首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study evaluated the toxicity of ammonia and nitrite to different larval stages of Macrobrachium carcinus. Three replicated groups of larvae in the zoea stages II, V, and VIII (hence named Z2, Z5, and Z8, respectively) were exposed separately to five ammonia (5, 10, 20, 40, and 80 mg total ammonia nitrogen [TAN]/L) and six nitrite concentrations (5, 10, 20, 40, 80, and 160 mg NO2‐N/L), plus a control treatment with no addition of ammonia and nitrite, at a salinity of 20 g/L. The ammonia LC50 values at 96 h for Z2, Z5, and Z8 were 8.34, 13.84, and 15.03 mg TAN/L (0.50, 0.71, and 0.92 mg NH3‐N/L), respectively, and the nitrite LC50 values at 96 h for Z2, Z5, and Z8 were 3.28, 9.73, and 34.00 mg NO2‐N/L, respectively. The estimated LC50 values for NO2‐N were lower than those for TAN in most of the stages evaluated. This observation suggests that M. carcinus larvae are more tolerant to ammonia, except at Z8, in which larvae had a higher tolerance to nitrite. Based on the lethal concentrations at 96 h, it may be concluded that the tolerance of M. carcinus to ammonia and nitrite increases with larval development. Safe levels were estimated to be 0.834 mg TAN/L (0.05 mg NH3‐N/L) and 0.328 mg NO2‐N/L; therefore, efforts should be made to maintain lower concentrations of these compounds throughout the larval rearing of M. carcinus.  相似文献   

2.
Sea bass, Lates calcarifer, fingerlings were acclimated to 0. 15, and 32 ppt, and the toxic effects of nitrite exposure were assessed. The 96-hour median lethal concentrations (96-hour LC50 for nitrite were estimated to be 14.5 mg/L at 0 ppt, 105 mg/L at 15 ppt and 93 mg/L at 32 ppt salinity. Chronic exposure to a nitrite concentration equivalent to 10% of the respective 96 hour LC50 resulted in marked growth reduction: growth being reduced in the order of 0 ppt > 32 ppt > 15 ppt. In nitrite-free water, growth rate for fish raised at a salinity of 15 ppt was higher compared to fish raised at salinities of 0 ppt and 32 ppt, a phenomenon which probably reflected the advantage of a reduction in osmoregulatory work in an iso-osmotic environment.  相似文献   

3.
This study was performed to estimate the nitrite toxicity to southern flounder, Paralichthys lethostigma, in brackish water (7.5 ppt of salinity). For a LC50 test, 20 fingerlings (5.7 ± 0.4 cm) in each aquarium (15 L) were exposed to the concentrations of 0, 1, 5, 10, 15, 30, 60, 120, and 240 mg NO2?‐N/L in duplication for 10 d. Median lethal concentration at 96 h (96‐h LC50) was calculated as 81.6 mg NO2?‐N/L. For a verification test, young flounder (164.2 ± 9.1 g) were exposed to a simulated culture condition in recirculating systems (1000 L). Sodium nitrite was not added to control system, whereas it was added to Treatment system 1 (TS 1) and Treatment system 2 (TS 2) to maintain nitrite concentrations of 20 and 30 mg NO2?‐N/L, respectively. The plasma nitrite concentrations of the young flounder in TS 1 and TS 2 were 4.5 and 6.6 mg NO2?‐N/L, respectively, after 2 wk. At this time, the methemoglobin percentages in TS 1 and TS 2 reached 85.8 and 89.7%, and survival rates were 37.5 and 25.0%, respectively. The results of these tests indicate that southern flounder do not concentrate nitrite in blood from the environment, but they seem to be more sensitive to nitrite compared with other species that do not concentrate nitrite.  相似文献   

