首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The purpose of this study was to evaluate the pharmacokinetics of cefquinome (CFQ ) following single intravenous (IV ) or intramuscular (IM ) injections of 2 mg/kg body weight in red‐eared slider turtles. Plasma concentrations of CFQ were determined by high‐performance liquid chromatography and analyzed using noncompartmental methods. The pharmacokinetic parameters following IV injection were as follows: elimination half‐life (t 1/2λz) 21.73 ± 4.95 hr, volume of distribution at steady‐state (V dss) 0.37 ± 0.11 L/kg, area under the plasma concentration–time curve (AUC 0–∞) 163 ± 32 μg hr?1 ml?1, and total body clearance (ClT) 12.66 ± 2.51 ml hr?1 kg?1. The pharmacokinetic parameters after IM injection were as follows: peak plasma concentration (C max) 3.94 ± 0.84 μg/ml, time to peak concentration (T max) 3 hr, t 1/2λz 26.90 ± 4.33 hr, and AUC 0–∞ 145 ± 48 μg hr?1 ml?1. The bioavailability after IM injection was 88%. Data suggest that CFQ has a favorable pharmacokinetic profile with a long half‐life and a high bioavailability in red‐eared slider turtles. Further studies are needed to establish a multiple dosage regimen and evaluate clinical efficacy.  相似文献   

2.
South Africa currently loses over 1000 white rhinoceros (Ceratotherium simum) each year to poaching incidents, and numbers of severely injured victims found alive have increased dramatically. However, little is known about the antimicrobial treatment of wounds in rhinoceros. This study explores the applicability of enrofloxacin for rhinoceros through the use of pharmacokinetic‐pharmacodynamic modelling. The pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin were evaluated in five white rhinoceros after intravenous (i.v.) and after successive i.v. and oral administration of 12.5 mg/kg enrofloxacin. After i.v. administration, the half‐life, area under the curve (AUCtot), clearance and the volume of distribution were 12.41 ± 2.62 hr, 64.5 ± 14.44 μg ml?1 hr?1, 0.19 ± 0.04 L h?1 kg?1, and 2.09 ± 0.48 L/kg, respectively. Ciprofloxacin reached 26.42 ± 0.05% of the enrofloxacin plasma concentration. After combined i.v. and oral enrofloxacin administration oral bioavailability was 33.30 ± 38.33%. After i.v. enrofloxacin administration, the efficacy marker AUC24: MIC exceeded the recommended ratio of 125 against bacteria with an MIC of 0.5 μg/mL. Subsequent intravenous and oral enrofloxacin administration resulted in a low Cmax: MIC ratio of 3.1. The results suggest that intravenous administration of injectable enrofloxacin could be a useful drug with bactericidal properties in rhinoceros. However, the maintenance of the drug plasma concentration at a bactericidal level through additional per os administration of 10% oral solution of enrofloxacin indicated for the use in chickens, turkeys and rabbits does not seem feasible.  相似文献   

3.
Bayesian population pharmacokinetic models of florfenicol in healthy pigs were developed based on retrospective data in pigs either via intravenous (i.v.) or intramuscular (i.m.) administration. Following i.v. administration, the disposition of florfenicol was best described by a two‐compartment open model with the typical values of half‐life at α phase (t 1/2α), half‐life at β phase (t 1/2β), total body clearance (Cl), and volume of distribution (V d) were 0.132 ± 0.0289, 2.78 ± 0.166 hr, 0.215 ± 0.0102, and 0.841 ± 0.0289 L kg?1, respectively. The disposition of florfenicol after i.m. administration was best described by a one‐compartment open model. The typical values of maximum concentration of drug in serum (C max), elimination half‐life (t 1/2Kel), Cl, and Volume (V ) were 5.52 ± 0.605 μg/ml, 9.96 ± 1.12 hr, 0.228 ± 0.0154 L hr?1 kg?1, and 3.28 ± 0.402 L/kg, respectively. The between‐subject variabilities of all the parameters after i.m. administration were between 25.1%–92.1%. Florfenicol was well absorbed (94.1%) after i.m. administration. According to Monte Carlo simulation, 8.5 and 6 mg/kg were adequate to exert 90% bactericidal effect against Actinobacillus pleuropneumoniae after i.v. and i.m. administration.  相似文献   

