首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relations between pH, different fractions of Fe and A1 and Na4P2O7-soluble C and the amount of adsorbed SO2-4 were assessed by analysing 63 soil samples from 14 podsolized soils in Sweden. The amount of adsorbed SO2-4 was significantly better correlated with the calculated amount of the inorganic fraction of Fe and A1 oxides obtained by subtracting Na4P2O7-soluble Fe and A1 from oxalate-soluble Fe and Al than with the oxalate extraction alone. There was a close correlation between C and organically-bound S in the Na4P2O7 extract which shows that the C:S ratio of the extracted fulvic acids is about constant in the soils studied. It was found that, as the proportion of organically-complexed Fe and Al increases, the ability of the soil to adsorb SO2-4 decreases. The amount of adsorbed SO2-4 expressed on the basis of the amounts of oxalate-soluble Fe and Al was generally smaller in areas with low S deposition (< 60 mmol m-2 a-1). The ratio between pyrophosphate-soluble C and oxalate-extractable Fe and Al was negatively correlated with pH in water. It was concluded that Fe and Al associated with organic matter cannot adsorb SO2-4 and that the degree of this association is pH dependent. These observations have important implications regarding the effects of anthropogenic acidification.  相似文献   

2.
Phosphogypsum (PG), an industrial by-product from phosphoric acid plants, is being used as an ameliorant for acid soil infertility. Phosphogypsum is primarily CaSO4 and contains F among several impurities. An increase in SO4 2– and F ligands in soil solutions following amendment with PG is important for the alleviation of Al toxicity. In soil solutions containing abundant SO4 2– and F, a measure of Al that is not complexed with either of the ligands represents phytotoxic Al. Alleviation of Al toxicity by SO4 2– in some instances is due to SO4 2–-induced precipitation and/or sorption of Al. Some studies have demonstrated a decrease in Al toxicity by SO4 2– even though precipitation of Al was not evident.In such cases, formation of the Al-SO4 + ion-pair (predicted by speciation models) has been attributed as the reason for alleviation of Al toxicity. Recent evidence has indicated that the proportion of Al complexed with SO4 2– was much greater than that predicted by using speciation models, which suggests that alleviation is not fully attributable to the formation of AlSO4 + species. The existing colorimetric Al assay techniques have failed to discriminate Al complexed with SO4 2– and have therefore, proved to be unsuitable for determination of phytotoxic Al in solutions containing SO4 2–. Fractionation of Al complexed with SO4 2– by size exclusion chromatography (SEC) has permitted a more precise characterization of Al complexed with SO4 2– which has been demonstrated as less phytotoxic than the uncomplexed Al. Therefore, size exclusion chromatography is a promising technique for characterization of phytotoxic Al in solutions in the presence of SO4 2–. In solutions containing F, alleviation of Al toxicity is due to formation of Al-F complexes which are less phytotoxic. The 8-hydroxyquinoline method with a 15 second reaction time excludes Al-F complexes and, therefore is a measure of phytotoxic Al in solutions containing F.  相似文献   

3.
Cores of podzolic soil (monolith lysimeters) were treated for 4.8 yr with 1500 mm yr?1 of either 0.5 mM H2SO4 at pH 3, equivalent to 24 g S m?2 yr?1 (acid treated) or distilled water (controls). The acid treatment was about 37 times greater than the average annual input of H3O+ from rain at the site from which the monoliths were taken. Acid treatment acidified the litter (from pH(CaCl2)3.4 to pH(CaCl2)2.6) and the mineral soil to a depth of 80 cm (mean pH(CaCl2) decrease of 0.2 unit). In the litter and upper A horizon, ion-exchange reactions provided the main neutralizing mechanism, resulting in a decrease in the reserves of extractable (in 2.5 % acetic acid) Ca, Mg, and Mn of about 70 to 80 %. Dissolution of solid phase Al from hydrous oxides provided most neutralization below this depth. Al3+ was the principal soluble Al species throughout the profile. In the litter and upper A horizon, some of the mobilized Al3+ was retained on cation exchange sites resulting in an increase in exchangeable Al. Deeper in the profile, where the exchange sites were effectively saturated with Al3+, no increase in exchangeable Al occurred, and Al3+ was, therefore, available for leaching. Some reversible adsorption of SO4 2?, associated with hydrous Al oxides, occurred in the Bs and C horizons. The results are discussed in relation to possible effects of acid deposition over regions of Europe and N. America.  相似文献   