4.
The effects of nitrite concentration on larval development of Amazon river prawn, Macrobrachium amazonicum, were studied in laboratory. In Experiment 1, larvae were reared in 600‐mL glass beakers filled with 300‐mL water with nitrite concentration of 0, 0.2, 0.4, 0.8 and 1.6 mg/L NO2‐N. In Experiment 2, total ammonia nitrogen (TAN, NH3‐N + NH4‐N) excretion were analyzed in zoea (Z) I, III, VII and IX exposed to 0, 0.4, 0.8 and 1.6 mg/L NO2‐N. In both experiments each treatment was conducted in five replicates. The experiments were carried out in test solutions at 10 salinity, constant temperature 30 C and 12:12 h daylight : darkness regime. Survival, productivity, weight gain and larval stage index decreased linearly with increasing ambient nitrite concentration. However, there was no significant difference among larvae reared at concentration ranging from 0 to 0.8 mg/L NO2‐N by ANOVA in all variables. Individual ammonia‐N and mass‐specific ammonia‐N excretion increased in ZI and ZIX, was almost constant in ZIII and decreased in ZVII from 0 to 1.6 mg/L NO2‐N. The relationship between individual TAN and body mass suggested that 1.6 mg/L NO2‐N stress the larvae. Despite of the effects of nitrite on larvae follow a dose‐dependent response and shows large variability among individuals, levels below 0.8 mg/L may be used as a general reference in commercial hatcheries, which should be applied carefully.  相似文献   

5.
The tolerance of Litopenaeus vannamei larvae to increasing concentrations of total ammonia nitrogen (TAN) using a short‐term static renewal method at 26°C, 34 g L?1 salinity and pH 8.5 was assessed. The median lethal concentration (24 h LC50) for TAN in zoea (1‐2‐3), mysis (1‐2‐3) and postlarvae 1 were, respectively, 4.2‐9.9‐16.0; 19.0‐17.3‐17.5 and 13.2 mg L?1TAN (0.6‐1.5‐2.4; 2.8‐2.5‐2.6 and 1.9 mg L?1 NH3‐N). The LC50 values obtained in this study suggest that zoeal and post‐larval stages are more sensitive to 24 h ammonia exposure than the mysis stage of L. vannamei larvae. On the basis of the ammonia toxicity level (24 h LC50) at zoea 1, we recommend that this level does not exceed 0.42 mg L?1 TAN – equivalent to 0.06 mg L?1 NH3‐N – to reduce ammonia toxicity during the rearing of L. vannamei larvae.  相似文献   

6.
7.
Argyrosomus regius (3.0 ± 0.9 g) were exposed to different concentrations of ammonia in a series of acute toxicity tests by the static renewal method at three temperature levels (18, 22 and 26°C) at a pH of 8.2. Low temperature clearly increased the tolerance of the fish to total ammonia nitrogen (TAN) and unionized ammonia (NH3) (P < 0.05). While the 96‐h LC50 values of TAN were 19.79, 10.39 and 5.06 mg L?1, the 96‐h LC50 of NH3 were 1.00, 0.70 and 0.44 mg L?1 at 18, 22 and 26°C respectively. The safe levels of NH3 for A. regius was estimated to be 0.10, 0.07 and 0.04 mg L?1 at 18, 22 and 26°C respectively (P < 0.05). This study clearly indicates that A. regius is more sensitive to ammonia than other marine fish species cultured on the Mediterranean and Eastern Atlantic coasts.  相似文献   

8.
Meagre, Argyrosomus regius, is a candidate marine fish species for aquaculture diversification, presenting a high economic value in the Mediterranean. Tolerance of juvenile meagre to nitrite (NO2‐N) was determined relating to temperature. Fish (3.2 ± 0.6 g and 5.4 ± 0.9 cm) were exposed to different NO2‐N concentrations in a series of acute toxicity tests by the static renewal method at three temperatures (18, 22, and 26 C) at a pH of 8.0. Low temperature clearly increased tolerance to NO2‐N (P < 0.05). The 96‐h median lethal concentration (LC50) values of NO2‐N were 177.63, 139.55, and 49.61 mg/L, at 18, 22, and 26 C, respectively. The safe levels of NO2‐N for juvenile meagre were estimated to be 17.7, 13.9, and 4.9 mg/L at 18, 22, and 26 C, respectively (P < 0.05). This study indicates A. regius is more sensitive to nitrite than other marine fish species cultured in the Mediterranean.  相似文献   

