首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
Soils of the semi-arid area of the El Melah coastal lagoon (NE Tunisia), with a closing evolution dynamic, were studied aiming: (1) the chemical and mineralogical characterization of surface and subsurface layers of soil profiles from locations previously submerged and of soils developed on dunes; (2) to evaluate the dependence on the environment conditions of the geochemical patterns of the soils; and (3) to determine chemical and mineralogical variations with the emersion of the sediments resulting from the decrease in the extent of the area permanently covered by water in the lagoon. The compositional results obtained showed significant differences depending on the environment (littoral plain, old dunes and sandy spit), but soils of the different environmental zones studied do not appear to be significantly polluted as far as trace elements are concerned. Among the elements studied, high element/Sc ratios and variations were found for As, Sb and Zn. Antimony is more concentrated in coarser samples suggesting its adsorption in Fe or Mn oxides coating quartz grain surfaces. Arsenic and zinc may be incorporated into the carbonates structure, as well as adsorbed on, or coprecipitated with, iron oxides. Zinc may also be significantly incorporated in clay minerals. Iron was found to be more oxidized in the cultivated soil from the old dune strand; and more reduced in the sandy spit where ankerite occurs suggesting the reduction of Fe3+ in oxide/hydroxides by microorganisms and incorporation of Fe2+ in carbonates. REE patterns, particularly the HREE/LREE are correlated with carbonates, indicating preferential incorporation of the HREE in carbonates, and of the LREE in clay minerals/iron oxides. High Ga contents were found in soils and sediments rich in clay minerals/Al, suggesting its incorporation in clay minerals structure. Therefore, Ga may be used as an indicator of the clay minerals proportion in sediments and soils. Carbonates, sulphates, besides Fe and/or Mn oxides and clay minerals, appear to play an important role on the trace elements distribution.  相似文献   

2.
深圳市土壤微量元素含量成因分析   总被引:29,自引:2,他引:29       下载免费PDF全文
对深圳地区9种母质和6种土类构成的16个母质─土类单元共83个土壤样品中12种微量元素的含量进行侧定。在此基础上分析了微量元素含量分布的成因。研究结果表明,成土母质是影响土壤微量元素含量和分布的首要因素,相同母质上的不同类型土壤中的微量元素含量大多无明显差异。土壤中微量元素的共生组合关系表现出明显的母质继承性特征,由于微量元素主要以同晶替代方式分散在硅酸盐矿物中,其分布与离子半径关系密切。第四周期过渡元家具有相似的分布格局,而Pb、Zn、Cd等另成一类。  相似文献   

3.
 This review summarizes and discusses the current knowledge and the, as yet, unanswered questions on the interactions of Azospirillum spp. in bulk soil (but not in the rhizosphere). It contains sections on the isolation of these bacteria from tropical to temperate soils, and on their short- and long-term persistence in bulk soil. The interactions of these bacteria with soil particles and minerals such as clay, sand and Ca, and the effect of soil pH, soil redox potential, and the cation exchange capacity of the soil on them is demonstrated. Data is presented on the distribution of Azospirillum spp. in soils, on their production of fibrillar material essential for anchoring the cells to soil particles, on the effects of soil irrigation, and of external soil treatments, and on the effect of soil C and C used in bacterial inoculants on the cells. It shows that root exudates possibly govern bacterial motility in the soil. Finally, the effect of pesticide applications, the relationships with other soil microorganisms such as Bdelovibrio spp., Bradyrhizobium spp., and phages, and the potential use of a community-control model of Azospirillum spp. in soil and in the rhizosphere is suggested. Received: 11 November 1998  相似文献   

