtained by a classical neutralization test. No booster response of neutralizing antibodies was observed after dexamethasone treatment. The antigenically relevant envelope BHV-4 proteins were identified by Western blotting using sera samples from the animals. DNA restriction endonuclease profiles of viruses reisolated after primary infection and reactivation showed only small differences.  相似文献   

8.
We demonstrated that sheep are susceptible to acute and latent infection by bovine herpesvirus type-5 (BHV-5). Lambs inoculated intranasally with two South American BHV-5 isolates replicated the virus with titers up to 10(7.1) TCID50/ml for up to 15 days and showed mild signs of rhinitis. Four lambs in contact with the inoculated animals acquired the infection and excreted virus for up to seven days. One lamb developed progressive signs of neurological disease and was euthanized in extremis. Clinical signs consisted of tremors of the face, bruxism, ptyalism, incoordination, lateral flexion of the neck and head, circling, walking backwards, recumbency and paddling. The virus was detected in the anterior and posterior cerebrum, dorso- and ventro-lateral cortex, cerebellum, pons, midbrain and olfactory bulb. Viral nucleic acids were demonstrated in neurons and astrocytes of the anterior and ventro-lateral cortex by in situ hybridization. Histological changes consisting of non-suppurative meningitis, perivascular mononuclear cuffing, focal gliosis, neuronal necrosis and intranuclear inclusions were observed in the anterior cerebrum, ventro-lateral cortex and midbrain. Dexamethasone treatment at Day 50 pi resulted in reactivation of the latent infection and virus shedding in 13/16 (81%) of the lambs. Together with previous reports of BHV-5 antibodies in sheep, these findings show that sheep are fully susceptible to BHV-5 suggesting that infection by BHV-5 in sheep may occur naturally.  相似文献   

9.
Two calves were inoculated intravaginally with a strain of bovid herpesvirus type 1 (BHV-1, IBR/IPV) isolated from a cow with infectious pustular vulvovaginits (IPV). The animals were killed during a latent stage of infection as characterized by seroconversion, absence of virus shedding and recrudescence of virus shedding after dexamethsone treatment.IPV-virus DNA was detected in 9 out of 20 sacral ganglia of the 2 calves. Of the sections, 7.2% (n = 250) contained 1 cell with IPV-virus DNA, which was restricted to the nucleus of neurons. In agreement with findings on herpes simplex virus infections, the viral DNA of BHV-1 is harbored in the local sensory ganglia.Virological and serological implications of the latent IPV infection are discussed.  相似文献   

10.
A serological comparison of some animal herpesviruses   总被引:3,自引:0,他引:3  
Bovine herpesvirus 1 (BHV-1) isolates (Cooper-type strain 4975 and Oxford) were compared in neutralization tests with the bovine herpesvirus 4 (BHV-4) isolate (85/16 TV) and the herpesviruses of red deer (D2839/1) and goats (E/CH). Hyperimmune antiserum was prepared in rabbits against the plaque-selected viruses and endpoint and kinetic neutralization test were made. BHV-4 was clearly different from the other four viruses. The closely-related BHV-1 strains were also related in these tests to the red deer herpesvirus. The Oxford strain seemed rather closer antigenically than the Cooper-type strain to the red deer herpesvirus. Antiserum to the caprine herpesvirus failed to neutralize either BHV-1 strain or red deer virus, but antiserum to the Cooper-type and red deer herpesviruses did neutralize caprine virus to a limited extent.  相似文献   

11.
A herpesvirus was isolated from tumours of the ethmoidal mucosa in two of three head of cattle in the State of Kerala, India. The virus designated M40 was cytopathic for a variety of cultured bovine and porcine cells and it did not kill suckling mice or chicken embryos. Sera from tumour-bearing cattle and goats reacted with the M40 virus. Immunofluorescence tests with FITC-conjugated IgG from a bovine monospecific antiserum to bovine herpesvirus 4 (BHV-4) stained the M40 virus specific antigen in infected cells. Experimental infection of goats with the M40 virus did not result in development of tumours. This virus is therefore considered to represent a "passenger" virus. A great similarity was found between restriction patterns of DNAs extracted from M40 virus and the strain 66-P-347, a reference strain of the BHV-4 group.  相似文献   