9.
The acute tolerance of juvenile Florida pompano Trachinotus carolinus L. (mean weight±SE=8.1±0.5 g) to environmental unionized ammonia‐nitrogen (NH3‐N) and nitrite‐nitrogen (NO2‐N) at various salinities was determined via a series of static exposure trials. Median‐lethal concentrations (LC50 values) of NH3‐N and NO2‐N at 24, 48, and 96 h of exposure were calculated at salinities of 6.3, 12.5 and 25.0 g L?1 at 28 °C (pH=8.23–8.36). Tolerance of pompano to acute NH3‐N exposure was not affected by salinity, with 24, 48 and 96 h LC50 values ranging from 1.05 to 1.12, 1.00 to 1.08 and 0.95 to 1.01 mg NH3‐N L?1 respectively. Regarding NO2‐N, tolerance of pompano to this environmental toxicant was compromised at reduced salinities. Median‐lethal concentrations of NO2‐N to pompano at 24, 48 and 96 h of exposure ranged from 67.4 to 220.1, 56.9 to 140.7 and 16.7 to 34.2 mg NO2‐N L?1 respectively. The results of this study indicate that juvenile Florida pompano are relatively sensitive to acute NH3‐N and NO2‐N exposure, and in the case of the latter, especially at lower salinities.  相似文献   

10.
A comprehensive acute toxicity trial was conducted using a static water system to study the toxic effect of ammonia on haematology and enzyme profiles of Cirrhinus mrigala H. The LC50 of total ammonia‐nitrogen (TAN) was 11.8 mg L?1 TAN (1.029 mg L?1 NH3‐N). The sub‐lethal test revealed that with increasing concentration of TAN, the total erythrocyte counts were reduced in lower concentrations (1–4 mg L?1 TAN) followed by higher levels in fish exposed to higher concentrations (8–16 mg L?1 TAN). In contrast, the total leucocyte counts were opposite. With increasing concentration of TAN, haemoglobin and serum protein content were reduced, whereas the blood glucose level increased. As the concentration of ammonia increased, there was a reduction in acetylecholinesterase activity in the brain and liver; alkaline phosphatase activity in the serum, brain and gill; and acid phosphatase (ACP) activity in the gill. The activity of lactate dehydrogenase in the gill, liver, kidney and brain increased with increased concentration of ammonia. In addition, activities of ACP in the serum and brain, alanine aminotransferase in the serum, brain and gill, and aspartate aminotransferase in the serum, brain and gill were increased.  相似文献   

11.
False clownfish, Amphiprion ocellaris, is one of the most commercialized fish species in the world, highly produced to supply the aquarium market. The high stocking densities used to maximize fish production can increase ammonia and nitrite to toxic levels. In this study, A. ocellaris juveniles (1.20 ± 0.34 g) were exposed to six concentrations of ammonia ranged from 0.23 to 1.63 mg/L NH3-N and eight concentrations of nitrite (26.3–202.2 mg/L NO2 ?-N). The LC50- 24, LC50-48, LC50-72 and LC50-96 h were estimated to be 1.06, 0.83, 0.75 and 0.75 mg/L for NH3-N and 188.3, 151.01, 124.1 and 108.8 mg/L for NO2 ?-N. Analysis of gill lesions caused by sublethal concentrations of these nitrogenous compounds showed that both nitrogenous compounds induced tissue lesions such as hyperplasia of epithelium cells, hypertrophy of chloride cells and lamellar lifting to all concentrations tested. However, histopathological alterations were more conspicuous accordingly the increase of ammonia or nitrite in fish exposed to 0.57 mg/L NH3-N or 100 mg/L NO2 ?-N. Based on our results, we recommend to avoid concentrations higher than 0.57 mg/L of NH3-N and 25 mg/L of NO2-N in water.  相似文献   