4.
Nine horses received 20 mg/kg of intravenous (LEVIV ); 30 mg/kg of intragastric, crushed immediate release (LEVCIR ); and 30 mg/kg of intragastric, crushed extended release (LEVCER ) levetiracetam, in a three‐way randomized crossover design. Crushed tablets were dissolved in water and administered by nasogastric tube. Serum samples were collected over 48 hr, and levetiracetam concentrations were determined by immunoassay. Mean ± SD peak concentrations for LEVCIR and LEVCER were 50.72 ± 10.60 and 53.58 ± 15.94 μg/ml, respectively. The y ‐intercept for IV administration was 64.54 ± 24.99 μg/ml. The terminal half‐life was 6.38 ± 1.97, 7.07 ± 1.93 and 6.22 ± 1.35 hr for LEVCIR , LEVCER , and LEVIV , respectively. Volume of distribution at steady‐state was 630 ± 73.4 ml/kg. Total body clearance after IV administration was 74.40 ± 19.20 ml kg?1 hr?1. Bioavailability was 96 ± 10, and 98 ± 13% for LEVCIR and LEVCER , respectively. A single dose of Levetiracetam (LEV ) was well tolerated. Based on this study, a recommended dosing regimen of intravenous or oral LEV of 32 mg/kg every 12 hr is likely to achieve and maintain plasma concentrations within the therapeutic range suggested for humans, with optimal kinetics throughout the dosing interval in healthy adult horses. Repeated dosing and pharmacodynamic studies are warranted.  相似文献   

5.
This study determined the pharmacokinetics, antinociceptive, and anti‐inflammatory effects of the soluble epoxide hydrolase (sEH ) inhibitor t ‐TUCB (trans ‐4‐{4‐[3‐(4‐Trifluoromethoxy‐phenyl)‐ureido]‐cyclohexyloxy}‐benzoic acid) in horses with lipopolysaccharide (LPS )‐induced radiocarpal synovitis. A total of seven adult healthy mares (n  = 4–6/treatment) were administered 3 μg LPS into one radiocarpal joint and t ‐TUCB intravenously (i.v.) at 0 (control), 0.03, 0.1, 0.3, and 1 mg/kg in a blinded, randomized, crossover design with at least 3 weeks washout between. Two investigators independently assigned pain scores (at rest, walk and trot) and lameness scores before and up to 48 hr after t ‐TUCB /LPS . Responses to touching the joint skin to assess tactile allodynia, plasma, and synovial fluid (SF ) t ‐TUCB concentrations were determined before and up to 48 hr after t ‐TUCB /LPS . Blood and SF were collected for clinical laboratory evaluations before and up to 48 hr after t ‐TUCB /LPS . Areas under the curves of pain and lameness scores were calculated and compared between control and treatments. Data were analyzed using repeated measures ANOVA with Dunnett or Bonferroni post‐test. p  < .05 was considered significant. Data are mean ± SEM . Compared to control, pain, lameness, and tactile allodynia were significantly lower with 1 mg/kg t ‐TUCB , but not the other doses. For 0.1, 0.3, and 1 mg/kg t ‐TUCB treatments, plasma terminal half‐lives were 13 ± 3, 13 ± 0.5, and 24 ± 5 hr, and clearances were 68 ± 15, 48 ± 5, and 14 ± 1 ml hr?1 kg?1. The 1 mg/kg t ‐TUCB reached the SF at high concentrations. There were no important anti‐inflammatory effects. In conclusion, sEH inhibition with t ‐TUCB may provide analgesia in horses with inflammatory joint pain.  相似文献   