4.
For bacterial inoculants to be effective in soil remediation, the bacterial strain must be capable of overcoming any negative effects of soil minerals on cellular processes. One class of minerals commonly encountered by soil bacteria is clays. Thus, the effect of commonly occurring clay minerals in soils on starvation, survival and 2-hydroxypyridine catabolism by Arthrobacter crystallopoietes was evaluated. Stationary phase A. crystallopoietes cells were suspended in 0.03M, pH7.0, phosphate buffer containing no clay or amended with 0.2% (wt/vol) montmorillonite, sodium montmorillonite or kaolinite. Marked effects of clay minerals on both survival rates and catabolic rates of 2-hydroxypyridine were noted. For example, after 14 weeks starvation, 4.6% of the initial cell population was viable with no clay present, compared to 0.8% (montmorillonite), 22.1% (kaolinite) and 54.1% (sodium montmorillonite) in the presence of the clay minerals. Acclimated and nonacclimated cell populations were used to evaluate 2-hydroxypyridine catabolism. Induction of 2-hydroxypyridine metabolism occurred in the unacclimated cells following starvation. Differential impact of the clay minerals on unacclimated cells was detected. Montmorillonite enhanced the capacity for induction of 2-hydroxypyridine catabolism and its decomposition rate after 0–3 days starvation. For acclimated cells, clay did not affect the metabolic activity prior to starvation, but the presence of clay resulted in increased activity during starvation. For example, after 3 days starvation, a nearly two fold increase in metabolism was detected in the presence of clay minerals. These data suggest that some clay minerals in soil alter the survival time and metabolic activity of soil-amended bacteria, thereby affecting the potential for bioremediation success. Received: 1 March 1996  相似文献   

5.
为了揭示解钾细菌在西北矿区浅埋古河道土壤中对植物生长和土壤养分利用的影响,通过日光温室短期盆栽的方式,以不同黏土矿物配比的人工培土为基质模拟古河道不同质地土壤,以西北地区常见农作物玉米为宿主,研究解钾细菌在人工培土基质中的微生物数量变化规律,以及二者协同作用对玉米生长和矿质养分吸收的影响。结果表明:1)土壤黏土矿物含量增大有利于提高土壤解钾细菌数量,促进微生物活性。当黏土矿物质量分数为68%,速效钾质量分数约170 mg/kg时,解钾细菌数量最大;2)玉米地上部分干质量、根冠比、根系活力随黏土矿物含量增大而增大,以解钾细菌作用下黏土矿物质量分数68%的玉米生长效果最佳;3)在解钾细菌作用下,植物氮磷钾积累量和土壤养分利用的最佳土壤黏土矿物质量分数为45%、68%和75%,土壤钾素、氮素和磷素最大利用率分别达到65%、53%和17%;4)解钾细菌在土壤钾素含量低时促进土壤磷素吸收,土壤钾素过量时,促进土壤氮磷钾的吸收,提高土壤养分利用率。因此,土壤黏土矿物与解钾细菌相互作用,而且积极影响植物生长和土壤养分的吸收利用,这对进一步探寻适合矿区浅埋古河道土壤的微生物复垦技术,深入改良和开发矿区退化土壤具有重要意义。  相似文献   

6.
A statistical approach was adopted to study the association between particle-size fractions and trace elements in soil, because conventional studies on the subject usually involve chemical methods of fractionation, which may lead to loss and upsets in natural distribution patterns. The results showed that both total and extractable contents of Zn, Al, Cu, Mn, Pb, and Fe are bound up either in clay or silt fractions, although variations as to the particular particle-size diameter range did occur among the different elements. An attempt to resolve these relationships fitting a linear mathematical function, y=a+bx, based on the statistical association of individual particle-size fractions with particular trace elements, gave satisfactory results. There was no evidence to indicate that certain size fractions could mobilize trace elements by virtue of their abundance in these soils. There was convincing statistical proof to show that amorphous Fe2O2, possibly by way of surface coating of finer particles, may retain a large proportion of the trace elements investigated.  相似文献   