4.
To investigate the potential of synchrotron‐based X‐ray Absorption Near‐Edge Structure spectroscopy (XANES) at the sulphur (S) K‐edge for a discrimination of adsorbed and precipitated sulphate in soils and soil particles, XANES spectra of ionic sulphate compounds and Al/Fe hydroxy sulphate minerals were compared with spectra of SO42? adsorbed to ferrihydrite, goethite, haematite, gibbsite or allophane. Ionic sulphate and hydroxy sulphate precipitates had broader white‐lines (WL) at 2482.5 eV (full width at half maximum (FWHM) of edge‐normalized spectra, 2.4–4.2 eV; Al hydroxy sulphates, 3.0 eV) than SO42? adsorbed to Al/Fe oxyhydroxides or allophane (FWHM, 1.8–2.4 eV). The ratio of the white‐line (WL) height to the height of the post‐edge feature at 2499 eV (WL/PEF) was larger for SO42? adsorbed to Al/Fe oxyhydroxides or allophane (8.1–11.9) than for Al/Fe hydroxy sulphates and ionic sulphates (3.9–5.7). The WL/PEF ratio of edge‐normalized S K‐edge XANES spectra can be used to distinguish adsorbed from precipitated SO42? in soils and also at microsites of soil particles. The contribution of adsorbed and precipitated SO42? to the total SO42? pool can be roughly quantified. Adsorbed ester sulphate may result in overestimation of precipitated SO42?. The spectra of most soils could be fitted by linear combination fitting (LCF), yielding a similar partitioning between adsorbed and precipitated SO42? as an evaluation of the WL/PEF ratio. The SO42? pool of German forest soils on silicate parent material in most cases was strongly dominated by adsorbed SO42?; however, in three German forest soils subject to elevated atmospheric S deposition, a considerable portion of the SO42? pool was precipitated SO42?, most likely Al hydroxy sulphate. The same is true for Nicaraguan Eutric and Vitric Andosols subject to high volcanogenic S input. In the subsoil of the Vitric Andosol, adsorbed SO42? and Al hydroxy sulphate coexist on a micron scale.  相似文献   

5.
A humic lake of pH 5.6 was acidified with H2SO4 to pH 4.1. Measurements of total and hollow-fiber ultrafiltered samples were made after three different times of storage, before and after the acid treatment. The nominal molecular weight cutoff of the hollow-fiber membrane was 10 kDalton. Assuming a linear molecular weight distribution of the organic complexes present in solution, the average organic molecule had an average molecular weight of 12.8?08 kDalton (n=6). Not only Ca2+ and Mg2+, but also detectable amounts of Na+ and K+ was found to be present on high molecular weight forms. No significant change in the molecular weight distribution of these elements were observed after the pH decrease. Changes in the molecular weight distribution after the acid treatment were only observed for Fe and Al. Significant amounts of SO4 2? were present on high molecular weight forms. A small, but significant increase in the relative amounts of SO4 2? present on high molecular weight forms was observed after the pH lowering. Kinetic constraints were demonstrated for dissolution of Al and Fe. To some extent, kinetic constraints in the equilibrium distribution of cation/anion exchange reactions of Al, Fe, and SO4 2? were also observed. After the acid treatment, the cation exchange capacity (CEC) of the organic pool present was estimated to be at least 18.2±1.4 (n=3) μeq of positive charges per mg C, probably because the negative sites on the organic pool are either not totally protonated or occupied by other cations at pH 4.09. This CEC is of the same order as industrially made cation exchange resins.  相似文献   