6.
The pharmacokinetics of orbifloxacin was studied after a single dose (7.5 mg/kg) of intravenous or intramuscular administration to crucian carp (Carassius auratus ) reared in freshwater at 25°C. Plasma samples were collected from six fish per sampling point. Orbifloxacin concentrations were determined by high‐performance liquid chromatography with a 0.02 μg/ml limit of detection, then were subjected to noncompartmental analysis. After intravenous injection, initial concentration of 5.83 μg/ml, apparent elimination rate constant (λz) of 0.039 hr?1, apparent elimination half‐life (T1/2λz) of 17.90 hr, systemic total body clearance (Cl) of 75.47 ml hr?1 kg?1, volume of distribution (Vz) of 1,948.76 ml/kg, and volume of distribution at steady‐state (Vss) of 1,863.97 ml/kg were determined, respectively. While after intramuscular administration, the λz, T 1/2λz, mean absorption time (MAT ), absorption half‐life (T 1/2ka), and bioavailability were determined as 0.027 hr?1, 25.69, 10.26, 7.11 hr, and 96.46%, respectively, while the peak concentration was observed as 3.11 ± 0.06 μg/ml at 2.0 hr. It was shown that orbifloxacin was completely but relatively slowly absorbed, extensively distributed, and slowly eliminated in crucian carp, and an orbifloxacin dosage of 10 mg/kg administered intravenously or intramuscularly would be expected to successfully treat crucian carp infected by strains with MIC values ≤0.5 μg/ml.  相似文献   

7.
A tissue cage model of inflammation in calves was used to determine the pharmacokinetic and pharmacodynamic properties of individual carprofen enantiomers, following the administration of the racemate. RS(±) carprofen was administered subcutaneously both alone and in combination with intramuscularly administered oxytetracycline in a four‐period crossover study. Oxytetracycline did not influence the pharmacokinetics of R(?) and S(+) carprofen enantiomers, except for a lower maximum concentration (Cmax) of S(+) carprofen in serum after co‐administration with oxytetracycline. S(+) enantiomer means for area under the serum concentration–time curve (AUC0–96h were 136.9 and 128.3 μg·h/mL and means for the terminal half‐life (T½k10) were = 12.9 and 17.3 h for carprofen alone and in combination with oxytetracycline, respectively. S(+) carprofen AUC0–96h in both carprofen treatments and T½k10 for carprofen alone were lower (P < 0.05) than R(?) carprofen values, indicating a small degree of enantioselectivity in the disposition of the enantiomers. Carprofen inhibition of serum thromboxane B2 ex vivo was small and significant only at a few sampling times, whereas in vivo exudate prostaglandin (PG)E2 synthesis inhibition was greater and achieved overall significance between 36 and 72 h (P < 0.05). Inhibition of PGE2 correlated with mean time to achieve maximum concentrations in exudate of 54 and 42 h for both carprofen treatments for R(?) and S(+) enantiomers, respectively. Carprofen reduction of zymosan‐induced intradermal swelling was not statistically significant. These data provide a basis for the rational use of carprofen with oxytetracycline in calves and indicate that no alteration to carprofen dosage is required when the drugs are co‐administered.  相似文献   

8.
Post‐operative pain management by a single subcutaneous (SC) injection of carprofen has been found to be effective in cats and dogs. This clinical study compared the analgesic properties of injectable carprofen and butorphanol in 71 healthy cats (0.5–5 years, mean weight 3.24 ± 0.61 kg) undergoing ovariohysterectomy. Cats were randomly assigned to three groups: Group C received carprofen 4 mg kg?1 SC at intubation and sterile saline 0.08 mL kg?1 SC at extubation; Group B received sterile saline 0.08 mL kg?1 SC at intubation and butorphanol 0.4 mg kg?1 SC at extubation; Group S received sterile saline 0.08 mL kg?1 SC at intubation and extubation. All cats were pre‐medicated with atropine (0.04 mg kg?1 SC), acepromazine (0.02 mg kg?1 SC), ketamine (5 mg kg?1 SC), and induced IV with ketamine (5 mg kg?1) and diazepam (0.25 mg kg?1). Serum biochemistry values were taken at 24 and 48 hours post‐surgically and compared to a pre‐surgical baseline. Behavioral data were collected by a blinded investigator prior to surgery (baseline) and 1, 2, 3, 4, 8, 12, 16, 20, and 24 hours post‐surgery; the data were compiled into composite pain scores on a scale from 0 to 21 and complemented by visual analogue scores (VAS). Scoring was based on changes in behavior, posture, vocalization, and response to interactive stimulation. Cats with pain scores >12 were considered to be moderately painful, received meperidine (4 mg kg?1 IM), and were excluded from further statistical analyses. Sixty of 71 cats completed the study. Anesthetic time was 88.5 ± 21.8 minutes (mean ± SD). Meperidine was given to one cat in C, three in B, and five in S. There were no significant differences in biochemistry values. There were no significant differences in pain scores between C and B at any time period; B and C pain scores were significantly lower than S at 1, 2, 12, 16, and 20 hours post‐operatively, and C lower than S at 3 and 8 hours post‐surgery. Pain scores decreased over the 24‐hour study in all groups; the greatest decrease in each group was between 4 and 8 hours post‐operatively. In this study, carprofen provided post‐surgical analgesia comparable to butorphanol.  相似文献   

