首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 62 毫秒
1.
为确保泾惠渠灌区水环境安全及地下水资源的可持续开发利用,该文通过对20世纪80年代以来泾惠渠灌区地表水和地下水环境劣变特征分析,重点指出了灌区地下水环境劣变的严重性,同时也证实了对地下水实施涵养调蓄的必要性。从取水条件、地下库容、蓄水水源和蓄水方式4个方面论证了灌区具备良好地下水调蓄能力,并利用体积疏干法对灌区各测站的地下调蓄库容进行计算,确定出灌区最大调蓄库容达6.46亿m3,年调蓄库容0.281亿m3。提出对灌区春、夏两季适当加大地表灌溉力度,并针对调蓄空间较大的石桥、泾阳等站进行优先调蓄,实现灌区“以井补渠,以渠养井”,即涵养了当地地下水资源,又有利于灌区水资源的可持续利用,最终保障了灌区的生态环境及粮食安全。  相似文献   

2.
利用地下水模型模拟分析灌区适宜井渠灌水比例   总被引:1,自引:6,他引:1  
为了获取泾惠渠灌区适宜井渠灌水比例,科学合理地确定农业节水方案,该文综合应用ArcGIS和PMWIN地下水模拟软件建立了灌区的地下水分布模拟模型,根据灌区历年农业用水实际情况设定了10种灌溉情景模拟灌区地下水位的变化趋势,通过地下水模型分析研究了灌区井渠灌水比例。利用VB程序语言改写EVT蒸发蒸腾子程序包,使其能模拟非线性蒸发,潜水蒸发量计算精度得到较大改进。研究表明:1)渠首有效灌溉引水量在3.7~4.1亿m3,井渠灌水比例控制在0.35~0.55,基本可以保持灌区地下水采补平衡;2)渠首有效灌溉引水量在1.5~2.0亿m3,井渠灌水比例控制在0.5~0.7,也能实现灌区地下水采补平衡;3)目前井渠灌水比例在0.9~1.2,已引起灌区地下水超采。建议井渠灌水比例控制在0.5~0.7,加大农业节水力度、增加水价财政补贴、进行地下水人工调蓄,实现灌区水资源高效持续利用。  相似文献   

3.
针对传统灌区生态环境评价存在的指标固定和适应性较弱等不足,将信息化技术应用到评价中,提出基于主题服务的灌区生态环境动态评价模式。针对灌区生态环境问题确定评价主题,建立基于主题服务的灌区生态环境动态评价流程,构建评价指标库,对评价方法进行组件化。根据评价主题从灌区生态环境评价指标库中筛选合适的评价指标,通过对指标的优选建立针对特定评价主题的评价指标体系。基于综合集成平台绘制评价主题知识图,搭建灌区生态环境动态评价系统。根据灌区生态环境评价主题的特征和建立的评价指标体系,确定评价方法。从评价方法组件库中调用相应组件对不同主题下评价指标进行计算,实现对灌区生态环境的动态主题评价。以陕西省泾惠渠灌区为例开展实证研究,首先,根据灌区调研情况和管理部门的关注点,结合专家意见,确定4类评价主题,包括:生态环境影响要素主题、资源利用水平主题、工程保障能力主题和可持续性主题。基于综合集成平台开展动态评价,结果发现:2009年和2014年灌区生态环境介于等级"良"和"一般"之间,且2014年相对于2009年灌区生态环境状况有所下降;1997年至2014年灌区资源利用水平逐年提高,各评价指标逐年向良性发展;2014年灌区工程保障能力为"一般",且偏向"良好";2014年灌区可持续性评价结果等级为"良"。结果表明:基于主题服务模式能快速、多角度实现对灌区生态环境的动态评价,结果更为可信,相比传统评价方法更有优势。引入信息化手段,在综合集成平台上实现基于主题服务的灌区生态环境动态评价,研究结果对促进灌区生态环境健康发展和灌区生态文明建设具有重要意义。  相似文献   

4.
耦合地下水模拟的渠井灌区水资源时空优化配置   总被引:1,自引:4,他引:1  
为控制渠井灌区地下水位,合理确定地表水和地下水的分配方案,构建水资源时空优化与地下水数值模拟耦合的模型体系。以灌区缺水量最小、时段缺水率均衡和渠系单元缺水均衡为原则建立灌区地表水地下水联合利用的时间和空间优化模型,分别采用人工鱼群算法和粒子群算法求解,以优化的地表水供水量和地下水开采量为耦合变量,作为地下水模拟模型的输入,以丰、平、枯水年地下水位变幅之和最小为模拟目标,获得不同水文年地表水地下水的时空优化配置方案。泾惠渠灌区优化结果表明,丰水年和平水年不缺水,枯水年在2020年和2030年灌溉缺水分别为4 489万m3和3 941万m3,主要分布在12月、3月、6月、7月、8月。2020年丰、平、枯水年灌区平均地下水位变幅分别为0.49、0.06、-0.42 m,2030年丰、平、枯水年灌区平均地下水位变幅分别为0.21、-0.08、-0.26 m,基本上实现多年采补平衡。耦合地下水模拟的水资源时空优化配置方法,是渠井灌区实现水资源合理利用和生态健康的有效途径。  相似文献   