12.
This study investigated the secondary stress responses of Paralichthys orbignyanus exposed to ammonia and nitrite and after recovery. Fish were exposed to 0.12, 0.28, and 0.57 mg NH3‐N/L, or 5.72, 10.43, and 15.27 mg NO2‐N/L for 10 d followed by the same time length for recovery. Ammonia‐ and nitrite‐free water was used as a control treatment. Blood samples were collected after 1, 5, and 10 d of exposure and after recovery. Fish exposed to ammonia presented lower and higher glucose levels after 10 d of exposure and recovery, respectively. Ammonia induced initial and transient ionic disturbances and metabolic alkalosis. Nitrite exposure caused hyperglycemia, increased plasma K+ levels, and respiratory alkalosis, whereas metabolic acidosis was observed after recovery. Increased proportion of monocytes and/or granulocytes and reduced number of lymphocytes were demonstrated in fish exposed to 0.28 mg NH3‐N/L (Day 1) and 10.43 mg NO2‐N/L (Day 5) and after recovery in the 0.28 and 0.57 mg NH3‐N/L treatments. Exposure to ammonia decreased the proportion of granulocytes on Day 5. In conclusion, exposure to concentrations at 0.12 mg NH3‐N/L and 5.72 mg NO2‐N/L provoked physiological disorders in Brazilian flounder. Nonetheless, fish exposed to 5.72 mg NO2‐N/L following a 10‐d recovery period showed complete resumption of homeostasis.  相似文献   

13.
Two experimental modules with different stocking densities (M1 = 70 and M2 = 120 shrimp /m2) were examined weekly over a culture cycle in tanks with low‐salinity water (1.9 g/L) and zero water exchange. Results showed survival rates of 87.7 and 11.9% in M1 and M2, respectively. Water temperature, pH, dissolved oxygen, electrical conductivity and chlorophyll a were not significantly (p > .05) different between modules. In contrast, the concentrations of nitrogen compounds were significantly (p < .05) different between modules, except nitrite‐N (M2 were 2.31 ± 1.38 mg/L N‐TAN, 0.18 ± 0.49 mg/L N‐NO2? and 6.83 ± 6.52 mg/L N‐NO3?; in M1: 0.97 ± 0.73 mg/L N‐TAN, 0.05 ± 0.21 mg/L N‐NO2? and 0.63 ± 0.70 mg/L N‐NO3?). When waters of both modules reached higher levels of ammonia and nitrite, histological alterations were observed in gills. The histological alterations index (HAI) was higher in M2 (5‐112) than in M1 (2‐22).  相似文献   

14.
The acute toxicities of copper were examined for Japanese flounder, Paralichthys olivaceus, and red sea bream, Pagrus major, in terms of fish size and water temperature. Artificial seawater of low pH of 5.4–6.7 was used as testing water to keep dissolved copper concentration at 0.04–41 mg Cu/L. Japanese flounder of 0.3–17 g and red sea bream of 0.5–13 g were exposed to different concentrations of copper for 96 h at 20 C under semistatic condition. Median‐lethal concentration for 96 h of Japanese flounder and red sea bream were 8.7–12.2 and 2.0–5.2 mg Cu/L, respectively. No significant relationships were observed between median‐lethal concentrations for 96 h and fish size for Japanese flounder, while the value decreased significantly with increasing fish size for red sea bream. Effect of water temperature on the acute toxicity was examined for Japanese flounder of 0.3 and 0.4 g at 10, 15, 20, and 25 C and red sea bream of 0.5 and 1.0 g at 12, 15, 20, and 25 C. Ninety‐six‐hour median‐lethal concentrations for Japanese flounder and red sea bream were 5.1–11.2 and 1.0–5.3 mg Cu/L, respectively. No significant relationships were observed between median‐lethal concentrations for 96 h and water temperature for both fish species.  相似文献   