6.
Chemistry of aqueous Al in a podzol on a Norway spruce (Picea abies [L.] Karst.) site in the Black Forest (SW Germany) and changes induced by experimental applications of MgSO4 were studied. Soil solution taken from the O, E and BC horizons were analyzed for the fractions ‘labile monomeric Al’, ‘non-labile monomeric Al’, and ‘acid-reactive Al’. The activities of ‘inorganic monomeric Al’ species and the saturation indices (SI) of the soil solution with respect to Al-bearing minerals were calculated using the equilibrium speciation model WATEQF. On the untreated plot, soil leachates are characterized by Altot concentrations of 0.1 mg L?1 (mineral soil). In the O horizon, the fractions ‘acidsoluble Al’ and ‘non-labile monomeric Al’ (mainly organically complexed Al) together comprise 80% of Altot. In the leachates from the mineral soil Al3+ prevails, being 50% of Altot. Al-F-complexes make up 5 to 10% in all horizons. MgSO4 and (NH4)2SO4 treatments resulted in an intense Al mobilization up to 50 mg L?1. In this situation, 60% of Altot is covered by Al3+ and 40% by non-phytotoxic Al-SO4-complexes. After rainfall events, mobilized Al is quickly translocated into the subsoil, with water flow through macropores then appearing to be an important mechanism. In both treatments, soil solution chemistry was favorable for the precipitation of the Al(OH)SO4-type minerals alunite and jurbanite. However, a control of Al solubility by this process is not likely due to kinetic restraints. Application of MgSO4 was followed by an increase of the Mg/Al molar ratio in the soil solution, whereas the Ca/Al ratio decreased. After treatment with (NH4)2SO4 both the Ca/Al and the Mg/Al ratios deteriorated.  相似文献   

7.
Ion leaching in 3 sandy spruce forest soils of different origin and pH was investigated in the laboratory. Zero-tension lysimeters containing undisturbed soil columns of varying soil depth were subjected to H2SO4 loadings for a period of 9 weeks. The analysis of the resulting leachate supports the hypothesis that Al-sulphate minerals may form in acidic soils when exposed to acid (H2SO4) deposition. In the B horizon of a glaciofluvial sandy soil (pH 4.2), both H+ and sulphate ions were retained to maintain 2pH + PSO4 = 11.9 in the leachate solutions. This relation between H+ and sulphate activity may be due to an adsorption mechanism or a precipitation mechanism. The precipitation mechanism is favored by the good fit of leachate composition to the conditions for jurbanite [AlOHSO4] formation from gibbsite [Al(OH)3]. In the B horizon of a sandy till at pH 3.7, the Al in soil solution (0.5 mmol L?1) was leached with sulphate. As the sulphate load was increased, some sulphate was retained. This may also be due to the dissolution and precipitation of an Al-sulphate mineral. The ion activity products of leachate solutions from the B horizon of this soil were close to the pKs reported for jurbanite. The conditions for the possible existence and/or formation of Al-sulphate minerals in acidic soils are discussed.  相似文献   

8.
Processes pertinent to soil acidification with special emphasis on the solution chemistry of A1, were studied in three adjacent small catchments on the Swedish westcoast, with mixed coniferous forest and shallow podzols (average soil depth 50 cm). Soil solution from different depths, groundwater and stream-water were sampled. Separation of organic and inorganic Al species was done with an ion exchange technique. The concentration of organic A1 species was linearly correlated with the concentration of dissolved organic C (r,2, varied from 0.38 to 0.69 with p, < 0.001). In the A horizon 83 to 97 % of the dissolved A1 consisted of organic species. The average concentration of total A1 varied from 3.3 to 9.8 μmole 1?1, in soil leachates collected below the A0, horizon, and from 29.3 to 47.0 pmole 1?1, in leachates collected below the A2, horizon. The organic Al species decreased in importance with increasing soil depth. Leachates collected below the B horizon had average total A1 concentrations ranging from 95.3 to 115 pmole 1?1, with a contribution of organic species varying between 8 and 20% of the total concentration. Activity calculations indicated an equilibrium with A1(OH)SO4, (pK S = 17.23) in the lower part of the B horizon, while groundwater together with some of the leachates from the upper B horizon showed a better fit with A114(OH)10SO4 (pK1 = 117.51). Streamwater was obviously influenced by the soil organic matter in the outflow areas in terms of A1- organic matter complexes and protolysis of dissolved organic acids. There was a net outflow of Al and sulphate from the lower part of the B horizon compared to input in throughfall precipitation. The relative concentration increase varied from 64.4 to 78.0 (A1) and from 1.52 to 1.92 (sulphate). The relative increase due to evapotranspiration was estimated to be 1.4. The corresponding concentration factors for Mg and Ca were from 2.06 to 2.38, and from 0.81 to 1.07, respectively, indicating a very low Ca weathering. Data were compared with other studies, both recent and older ones. The possible influence from present-day levels of H+ and sulphurous compounds in the atmospheric deposition is evaluated.  相似文献   