5.
再生水灌区地下水防污性能区划模型的建立与验证   总被引:2,自引:0,他引:2  
为促进地下水水资源保护和利用,根据研究区域的特点以及地下水防污性能的影响因素,基于DRASTIC模型,选用以下6个因子:地下水水位埋深、降雨入渗补给量、表层土壤类型、包气带岩性、含水水力传导度以及土地利用类型建立了再生水灌区地下水特殊防污性能区划模型。采用地理信息系统GIS技术和内梅罗指数法,绘制研究区域地下水综合污染指数分布空间图,并且探讨了防污性能区划的验证方法以及等级划分标准。结果表明:地下水综合污染指数与研究区域的防污性能具有很好的相关性(R2=0.9591),采用DRASTIC模型评价地下水特殊防污性能是可行的,可为再生水灌区地下水的保护以及利用规划提供重要借鉴。  相似文献   

6.
内蒙古河套灌区地下水合理利用的方案分析   总被引:7,自引:3,他引:7  
内蒙古河套灌区地下水位浅,合理利用地下水可以减少灌区引黄水量,保证黄河下游用水。根据灌区实际情况,制定了灌区地下水利用原则,提出了地下水插花开采形式,并计算了开采条件下的地下水补给量,分析了引黄水量、地下水开采量及地下水位的关系,在“三亩补一亩”的开采条件下,地下水开采量以1 100~1 500 m3/hm2为宜。地下水合理开采可缓解灌区水资源紧张局面,对河套灌区水资源可持续开发利用具有重要意义。  相似文献   

7.
基于排队理论的灌区渠系地表水及地下水优化配置模型   总被引:1,自引:1,他引:1  
地表水和地下水联合运用于农业灌溉是中国大部分灌区主要采用的灌溉形式,但目前的优化模型对地下水的运用情况过于简化,常采用定值作为优化模型的参数,所以不能真实反映地下水随时间对灌溉面积的影响。该文基于排队理论,研究分析了地下水灌溉的农田面积随等待地表水灌溉的历时的影响,并建立灌区渠系优化配水模型,以灌水历时最短为目标,根据渠首引水、渠系供水、作物用水等方面的用水关系建立约束条件。通过河北石津灌区的实际应用,说明模型方法的可行性,并提出该灌区5条主要干渠的合理优化配水方案。结果显示最优的灌溉历时为25.6 d;干渠B1的灌水周期贯穿了大部分灌水周期,是影响整个系统灌溉效率的关键渠道;子区C5分配的地下水资源较多,该子区的地下水灌溉面积占到了43%。该模型可更加真实地反映用于灌溉的地下水水量随时间变化的不确定性,能够为中国大部分地区建立地表水和地下水联合灌溉优化模型提供方法上的借鉴。  相似文献   

8.
排水循环灌溉可补充灌溉和减少涝水排放,具有缓解南方稻区旱涝急转和农业面源污染危害的潜力,但仍无有效的模型来模拟排水循环灌溉驱动下的水文过程。为此采用penman-monteith公式和作物系数法并考虑稻田渗漏与降雨有效性条件下应用水量平衡估算水稻灌溉需水量,改进SCS(soil conservation service)模型估算排水量,再以塘堰为对象建立调蓄排水和灌溉需水的水平衡演算模型。在漳河水库灌区应用该模型发现,水稻种植区存在大量的排水可供灌溉利用,而排水循环灌溉利用量受灌排面积比、塘堰容积率和塘堰初始蓄水率的影响;提高灌排面积比和塘堰容积率能明显提高补充灌溉率和排水再利用率,当两者达到一定值时补充灌溉率和排水再利用率便稳定在最高值,补充灌溉率高达20%;补充灌溉率随塘堰初始蓄水率的增加而缓慢增至20%,排水再利用率先随初始蓄水率的增加而稳定不变,随后逐渐降低。排水循环灌溉驱动的水循环模型为合理匹配排水循环灌溉的塘堰或排灌规模提供有效方法。  相似文献   