15.
Eels cultured in recirculation systems are regularly confronted with high concentrations of nitrite, a well-known toxicant for fish. In this study, the acute toxicity of nitrite to European eel, Anguilla anguilla (L.), was assessed by determination of a 96-h LC50. The 96-h LC50 measured for eels was 143.7 ± 2.3 gm-3 NO2-N (mean SD), which is high compared with the LC50 for other fish species. The sublethal effects of nitrite on growth and feed utilization were evaluated in a feeding trial lasting 77 days, divided into an acclimation period and two experimental periods. Eels of 24 g on average were divided over 20 aquaria, connected to five separate recirculation systems. In each system, the desired nitrite concentration level was maintained by water suppletion and continuous addition of NaNO2. Fish were continuously exposed to levels of 0, 1, 5, 10 or 20 g m-3 NO2-N. Half of the experimental groups were fed ad libitum to study effects on feed intake, while the other half were fed a restricted ration to study effects on feed utilization. At the start and end of each experimental period, nitrite in the blood plasma, haemoglobin and methaemoglobin were measured. Fish weight and body composition were used to calculate specific growth rate and conversion efficiencies. In the range of concentrations studied, no significant effect of nitrite on maximum growth rate or feed utilization could be demonstrated. At the start of the experiment, low concentrations of nitrite were detected in the blood plasma, which suggests an ability of the eel to adapt to environmental nitrite. Nitrite, in the range normally encountered in intensive eel farms (max. 15 g m-3 NO2-N), can therefore be considered a factor of little significance.  相似文献   

16.
急性氨氮暴露对大弹涂鱼炎性反应相关基因表达的影响   总被引:3,自引:0,他引:3  
宋美泽  黎明  李健  袁莉霞  王日昕  石戈 《水产学报》2018,42(11):1704-1710
为研究急性氨氮胁迫对大弹涂鱼炎性反应相关基因表达的影响,实验挑选初始体质量为(15.14±0.05) g的健康大弹涂鱼幼鱼180尾,进行96 h的急性氨氮胁迫实验。结果显示,大弹涂鱼96 h氨氮半致死浓度为8.99 mg/L总氨氮(0.11 mg/L非离子氨,T-AN);氨氮胁迫后TNF基因的mRNA表达量分别于12和96 h时显著上调,96 h时表达量达到0 h时的2倍;IL-1基因的mRNA表达量12 h时显著上调,为0 h时表达量的6倍;氨氮胁迫后IL-6基因的mRNA表达量分别于12和96 h时显著上调,表达量达到0 h时的1.5倍;氨氮胁迫后IL-8基因的mRNA表达量在24 h时出现显著下调。研究表明,大弹涂鱼96 h氨氮半致死浓度为8.99 mg/L总氨氮;半致死浓度的氨氮胁迫48 h后,TNF、IL-1、IL-6和IL-8基因的mRNA表达量持续升高,推测过度炎性应激可能是导致鱼类氨中毒死亡的原因之一。  相似文献   

17.
The nitrification process is a widely used biological approach responsible for ammonia and nitrite removal in recirculating aquaculture system (RAS) biofilters. Given this pivotal role, the influence of different water quality parameter on nitrification efficiency is important information for RAS operations. One influencing parameter is salinity, and salinity fluctuations in freshwater RAS biofilters are reported to affect the nitrifying bacteria. This study investigated the effects of abrupt increase in salinity in freshwater RAS on substrate-dependent (1’-order) as well as substrate independent (0’-order) nitrification rates. A 100% inhibition was found for surface specific removal (STR) of total ammonia nitrogen (TAN) and surface specific nitrite removal (SNR) when salinity was abruptly increased to 25‰ and above. A fast turnover (i.e. steep decline in [NH4-N+] and [NO2-N]) were observed at lower salinities (≤10‰), while limited/no degradation of either ammonia or nitrite was seen at salinities above 25‰. At low substrate loading (1’-order process), removal rate constants (k1a) of 0.22 and 0.23 m d-1 were observed for ammonia and nitrite degradation, respectively, declining to 0.01 m d-1when adding marine RAS water increasing the salinity to 15‰. Similar observations followed at high nutrient loadings (0’-order process) with STR and SNR of 0.10 and 0.12 g N m-2 d-1, respectively, declining to 0.01 g N m-2 d-1 at 15‰. When salinities of 25‰ and 35‰ were applied, neither TAN nor nitrite degradation was seen. The results thus demonstrate a pronounced effect of salinity changes when freshwater RAS biofilters are subjected to fast/abrupt changes in salinity. RAS facility operators should be aware of such potential effects and take relevant precautions.  相似文献   