9.
The pharmacokinetic profile of posaconazole in clinically normal koalas (n = 8) was investigated. Single doses of posaconazole were administered intravenously (i.v.; 3 mg/kg; n = 2) or orally (p.o.; 6 mg/kg; n = 6) with serial plasma samples collected over 24 and 36 hr, respectively. Plasma concentrations of posaconazole were quantified by validated high‐performance liquid chromatography. A noncompartmental pharmacokinetic analysis of data was performed. Following i.v. administration, estimates of the median (range) of plasma clearance (CL) and steady‐state volume of distribution (Vss) were 0.15 (0.13–0.18) L hr?1 kg?1 and 1.23 (0.93–1.53) L/kg, respectively. The median (range) elimination half‐life (t1/2) after i.v. and p.o. administration was 7.90 (7.62–8.18) and 12.79 (11.22–16.24) hr, respectively. Oral bioavailability varied from 0.43 to 0.99 (median: 0.66). Following oral administration, maximum plasma concentration (Cmax; median: 0.72, range: 0.55–0.93 μg/ml) was achieved in 8 (range 6–12) hr. The in vitro plasma protein binding of posaconazole incubated at 37°C was 99.25 ± 0.29%. Consideration of posaconazole pharmacokinetic/pharmacodynamic (PK/PD) targets for some yeasts such as disseminated candidiasis suggests that posaconazole could be an efficacious treatment for cryptococcosis in koalas.  相似文献   

10.
The purpose of the study was to determine pharmacokinetics of fentanyl after intravenous (i.v.) and transdermal (t.d.) administration to six adult alpacas. Fentanyl was administered i.v. (2 μg/kg) or t.d. (nominal dose: 2 μg kg?1 hr?1). Plasma concentrations were determined using liquid chromatography–mass spectrometry. Heart rate and respiratory rate were assessed. Extrapolated, zero‐time plasma fentanyl concentrations were 6.0 ng/ml (1.7–14.6 ng/ml) after i.v. administration, total plasma clearance was 1.10 L hr?1 kg?1 (0.75–1.40 L hr?1 kg?1), volumes of distribution were 0.30 L/kg (0.10–0.99 L/kg), 1.10 L/kg (0.70–2.96 L/kg) and 1.5 L/kg (0.8–3.5 L/kg) for V1, V2, and Vss, respectively. Elimination half‐life was 1.2 hr (0.5–4.3 hr). Mean residence time (range) after i.v. dosing was 1.30 hr (0.65–4.00 hr). After t.d. fentanyl administration, maximum plasma fentanyl concentration was 1.20 ng/ml (0.72–3.00 ng/ml), which occurred at 25 hr (8–48 hr) after patch placement. The area under the plasma fentanyl concentration‐vs‐time curve (extrapolated to infinity) after t.d. fentanyl was 61 ng*hr/ml (49–93 ng*hr/ml). The dose‐normalized bioavailability of fentanyl from t.d. fentanyl in alpacas was 35.5% (27–64%). Fentanyl absorption from the t.d. fentanyl patch into the central compartment occurred at a rate of approximately 50 μg/hr (29–81 μg/hr) between 8 and 72 hr after patch placement.  相似文献   