9.
引黄灌区水资源联合利用耦合模型   总被引:3,自引:6,他引:3  
随着引黄水量日益减少,如何有效利用有限的地表水和地下水,成为内蒙河套灌区亟待解决的问题。该文以引黄水量最小和地下水开采量最大为目标,以控制各用水区地下水位在适宜范围作为约束条件,通过动态耦合地下水模拟模型与地表地下水联合利用优化模型,建立了灌区水资源联合利用耦合模型,最后应用此耦合模型对灌区2020和2030年的引黄水和地下水进行了优化分配。结果表明:通过合理调整产业结构和有效利用地表地下水,灌区2020和2030年的引黄水量分别为39.15、38.54亿m3/a,可以达到国家规定的40亿m3/a指标。研究成果可为黄河流域乃至全国其它干旱灌区的水资源高效利用、盐碱化防治等方面提供借鉴和参考。  相似文献   

10.
洛惠渠灌区地下水电导率时间稳定性分析   总被引:1,自引:0,他引:1  
土壤盐渍化是当前世界农业发展的重要制约因素,研究地下水电导率的时空变化特征对灌区地下水农业灌溉具有重要指导意义。该研究基于2004-2010年对洛惠渠灌区3个阶地51个观测井地下水电导率的长序列监测结果,利用相对差分法、Spearman秩相关系数法和Morlet小波变换的方法分析了研究区地下水电导率的时间稳定性和周期性特征。结果表明:3个阶地在不同监测时间的电导率平均值均表现为阶地3(海拔369~388 m)阶地1(海拔342~360 m)阶地2(海拔360~369 m),且各阶地间地下水电导率的平均值均存在极显著差异(P0.01)。3个阶地在不同时间的地下水电导率均属于中等变异,变异系数的范围为44%~75%。井点地下水电导率的时间稳定性强弱与其所在阶地关系不大,不同阶地的地下水电导率均表现出强烈的时间稳定性。阶地1、阶地2和阶地3的地下水电导率代表性位置点分别为40#、38#和45#井点;而整个研究区的地下水电导率代表性位置点为2#井点。基于对36#(高电导率)和43#(低电导率)井点地下水电导率和水位的小波分析表明研究区地下水电导率和水位存在周期性变化。结果表明,洛惠渠灌区地下水电导率具有很强的时间稳定性和周期性,可以利用地下水电导率代表性位置点来监测研究区地下水平均电导率的变化,从而为灌区快速准确地确定灌溉时间以降低土壤盐渍化风险提供一定的参考。  相似文献   

11.
红崖山灌区机井空间布局适宜性评价   总被引:1,自引:3,他引:1  
灌区机井空间布局的适宜性评价对于地下水的合理开采与机井的布局优化具有重要作用。该文选择石羊河流域红崖山灌区为研究区,提取土地资源利用类型、地下水埋深、含水层厚度、单井出水量和地下水矿化度等影响因素作为机井空间布局的适宜性评价指标,根据影响因子属性的空间变异性,将灌区划分为366个评价单元,并采用熵权法确定各指标的权值和区域的综合评价值。结果表明,红崖山灌区机井的空间布局受地下水埋深和单井出水量的影响较大;研究区不适宜、不太适宜、一般、较适宜和适宜布井的面积比例分别为19.33%、24.33%、46.61%、7.33%和2.40%,较适宜和适宜布井的面积比例较小。研究结果为灌区机井空间布局提供了一定的理论依据。  相似文献   

12.
Obtaining high crop yields with limited water consumption requires optimal irrigation strategies based on comprehensive studies of the parameters of plant–environment interactions. Here, we used a structural equation modelling (SEM) to assess the relationships among input irrigation factors and moderate factors to find an optimum water use efficiency (WUE) response factor, for outdoor and greenhouse cultivation of eggplant (Solanum melongena). The input irrigation factors (including irrigation interval, water salinity and environment) and the moderate factors (evapotranspiration, soil salinity, plant parameters, fruit parameters and crop yield) were used in water cycle algorithm (WCA) and genetic algorithm (GA) methods to optimize the water use efficiency. The optimization process included finding the best combination of irrigation factors and optimized eggplant cultivation. The structural equation modelling results indicate that irrigation interval negatively affected water use efficiency with a more dominant effect on plant parameters. Water salinity negatively affected the water use efficiency with a more dominant effect on soil salinity, crop yield and fruit parameters. Low salinity water was more effective than full irrigation to optimize the water use efficiency. The water cycle algorithm revealed that for outdoor cultivation, the optimal range of irrigation interval was 2–5 days and water salinity in the range of 0.8–2.2 ds/m. These factors optimized evapotranspiration (346.23–738.19 mm), soil salinity (4.16–9.45 ds/m), fruit parameters (33.81–35.12 cm) and crop yield (1715.7–2190.8 g/plant), as well as increasing the water use efficiency (3.08–4.89 g/(plant-mm)). Both the water cycle algorithm and genetic algorithm yielded very close to optimal values. Two years of repeated experiments and the closeness of the optimal values using the algorithms confirmed that the optimal amounts are reliable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号