9.
The study aimed at evaluating whether salt-induced mobilization of acidity may be modified by the type of anion. For this purpose, the effects of different neutral salts on the solution composition of acid soils were investigated. The results were compared with those of the addition of acids. Two topsoil (E and A) and two subsoil horizons (Bs and Bw) were treated with NaCl, Na2SO4, MgCl2, MgSO4, HCl, and H2SO4 at concentrations ranging from 0 to 10 mmol dm?3. With increasing inputs of Cl? the pH of the equilibrium soil solution dropped, the concentrations of Al and Ca increased, and the molar Ca/(Al3+ + AlOH2+ + Al(OH)2+) ratios decreased. These effects were the least pronounced when NaCl was added and the most at the HCl treatments. According to the release of acidity, the topsoils were more sensitive for salt-induced soil solution acidification whereas on base of the molar Ca/(Al3+ + AlOH2+ + Al(OH)2+) ratios, the salt effect seems to be more important for the subsoils. Addition of S042? salts and H2SO4 induced higher pH and lower Al concentrations than the corresponding Cl? treatments due to the SO42? sorption, especially in the subsoils. The Ca/(Al3+ + AlOH2+ + Al(OH)2+) ratios were higher than those of the corresponding Cl? treatments. In subsoils even after H2SO4 additions these ratios were not higher than those of the NaCl treatments. The results indicate (I) that speculation about the effects of episodic salt concentrations enhancement on soil solution acidification not only need to consider the ionic strength and the cation type but also the anion type, (II) that salt-induced soil solution composition may be more crucial in subsoils than in topsoils, and (III) that in acid soils ongoing input of HNO3 due to the precipitation load may induce an even more acidic soil solution than the inputs of H2SO4 of the last decade.  相似文献   

10.
Acidic groundwaters and soils in Halland County (Hailands län), southwest Sweden, have been investigated with respect to conditions of soluble aluminium (Al) and sulphate (SO4 2?. Basic Al-sulphate, Fe-oxide, Al-oxide, Al-hydroxide and clay minerals, are discussed and evaluated in their roles for governing Al and SO4 2? in the groundwaters. Based on this investigation, it is suggested that Al3+ solubility is controlled by amorphous Al-hydroxide. The SO4 2? in the groundwaters will depend primarily on the H2SO4 input. The H2SO4 load enhances soil mineral weathering which enhances the production of Fe-oxides, i.e. anion exchange surface sites, to which groundwater SO4 2? attain adsorption equilibra. The factors that control solubility of Al and SO4 2? are both influenced by the acidity in the soil catenas which in the area largely depend on the H2SO4 input. Clay minerals such as illite, smectites, halloysite, and variable composition Al-silicates do not exert strong control on Al in the groundwaters investigated.  相似文献   