11.
The disposition kinetics of norfloxacin, after intravenous, intramuscular and subcutaneous administration was determined in rabbits at a single dose of 10 mg/kg. Six New Zealand white rabbits of both sexes were treated with aqueous solution of norfloxacin (2%). A cross‐over design was used in three phases (2 × 2 × 2), with two washout periods of 15 days. Plasma samples were collected up to 72 hr after treatment, snap‐frozen at ?45°C and analysed for norfloxacin concentrations using high‐performance liquid chromatography. The terminal half‐life for i.v., i.m. and s.c. routes was 3.18, 4.90 and 4.16 hr, respectively. Clearance value after i.v. dosing was 0.80 L/h·kg. After i.m. administration, the absolute bioavailability was (mean ± SD ) 108.25 ± 12.98% and the Cmax was 3.68 mg/L. After s.c. administration, the absolute bioavailability was (mean ± SD ) 84.08 ± 10.36% and the Cmax was 4.28 mg/L. As general adverse reactions were not observed in any rabbit and favourable pharmacokinetics were found, norfloxacin at 10 mg/kg after i.m. and s.c. dose could be effective in rabbits against micro‐organisms with MIC ≤0.14 or 0.11 μg/mL , respectively.  相似文献   

12.
NSAID s are often used in horses with colic syndrome during the postoperative period, due to their ability to contrast endotoxemia and to promote an analgesic and anti‐inflammatory effect. As the pharmacokinetics of a drug are often modified in unhealthy animals compared to healthy subjects, the aim of this study was to evaluate the pharmacokinetic profile of meloxicam after i.v. administration in horses undergoing laparotomy for colic syndrome. Eight horses received 0.6 mg/kg of meloxicam i.v. towards the end of surgery. Blood samples were taken at scheduled time points during the following 24 hr. The serum concentration of the drug was determined by HPLC . Terminal half‐life (6.88 ± 2.96 hr), volume of distribution at steady‐state (186.53 ± 61.20 ml/Kg) and clearance (27.91 ± 5.72 ml kg?1 hr?1) were similar to those reported in literature for healthy horses. This result suggests that no adjustment of the approved dose should be necessary when meloxicam is used to treat horses in the immediate postoperative period after surgery for colic syndrome.  相似文献   

13.
Compartmental models were used to investigate the pharmacokinetics of intravenous (i.v. ), oral (p.o. ), and topical (TOP ) administration of dimethyl sulfoxide (DMSO ). The plasma concentration–time curve following a 15‐min i.v. infusion of DMSO was described by a two‐compartment model. Median and range of alpha (t 1/2α) and beta (t 1/2β) half‐lives were 0.029 (0.026–0.093) and 14.1 (6.6–16.4) hr, respectively. Plasma concentration–time curves of DMSO following p.o. and TOP administration were best described by one‐compartment absorption and elimination models. Following the p.o. administration, median absorption (t 1/2ab) and elimination (t 1/2e) half‐lives were 0.15 (0.01–0.77) and 15.5 (8.5–25.2) hr, respectively. The plasma concentrations of DMSO were 47.4–129.9 μg/ml, occurring between 15 min and 4 hr. The fractional absorption (F ) during a 24‐hr period was 47.4 (22.7–98.1)%. Following TOP administrations, the median t 1/2ab and t 1/2e were 1.2 (0.49–2.3) and 4.5 (2.1–11.0) hr, respectively. Plasma concentrations were 1.2–8.2 μg/ml occurring at 2–4 hr. Fractional absorption following TOP administration was 0.48 (0.315–4.4)% of the dose administered. Clearance (Cl) of DMSO following the i.v. administration was 3.2 (2.2–6.7) ml hr?1 kg?1. The corrected clearances (ClF ) for p.o. and TOP administrations were 2.9 (1.1–5.5) and 4.5 (0.52–18.2) ml hr?1 kg?1.  相似文献   