7.
Soils derived from loess are extensive in Europe and are well suited for forestry. They are suspected to be poor acid buffers, however. We have estimated the weathering stage and acid neutralizing capacity of acid soils under forest in a toposequence on loess in the Belgian silt belt. The soils vary distinctly in morphology and physico‐chemical properties according to their topographic position. Dystric Cambisols have developed in colluvial deposits in the dry valley floors, whereas Dystric Luvisols have formed on the slopes in a rejuvenated material. The Cambisols are more acid and less saturated in bases than are Luvisols. They are strongly depleted of clay and contain less weatherable minerals. Easily weatherable minerals are concentrated mainly in the clay fraction of both soil types. Clay minerals of size < 2 μm therefore act as major sinks for protons in these soils. A simplified expression taking into account the total reserve in bases, total aluminium and iron occluded in silicates is used to estimate acid neutralizing capacity. Our estimates confirm that these acid loessic soils are indeed poor acid buffers. They show that the Dystric Cambisols depleted of clay are sensitive to potential acidification, whether natural or man‐made.  相似文献   

8.
不同质地耕层土壤有效态微量元素含量特征   总被引:2,自引:0,他引:2  
[目的]研究不同土壤质地下耕层土壤有效态微量元素含量特征,为合理制定农田土壤施肥方案和提高土壤养分资源利用率提供依据。[方法]以库车县不同质地耕层土壤(0—20cm)为调查对象,采用统计方法对土壤微量元素有效态含量特征进行分析。[结果](1)土壤有效态微量元素在壤土、砂壤土、黏土、黏壤土及砂土中含量差异显著(p0.05),且壤土和砂壤土的有效态微量元素含量相对较高;(2)土壤微量元素有效性综合指数排列顺序依次为:砂壤土(1.51)砂土(1.44)黏土(1.42)壤土(1.41)黏壤土(1.27);(3)土壤有机质与土壤有效态微量元素均具有极其显著的相关性(p0.01),pH值则与有效铜和有效锰相关显著(p0.05)。[结论]在不同土壤质地下,微量元素铁和锌含量较为缺乏,锰和铜含量则相对较为丰富,故应依据这一特性进行土地科学管理和施肥。  相似文献   

9.
Abstract

Amorphous and crystalline aluminum and iron oxide minerals play a major role in stabilizing soil structure as measured by aggregate stability and clay dispersion. Aluminum and iron oxide interactions with clays are pH dependent. At low pH, where the oxides carry sufficient positive charge, they precipitate on clay surfaces. These coatings, once formed, are stable at higher pHs. Precipitation of oxides at high pH occurs as phases separate from the clays. Aluminum and iron oxides stabilize clay minerals by decreasing critical coagulation concentration, clay dispersion, water uptake, and clay swelling and by increasing microaggregation. The presence of aluminum and iron oxide minerals in soils has a favorable effect on soil physical properties, increasing aggregate stability, permeability, friability, porosity, and hydraulic conductivity, and reducing swelling, clay dispersion, bulk density, and modulus of rupture.  相似文献   

10.
土壤矿物作为土壤重要活性组分,可驱动土壤有毒有机物化学转化,降低污染风险。以往土壤矿物与有毒有机物界面行为研究主要集中于水环境或矿物悬浊液体系,然而实际环境中土壤及其矿物常处于干燥、湿润等水分非饱和状态。近年来,水分非饱和条件下土壤矿物界面有毒有机物转化及机制已成为研究热点,相关研究获得一系列新发现。低含水量铁锰矿物、黏土矿物和金属离子饱和黏土矿物能驱动多环芳烃、抗生素等疏水性有毒有机物化学转化。水分非饱和环境会减弱矿物界面水分子与有毒有机物竞争活性位点,并使矿物发生脱水、向高活性结构转变。此外,土壤矿物水分状态也会影响有毒有机物转化产物,水分非饱和环境更有利于持久性自由基和卤代二噁英等中间产物的形成和稳定。以往研究认为,电子转移反应是土壤矿物界面有毒有机物转化机制,随着检测技术与理论计算的发展,自由基催化和水解作用机制逐渐被发现,相关机制研究精准至矿物晶型和晶面层面。虽然水分非饱和条件下土壤矿物界面有毒有机物转化及机制已逐渐清晰,但其研究广度和深度有待进一步拓宽和加深。建议未来在实际水分非饱和土壤和矿物中开展有毒有机物转化研究,深入探究还原转化过程,研发原位反应装置及检测方法,尝试从微纳米尺度和分子水平解析有毒有机物在矿物界面转化机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号