12.
A study was carried out to determine whether bovid herpesvirus-2 (BHV-2) is able to induce a recurrent infection in experimentally infected calves. Twelve calves infected with the virus were treated with dexamethasone (DMS) beginning 69 days after the infection, ie, several weeks after the animals had recovered from the disease and were negative for BHV-2. The stress induced by DMS treatment failed to reactivate the clinical condition or to induce shedding of BHV-2. However, treatment with DMS reactivated a latent infectious bovine rhinotracheitis (IBR) virus infection in all calves previously inoculated with BHV-2, and also in 2 noninoculated controls. The reactivation of IBR virus occurred without any clinical evidence of the disease, but the virus was isolated from nasal and pharyngeal swabbings and from the organs. A proliferative ganglionitis of the trigeminal ganglion was also observed. Because of the interference by IBR virus, this study did not resolve the question as to whether BHV-2 can induce a recurrent infection.  相似文献   

13.
A nested polymerase chain reaction (PCR) assay was developed for the detection of bovine herpesvirus 1 (BHV-1) in bovine semen and compared with the virus isolation method. When extended semen, commonly used in the bovine artificial insemination industry, was inoculated with BHV-1, the PCR assay detected BHV-1 DNA in semen inoculated at 0.25-2.5 TCID50 per 0.5 mL. In contrast, the lower limit of detection for virus isolation was 250 TCID50 of BHV-1 inoculated in 0.5 mL of extended semen. These methods were also used to detect BHV-1 in the semen of four bulls which were experimentally infected with BHV-1. All infected bulls demonstrated balanitis at 3 d post-inoculation (DPI) and severe balanoposthitis at 4 DPI. BHV-1 was detected in raw semen by virus isolation and PCR at 2 DPI, before balanitis was evident. For virus isolation, the last day that BHV-1 was detected during primary infection was 7 DPI for two bulls and 9 and 11 DPI for the other two bulls. In contrast, PCR detected BHV-1 in the bulls' semen until 14 or 18 DPI. For individual animals, PCR detected BHV-1 during primary infection for at least 1-10 d longer than virus isolation. Reactivation of BHV-1 from latency without the presence of visible lesions was promoted twice by two series of 5 d dexamethasone injections. For the first series of dexamethasone treatments, a positive virus isolation result was obtained on the 5th d of treatment for only one bull. In contrast, two bulls demonstrated evidence of viral reactivation on this day by PCR. All bulls shed BHV-1 in semen on d 4 after dexamethasone treatment, as evidenced by positive virus isolation and PCR results. One bull was still PCR positive 13 d later. For the second series of dexamethasone treatments, a small amount of virus was isolated from semen collected on d 3 or 4 after treatment for two bulls but not from the other two bulls. In contrast, semen samples from all bulls were PCR positive for either or both of these 2 d. In total, from 80 semen samples, 45 were PCR positive and 26 were virus isolation positive. Thus, the PCR assay detected BHV-1 shedding in bulls earlier, more often, and for a longer duration, than did the virus isolation method.  相似文献   

14.
Twelve calves infected with bovine herpesvirus type 1 (BHV-1) were killed when in a latent state of infection. Latency was verified 30 days after virus inoculation of the calves by seroconversion, absence of virus shedding, and in 2 calves, by recrudescence of the infection after they were treated with dexamethasone. By in situ hybridization techniques and autoradiography, DNA of BHV-1 was detected in 13 of 23 trigeminal ganglia of latently infected calves. Viral DNA was restricted to the nucleus of nerve cells. Single neurons harboring BHV-1 DNA were observed in 4.9% of the sections (n = 325) of the trigeminal ganglia. The results obtained correspond to those known from herpes simplex virus infections in mice. The implications for the virus-host relationship are discussed.  相似文献   