14.
Probiotics are routinely used in poultry husbandry due to health benefit on the host. The gut microbiota is now recognized to exert an important influence on the absorption and pharmacokinetics of many compounds. Therefore, this study was designed to evaluate the effect of candidate probiotics belonging to the species Lactobacillus brevis, L. plantarum and L. bulgaricus on pharmacokinetics of enrofloxacin in healthy chickens. The probiotic administration leads to higher degree of metabolism of enrofloxacin to ciprofloxacin in liver. The antibacterial drug was significantly faster absorbed (kab of 0.61 ± 0.54 h?1 and Tmax 7.81 ± 3.52 h) at lower concentrations (Cmax of 1.34 ± 0.18 μg·g?1) during the first 24 h of treatment in the probiotic's group. The values of kab, Tmax, and Cmax for the group, treated solely with enrofloxacin, were 0.10 ± 0.065 h?1, 15.42 ± 3.07 h, and 1.61 ± 0.24 μg·g?1, respectively. A significantly higher concentration of enrofloxacin and its metabolite ciprofloxacin in the liver was observed in the group with the probiotic treatment. Disposition of both drugs was not significantly changed in the duodenum and in the jejunum. The selected dose is appropriate for treatment of infections caused by pathogens with MIC < 0.06 μg·mL?1 irrespective of antibiotic administration alone or in combination with probiotics.  相似文献   

15.
The study objective was to evaluate the effects of age on aminoglycoside pharmacokinetics in eight young‐adult (<4 years) and eight aged (≥14 years) healthy alpacas, receiving a single 6.6 mg/kg intravenous gentamicin injection. Heparinized plasma samples were obtained at designated time points following drug administration and frozen at ?80°C until assayed by a validated immunoassay (QMS ®). Compartmental and noncompartmental analyses of gentamicin plasma concentrations versus time were performed using WinNonlin (v6.4) software. Baseline physical and hematological parameters were not significantly different between young and old animals with the exception of sex. Data were best fitted to a two‐compartment pharmacokinetic model. The peak drug concentration at 30 min after dosing (23.8 ± 2.1 vs. 26.1 ± 2 μg/ml, p = .043 ) and area under the curve (70.4 ± 10.5 vs. 90.4 ± 17.6 μg hr/ml, p = .015 ) were significantly lower in young‐adult compared to aged alpacas. Accordingly, young alpacas had a significantly greater systemic clearance than older animals (95.5 ± 14.4 and 75.6 ± 16.1 ml hr?1 kg?1; p = .018 ), respectively). In conclusion, a single 6.6 mg/kg intravenous gentamicin injection achieves target blood concentrations of >10 times the MIC of gentamicin‐susceptible pathogens with MIC levels ≤2 μg/ml, in both young‐adult and geriatric alpacas. However, the observed reduction in gentamicin clearance in aged alpacas may increase their risk for gentamicin‐related adverse drug reactions.  相似文献   

16.
This study describes the pharmacokinetics of vitacoxib in healthy rabbits following administration of 10 mg/kg intravenous (i.v.) and 10 mg/kg oral. Twelve New Zealand white rabbits were randomly allocated to two equally sized treatment groups. Blood samples were collected at predetermined times from 0 to 36 hr after treatment. Plasma drug concentrations were determined using UPLC‐MS/MS. Pharmacokinetic analysis was completed using noncompartmental methods via WinNonlin? 6.4 software. The mean concentration area under curve (AUClast) for vitacoxib was determined to be 11.0 ± 4.37 μg hr/ml for i.v. administration and 2.82 ± 0.98 μg hr/ml for oral administration. The elimination half‐life (T1/2λz) was 6.30 ± 2.44 and 6.30 ± 1.19 hr for the i.v. and oral route, respectively. The Cmax (maximum plasma concentration) and Tmax (time to reach the observed maximum (peak) concentration at steady‐state) following oral application were 189 ± 83.1 ng/ml and 6.58 ± 3.41 hr, respectively. Mean residence time (MRTlast) following i.v. injection was 6.91 ± 3.22 and 11.7 ± 2.12 hr after oral administration. The mean bioavailability of oral administration was calculated to be 25.6%. No adverse effects were observed in any rabbit. Further studies characterizing the pharmacodynamics of vitacoxib are required to develop a formulation of vitacoxib for rabbits.  相似文献   