11.
The effects of artificial precipitation with different pH levels on soil chemical properties and element flux were studied in a lysimeter experiment. Cambic Arenosol (Typic Udipsamment) in monolith lysimeters was treated for 6 1/2 yr with 125 mm yr?1 artificial rain in addition to natural precipitation. Artificial acid rain was produced from groundwater with H2SO4 added. pH levels of 6.1, 4 and 3 were used. ‘Rain’ acidity was buffered, mainly due to cation exchange with Ca2+ and Mg2+, which were increasingly leached due to the acid input. The H+ retention was not accompanied by a similar increase in the output of Al ions, but a slight increase in the leaching of Al ions was observed in the most acidic treatment. The net flux of SO4 2? from the lysimeters increased with increasing input of H2SO4, but in the most acidified lysimeters significant sorption of SO4 2? was observed. The sorption was, however, most likely a concentration effect. The ‘long-term’ acidification effects on soil were mainly seen in the upper O and Ah-horizons, where an impoverishment of exchangeable Ca2+ and Mg2+ was observed. An increased proportion of Al ions on exchange sites in the organic layer was observed in the pH 3-treated soil. By means of budget calculations the annual release of base cations due to weathering was estimated to be between 33 and 77 mmolc m?2.  相似文献   

12.
This study investigates the effects of soluble Al on different ectomycorrhizal fungi in vitro. Al was added to the medium as A12(SO4)3 · 18H2O in the concentration range from 0 to 20 mM Al. The lateral growth, fresh and dry weights of mycelia showed dependance on fungal species and the concentrations of Al. Concentrations from 1 to 20 mM of Al reduced the growth of most species but one strain of Pisolithus tinctorius showed a higher tolerance to all Al concentrations studied. The growth of Suillus variegatus showed the most marked sensitivity to and also changes in the morphology of mycelia grown on 15 mM Al, Lactarius piperatus growth was stimulated at the same Al concentrations and showed no differences from the control with SEM observations.  相似文献   

13.
Abstract

The beneficial action of gypsum in suppressing aluminum (Al) toxicity in Bt horizons of Ultisols is related to the self‐liming effect of the adsorption of sulphate (SO4 2‐) ion. The relationship between SO4 2‐ adsorption by gypsum‐amended soils and some components and properties of 38 surface and subsurface horizons from seven Palexerults in western and central Spain was analyzed. The highest correlations of maximal SO4 2‐ adsorption as determined from langmuir isotherms were with clay, free iron oxyhydroxides (Fedcb), and exchangeable Al contents, and pH. Liming reduces SO4 2’ ion adsorption; consequently, the joint application of limestone and gypsum to the surface of these soils results in increased availability of gypsum for the subsurface horizons.  相似文献   

14.
Long-term fluxes of sulphur dioxide (SO2) have been measured over a mixed suburban forest subjected to elevated SO2 concentrations. The net exchange was shown to be highly dynamic with substantial periods of both upward and downward fluxes observed in excellent conditions for flux measurement. Upward fluxes constituted 30% of selected fluxes and appeared more frequently when the canopy was acidic. Upward fluxes were shown to be due to desorption from a drying surface or when ambient levels declined after periods of increased SO2 exposure.The long term average SO2 flux (F) was −59 ng SO2 m−2 s−1 for the period 1997-2009 corresponding to an average SO2 concentration of 12.3 μg SO2 m−3 and a deposition velocity υd of 5 mm s−1. The smallest deposition fluxes and υd were measured in dry conditions (−42 ng m−2 s−1 and 3.5 mm s−1, resp.), which represented 57% of all cases. Wet canopies were more efficient sinks for SO2 and a dew-wetted canopy had a smaller υd (6 mm s−1) than a rain-wetted canopy (ca 10 mm s−1). Seasonal variability reflected differences in chemical climate or canopy buffering properties. During the summer half-year when surface acidity was low due to higher NH3/SO2 ratios, a higher deposition efficiency (υd/υdmax) and lower non-stomatal resistance (Rw) were observed compared to winter conditions. Comparisons of Rc for different combinations of canopy wetness and surface acidity categories emphasized the importance of both factors in regulating the non-stomatal sinks of SO2. Increased surface water acidity gradually led to a lower υd/υdmax and an increased Rc for all considered canopy wetness categories. The smallest υd/υdmax ratio and highest Rc were obtained for a dry canopy with high surface acidity. Conversely, a rain-wetted canopy was the most efficient sink for SO2. The canopy sink strength was further enhanced by high friction velocities (u*), optimizing the mechanical mixing into the canopy. Long-term trends were strongly coupled to changes in the NH3/SO2 ratio, which has clearly enhanced the deposition efficiency of SO2 in recent years.  相似文献   