15.
Latent bovine herpesvirus-1 (BHV-1) infection was established in 6 calves and was demonstrated by reinduction of virus shedding after administration of corticosteroids. Latently infected calves failed to transmit BHV-1 during 4 weeks' contact with sentinel calves. Infected calves were killed and necropsied during latency or induced recrudescence. The BHV-1 DNA was demonstrated intranuclearly in trigeminal ganglion neurons by in situ hybridization. The BHV-1 antigen was demonstrated by immunofluorescence in trigeminal ganglion neurons during recrudescence. By electron microscopy, changes in the appearance of the Nissl bodies and a high frequency of nuclear bodies were observed in trigeminal ganglion neurons.  相似文献   

16.
The objective of this study was to verify whether a mixed infection in calves with bovine viral diarrhea virus (BVDV) and other bovine viruses, such as bovid herpesvirus-4 (BHV-4), parainfluenza-3 (PI-3) and infectious bovine rhinotracheitis (IBR) virus, would influence the pathogenesis of the BVDV infection sufficiently to result in the typical form of mucosal disease being produced.

Accordingly, two experiments were undertaken. In one experiment calves were first infected with BVDV and subsequently with BHV-4 and IBR virus, respectively. The second experiment consisted in a simultaneous infection of calves with BVDV and PI-3 virus or BVDV and IBR virus.

From the first experiment it seems that BVDV infection can be reactivated in calves by BHV-4 and IBR virus. Evidence of this is that BVDV, at least the cytopathic (CP) strain, was recovered from calves following superinfection. Moreover, following such superinfection the calves showed signs which could most likely be ascribed to the pathogenetic activity of BVDV. Superinfection, especially by IBR virus, created a more severe clinical response in calves that were initially infected with CP BVDV, than in those previously given the non-cytopathic (NCP) biotype of the virus. Simultaneous infection with PI-3 virus did not seem to modify to any significant extent the pathogenesis of the experimentally induced BVDV infection whereas a severe clinical response was observed in calves when simultaneous infection was made with BVDV and IBR virus.  相似文献   


17.
Bovine respiratory disease complex (BRDC) is the major cause of serious respiratory tract infections in calves. The disease is multifactorial, with either stress or reduced immunity allowing several pathogens to emerge. We investigated the susceptibility of bovine airway epithelial cells (BAEC) to infection by the three major viruses associated with the BRDC: bovine respiratory syncytial virus (BRSV), bovine herpesvirus type 1 (BHV-1) and bovine parainfluenza virus type 3 (BPIV3). For this purpose, two culture systems for well-differentiated BAEC were used: the air-liquid interface (ALI) system, where filter-grown BAEC differentiate into a pseudostratified respiratory epithelium and precision-cut lung slices (PCLS) where BAEC are maintained in the original tissue organisation. Comparative infection studies demonstrated that entry and release of BPIV3 occurred specifically via the apical membrane with ciliated cells being the major target cells. By contrast, airway epithelial cells were largely resistant to infection by BHV-1. When the epithelial barrier was abolished by opening tight junctions or by injuring the cell monolayer, BHV-1 infected mainly basal cells. Respiratory epithelial cells were also refractory to infection by BRSV. However, this virus infected neither differentiated epithelial cells nor basal cells when the integrity of the epithelial barrier was destroyed. In contrast to cells of the airway epithelium, subepithelial cells were susceptible to infection by BRSV. Altogether, these results indicate that the three viruses of the same disease complex follow different strategies to interact with the airway epithelium. Possible entry mechanisms are discussed.  相似文献   