17.
This study describes the pharmacokinetics of intravenously administered (i.v.) fentanyl citrate, and its primary metabolite norfentanyl in Holstein calves. Eight calves (58.6 ± 2.2 kg), aged 3–4 weeks, were administered fentanyl citrate at a single dose of 5.0 μg/kg i.v. Blood samples were collected from 0 to 24 hr. Plasma (nor)fentanyl concentrations were determined using liquid chromatography with mass spectrometry and a lower limit of quantification (LLOQ ) of 0.03 ng/ml. To explore the effect of analytical performance on fentanyl parameter estimation, the noncompartmental pharmacokinetic analysis was then repeated with a hypothetical LLOQ value of 0.05 ng/ml. Terminal elimination half‐life was estimated at 12.7 and 3.6 hr for fentanyl and norfentanyl, respectively. For fentanyl, systemic clearance was estimated at 2.0 L hr?1 kg?1, volume of distribution at steady‐state was 24.8 L/kg and extraction ratio was 0.42. At a hypothetical LLOQ of 0.05 ng/ml fentanyl half‐life, volume of distribution at steady‐state and clearance were, respectively, of 3.0 hr, 8.8 L/kg and 3.4 L kg?1 hr?1. Fentanyl citrate administered i.v. at 5.0 μg/kg can reach levels associated with analgesia in other species. Pharmacokinetic parameters should be interpreted with respect to LLOQ , as lower limits can influence estimated parameters, such as elimination half‐life or systemic clearance and have significant impact on dosage regimen selection in clinical practice.  相似文献   

18.
The pharmacokinetic properties of the fluoroquinolone levofloxacin (LFX) were investigated in six dogs after single intravenous, oral and subcutaneous administration at a dose of 2.5, 5 and 5 mg/kg, respectively. After intravenous administration, distribution was rapid (T½dist 0.127 ± 0.055 hr) and wide as reflected by the volume of distribution of 1.20 ± 0.13 L/kg. Drug elimination was relatively slow with a total body clearance of 0.11 ± 0.03 L kg?1 hr?1 and a T½ for this process of 7.85 ± 2.30 hr. After oral and subcutaneous administration, absorption half‐life and Tmax were 0.35 and 0.80 hr and 1.82 and 2.82 hr, respectively. The bioavailability was significantly higher (p ? 0.05) after subcutaneous than oral administration (79.90 vs. 60.94%). No statistically significant differences were observed between other pharmacokinetic parameters. Considering the AUC24 hr/MIC and Cmax/MIC ratios obtained, it can be concluded that LFX administered intravenously (2.5 mg/kg), subcutaneously (5 mg/kg) or orally (5 mg/kg) is efficacious against Gram‐negative bacteria with MIC values of 0.1 μg/ml. For Gram‐positive bacteria with MIC values of 0.5 μg/kg, only SC and PO administration at a dosage of 5 mg/kg showed to be efficacious. MIC‐based PK/PD analysis by Monte Carlo simulation indicates that the proposed dose regimens of LFX, 5 and 7.5 mg/kg/24 hr by SC route and 10 mg/kg/24 hr by oral route, in dogs may be adequate to recommend as an empirical therapy against S. aureus strains with MIC ≤ 0.5 μg/ml and E. coli strains with MIC values ≤0.125 μg/ml.  相似文献   