15.
The controls of soluble Al concentration were examined in three situations of acid sulfate conditions:1) experimental acid sulfate conditions by addition of varying amounts of Al(OH)3(gibbsite) into a sequence of H2SO4 solutions;2)experimental acid sulfate conditions by addition of the same sequence of H2SO4 solutions into two non-cid sulfacte soil samples with known amounts of acid oxalate extractable Al; and 3) actual acid sulfate soil conditions.The experiment using gibbsite as an Al-bearing mineral showed that increase in the concentration of H2SO4 solution increased the soluble Al concentration,accompanied by a decrease i the solution pH, Increasing amount of gibbsite added to the H2SO4 solutions also increased soluble Al concentration,but resulted in an increase in solution pH.Within the H2SO4 concentration range of 0.0005-0.5mol L^-1 and the Al(OH)3 range of 0.01-0.5g(in 25 mL of H2SO4 solutions),the input of H2SO4 had the major control on soluble Al Concentration and pH .The availability of Al(OH)3,however,was responsible for the spread fo the various sample points,with a tendency that the samples containing more gibbsite had a higher soluble Al concentration than those containing less gibbsite at equivalent pH levels.The experimental results from treatment of soil samples with H2SO4 solutions and the analytical results of acid sulfate soils also showed the similar trend.  相似文献   

16.
Standard white oat genotypes were subjected to different methods and aluminum (Al) levels under hydroponic conditions to verify the relationship between plantlet characteristics and their Al tolerance using multivariate analyses. A completely randomized design with three replications was used, adopting three evaluation protocols: “complete nutrient solution” with 0, 8, 16, and 32 mg L?1 of Al supplied as aluminum sulfate [Al2(SO4)3·18H2O]; “complete nutrient solution” with 0, 8, 16 and 32 mg L?1 of Al supplied as aluminum chloride (Al2Cl3?6H2O); and the “minimum nutrient solution” with 0, 1, 3, and 5 mg L?1 of Al supplied as Al2Cl3?6H2O. The performance of white oat plantlet genotypes subjected to excess Al in hydroponic conditions is greatly associated with root length, where the nutrient solution composition and the Al sources interfere in these associations. The study based on the joint analysis of characteristics at plantlet level does not allow an efficient discrimination of Al-tolerant and Al-sensitive white oat genotypes.  相似文献   

17.
A study was undertaken to examine whether ‘acid pulses’ from snowmelt created permanent changes in a pond's chemistry. Water samples were collected from clearwater acidic Cone Pond in the White Mountain National Forest, New Hampshire. The pond, inlet, and outlet were intensively sampled throughout winter and early spring 1983–84. Thaws brought more H+ into upper waters of the pond, but most was gone within a week. In contrast, SO4 2? and Al showed dilution with increased streamflow into the pond, and NO3 ? was only detected in ice, slush, and surface waters. Bottom waters were anoxic throughout the winter and had pH 6.0 compared to 4.7 for most of the water column. Alkalinity at the bottom rose from 0 in November 1983 to 190 μeq L?1 in April 1984. Between November and April the pond gained Al but lost SO4 2? and H+. Most of the Al gain came after ice-out when loading through the inlet increased, but during the final snowmelt a temporary increase in Al concentration was also seen throughout the water column.  相似文献   