18.
The in vivo administration of bovine recombinant interleukin-2 (rIL-2) was evaluated in calves vaccinated and then challenged with bovine herpesvirus-1 (BHV-1). In Experiment 1, 24 calves were allotted to four groups: control; bovine rIL-2; BHV-1 vaccine (modified-live); and bovine rIL-2 + BHV-1 vaccine. Serum neutralizing antibody titers to BHV-1 were increased sixfold, and virus shedding was fourfold less in calves vaccinated and treated with rIL-2 (25 micrograms/kg, intramuscularly) when compared to calves that received vaccine only. Treatment with rIL-2 induced lymphokine-activated killer activity that was eliminated by pretreating effector cells with complement and a monoclonal antibody (B26A) specific for the sheep red blood cell receptor. The rIL-2 treatment in BHV-1-vaccinated calves increased the calves' ability to withstand a BHV-1 challenge. However, during treatment with rIL-2, calves developed diarrhea and mild fever that abated after IL-2 treatment was stopped. A second experiment was then conducted to determine a dose of rIL-2 that would enhance immunity to BHV-1 without causing adverse side effects. Twenty-five calves were allotted to five groups that received injections of rIL-2 at 0.0, 25.0, 2.5, 0.25, or 0.025 micrograms kg-1 day-1 for 5 days. All calves received a modified-live BHV-1 vaccine. Calves treated with 25.0 micrograms kg-1 day-1 showed similar adverse side effects as in the first experiment but all other calves were normal. Compared to control calves, those treated with 25.0, 2.5, and 0.25 micrograms kg-1 day-1 of rIL-2 had higher (P less than 0.05) serum antibody titers to BHV-1 and following challenge lower (P less than 0.05) BHV-1 titers in nasal secretions; additionally, clinical disease as evidenced by nasal and ocular discharge was less severe (P less than 0.05). In vitro cytotoxic responses against BHV-1-infected bovine kidney cells were increased (P less than 0.05) in calves treated with rIL-2 in a dose dependent manner. These data suggest that bovine rIL-2 at 2.5 to 0.25 micrograms/kg may be an effective adjuvant to immunization.  相似文献   

19.
Evolution of sensitizing antibodies involved in antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-complement cell lysis and complement-facilitated ADCC was followed in bulls after primary infection by a wild strain of infectious bovine rhinotracheitis virus (bovine herpesvirus 1; BHV-1) and after experimental reactivation of the virus. These antibodies were detected between the 4th and the 7th day after primary infection, reached a maximum level after 2 weeks and rose slightly after reactivation of the virus following dexamethasone treatment. The presence of endogenous complement slightly enhanced the ADCC reaction.  相似文献   

20.
OBJECTIVE: To construct and characterize a recombinant glycoprotein (g)E gene-deleted bovine herpesvirus (BHV) type 1 (BHV-1). PROCEDURE: The BHV-1 gEgene-coding region and the flanking upstream and downstream sequences were cloned. The aforementioned cloned DNA was digested with suitable enzymes to release the amino terminal two thirds of that region, and was ligated to the beta-galactosidase (beta-gal) gene. The resulting plasmid DNA was cotransfected with DNA from full-length, wild-type (WT), BHV-1 Cooper strain of the virus. Recombinant viruses expressing beta-gal (blue plaques) were plaque purified and assayed further by blot hybridization for genetic characterization and by immunoblotting for reactivity against BHV-1 gE peptide-specific rabbit polyclonal antibody. One recombinant virus, gEdelta3.1IBR, was characterized in vitro and in vivo. The ability of the recombinant virus to induce BHV-1 neutralizing antibodies in infected calves was investigated by plaque-reduction tests. RESULTS AND CONCLUSIONS: The gEdelta3.1IBR virus contained a deletion in the viral gE gene-coding sequences where a stable chimeric reporter (beta-gal) gene was inserted. One-step growth kinetics and virus yield of the recombinant and parent viruses were similar, but early after infection, the recombinant virus yield was comparatively less. After intranasal inoculation, the recombinant gEdelta3.1IBR virus replicated in the upper respiratory tract of calves, but the amount of progeny viruses produced was hundredsfold reduced, and duration of virus shedding was shorter. Results of in vivo calf experiments and serum neutralization tests indicated that deleting the gE gene has little effect on inducing neutralizing antibodies against BHV-1, but is sufficient to reduce BHV-1 virulence in calves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号