19.
Objective To evaluate disposition of a single dose of butorphanol in goats after intravenous (IV) and intramuscular (IM) administration and to relate behavioral changes after butorphanol administration with plasma concentrations. Design Randomized experimental study. Animals Six healthy 3‐year‐old neutered goats (one male and five female) weighing 46.5 ± 10.5 kg (mean ± D). Methods Goats were given IV and IM butorphanol (0.1 mg kg?1) using a randomized cross‐over design with a 1‐week interval between treatments. Heparinized blood samples were collected at fixed intervals for subsequent determination of plasma butorphanol concentrations using an enzyme linked immunosorbent assay (ELISA). Pharmacokinetic values (volume of distribution at steady state [VdSS], systemic clearance [ClTB], extrapolated peak plasma concentration [C0] or estimated peak plasma concentration [CMAX], time to estimated peak plasma concentration [TMAX], distribution and elimination half‐lives [t1/2], and bioavailability) were calculated. Behavior was subjectively scored. A two‐tailed paired t‐test was used to compare the elimination half‐lives after IV and IM administration. Behavioral scores are reported as median (range). A Friedman Rank Sums test adjusted for ties was used to analyze the behavioral scores. A logit model was used to determine the effect of time and concentration on behavior. A value of p < 0.05 was considered significant. Results Volume of distribution at steady state after IV administration of butorphanol was 1.27 ± 0.73 L kg?1, and ClTB was 0.0096 ± 0.0024 L kg?1 minute?1. Extrapolated C0 of butorphanol after IV administration was 146.5 ± 49.8 ng mL?1. Estimated CMAX after IM administration of butorphanol was 54.98 ± 14.60 ng mL?1, and TMAX was 16.2 ± 5.2 minutes; bioavailability was 82 ± 41%. Elimination half‐life of butorphanol was 1.87 ± 1.49 and 2.75 ± 1.93 hours for IV and IM administration, respectively. Goats became hyperactive after butorphanol administration within the first 5 minutes after administration. Behavioral scores for goats were significantly different from baseline at 15 minutes after IV administration and at 15 and 30 minutes after IM administration. Both time and plasma butorphanol concentration were predictors of behavior. Behavioral scores of all goats had returned to baseline by 120 minutes after IV administration and by 240 minutes after IM administration. Conclusions and Clinical Relevance The dose of butorphanol (0.1 mg kg?1, IV or IM) being used clinically to treat postoperative pain in goats has an elimination half‐life of 1.87 and 2.75 hours, respectively. Nonpainful goats become transiently excited after IV and IM administration of butorphanol. Clinical trials to validate the efficacy of butorphanol as an analgesic in goats are needed.  相似文献   

20.
Ceftiofur, a third‐generation cephalosporin antibiotic, is being extensively used by pet doctors in China. In the current study, the detection method was developed for ceftiofur and its metabolites, desfuroylceftiofur (DCE) and desfuroylceftiofur conjugates (DCEC), in feline plasma. Then, the pharmacokinetics studies were performed following one single intravenous and subcutaneous injection of ceftiofur sodium in cats both at 5 mg/kg body weight (BW) (calculated as pure ceftiofur). Ceftiofur, DCE, and DCEC were extracted from plasma samples, then derivatized and further quantified by high‐performance liquid chromatography. The concentrations versus time data were subjected to noncompartmental analysis to obtain the pharmacokinetics parameters. The terminal half‐life (t1/2λz) was calculated as 11.29 ± 1.09 and 10.69 ± 1.31 hr following intravenous and subcutaneous injections, respectively. After intravenous treatment, the total body clearance (Cl) and volume of distribution at steady‐state (VSS) were determined as 14.14 ± 1.09 ml hr‐1 kg‐1 and 241.71 ± 22.40 ml/kg, respectively. After subcutaneous injection, the peak concentration (Cmax; 14.99 ± 2.29 μg/ml) was observed at 4.17 ± 0.41 hr, and the absorption half‐life (t1/2ka) and absolute bioavailability (F) were calculated as 2.83 ± 0.46 hr and 82.95%±9.59%, respectively. The pharmacokinetic profiles of ceftiofur sodium and its related metabolites demonstrated their relatively slow, however, good absorption after subcutaneous administration, poor distribution, and slow elimination in cats. Based on the time of drug concentration above the minimum inhibitory concentration (MIC) (T>MIC) calculated in the current study, an intravenous or subcutaneous dose at 5 mg/kg BW of ceftiofur sodium once daily is predicted to be effective for treating feline bacteria with a MIC value of ≤4.0 μg/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号