18.
Abstract

Sulfate (SO4 2‐) is present in soils as salts of various metals, and the different metals associated with sulfate may influence adsorption of SO4 2‐by soils. The analytical method used for determination of SO4 2‐could be affected by the type of metal associated with the SO4 2‐. Four analytical methods based on different principles were evaluated for determination of SO4 2‐in different metal salts and in soil extracts obtained with three extractants {0.1M lithium chloride (LiCl), 0.15% calcium chloride (CaCl2), and 500 mg P/L as calcium phosphate [Ca(H2PO4)2]}. The analytical methods were: (i) a methylene blue (MB) colorimetric method after the reduction of SO4 2‐to hyrogen sulfide (H2S), (ii) an ion Chromatographie (IC) method, (iii) a turbidimetric (TD) method, and (iv) an indirect barium (Ba) atomic absorption spectrophotometric (SP) method. The recovery of SO4 2‐associated with various mono‐, di‐, and tri‐valent metals was quantitative by the MB method. But, trivalent metals, such as aluminum (Al), indium (In), lanthanum (La), and scandium (IC), decreased the recovery of SO4 2‐by the other three methods. The MB and IC methods gave similar values for SO4 2‐in soils by using the three extractants. The TD and SP methods gave variable results and, in general, underestimated the amounts of SO4 2‐in soils. Among the four methods, the MB and IC methods were the most accurate and precise.  相似文献   

19.
Total S, extractable SO4, and SO4? retention capacity were determined in a range of soils covering the dominant soil groups in Portugal which are expected to show S deficiency. Total S was relatively low (83–435 mg S kg?1) in all soils and KH2PO4? extractable SO4 was, in general, low for plant growth, ranging from 0.9 to 32.2 mg S kg?1. SO4? retention capacity ranged from ?33.1 to 64.7 mg S kg?1 and was negative in many (14 out of 20) of the soils. Most of the soils are expected to be S deficient and show extensive leaching of SO4. Other selected soil properties that may affect the chemistry of SO4 were determined. A highly significant simple correlation was obtained between SO4 adsorbed and extractable Al by the Mehra and Jackson method (CDB-Al) (r = 0.74; P < 0.001). A multiple regression which included silt improved the correlation of SO4 adsorbed with CDB-Al (r = 0.79; P < 0.001).  相似文献   

20.
Field studies of photosynthesis in Pinus contorta/Pinus banksiana (lodgepole pine/jack pine) hybrids, Picea glauca (white spruce) and Populus tremuloides (aspen) subjected to SO2 and H2S from a nearby natural gas processing plant were initiated near Whitecourt, Alberta, Canada during the summer of 1974. The site was characterized as a Pinus-Picea glauca/Arctostaphylos uva-ursi association (pine-white spruce/bearberry). A 15 m high scaffold was used as access to mid-crown foliage in the pines while the spruce and aspen were accessible from the round. Net assimilation rates, transpiration rates and leaf resistances were calculated and water deficits were monitored. Photosynthetic rates measured were in a low range for the conifers studied, with pine having a maximum of 3.28 mg dm?2 h?1 and white spruce a maximum value of 2.3 mg dm?2 h?1 The low maximum photosynthetic rate determined for aspen is thought to be attributable to the onset of autumn. Chemical analyses for SO4-sulfur using the methylene blue colorimetric method of Johnson and Nishita (1952) showed levels of 300 to 700 ppm, with the older foliage showing slightly higher values. Visible chronic S02 symptoms had a pronounced sun, or upward, orientation. Ambient SOD H2S and total S were measured using a Tracor 270HA Atmospheric Sulfur Analyzer (chromatographic method) and trends in ambient SO2 concentrations using an Envirometrics SO2 Analyzer (polarographic method). Concentration was found to be variable for SO2 and generally below 0.05 ppm. A concentration gradient of SO2 was found to exist in the lodgepole pine/jack pine stand with the SO2 values above the canopy generally higher than below the canopy (0.1 ppm above and 0.05 ppm below). This condition was occasionally reversed. The plant canopy is considered to act as a barrier to downward diffusion of the S emissions in the first case and also a barrier to upward diffusion of S emissions present due to advection in the stand in the second case. The vegetative environment surrounding the Windfall Gas Plant is definitely affected by S gas emissions but the extent remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号