18.
Early larval stages of mud crab Scylla serrata were exposed to different concentrations of nitrite (40, 80 and 160 mg L−1 and a control, without added nitrite) and three salinity levels (25, 30 and 35 g L−1) using a static renewal method. No interactive effect of nitrite and salinity was detected. Estimated LT50 in 96‐h toxicity tests decreased in all stages with increasing nitrite concentrations in all salinity levels. The 96‐h LC50 values of nitrite‐N were 41.58, 63.04, 25.54, 29.98 and 69.93 mg L−1 for zoea 1, 2, 3, 4 and 5 respectively. As the larvae grew, they showed a progressive increase in tolerance to nitrite. The toxicity of nitrite to larvae increased with exposure time. The median lethal concentration was not affected by salinity. The chloride component of salinity within 25–35 g L−1 did not seem to be as effective in alleviating toxicity as has been reported in other crustacean species. Based on 96‐h LC50 and an application factor of 0.1, the ‘safe level’ of rearing mud crab larvae was calculated to be 4.16, 6.30, 2.55, 2.99 and 6.99 mg L−1 nitrite‐N for zoea 1, 2, 3, 4 and 5 respectively.  相似文献   

19.
Ammonia toxicity and morphological changes in gills of juvenile Japanese flounder Paralichthys olivaceus (5.76 ± 0.12 g) were investigated when fish were separately exposed to normal dissolved oxygen (DO) at 6.5 ± 0.5 mg L?1 and supersaturated oxygen at 16.0 ± 2.0 mg L?1 at different ammonia concentrations. Under normal oxygen, ammonia concentrations were tested from 0.04 (control) to 93.3 mg L?1 total ammonia nitrogen (TAN), whereas under oxygen supersaturation, ammonia concentrations ranged from 0.04 (control) to 226.7 mg L?1 TAN in the trial. After exposure to ammonia for 96 h, the ammonia LC50 for fish was 62.48 mg L?1 TAN (0.50 mg L?1 NH3–N) at normal oxygen and 160.71 mg L?1 TAN (0.65 mg L?1 NH3–N) at oxygen supersaturation. Light microscopic observations confirmed that gill damage in normal oxygen was more profound than in oxygen supersaturation when fish were exposed to the same level of TAN (93.3 mg L?1). Furthermore, electron microscopic scanning also showed more crimple, retraction and fibrosis on the secondary lamella surface in fish exposed to normal oxygen than those in fish exposed to supersaturated oxygen at the same TAN (93.3 mg L?1). This study suggests that supersaturated oxygen can increase ammonia tolerance in Japanese flounder through reducing gill damage by ammonia, which partially explains the merit of using pure oxygen injection in intensive fish farming.  相似文献   

20.
Hybrid seabream (Pagrus major♀ × Acanthopagrus schlegelii♂) grow quickly, with retarded gonadal growth and enhanced muscle nutritional composition. This F1 hybrid seabream is a new marine aquaculture fish in China. However, the response of hybrid seabream to transport is severe, which seriously restricts its promotion and development. Water quality and the physiological response of hybrid sea bream were studied at three fish transport densities (5, 10 and 20 g/L) during 8 hr of transport in a light van (60 km hr?1 and 25°C water temperature). We found that total ammonia–nitrogen and nitrite–nitrogen levels in the water of the highest density group increased sharply after 4 and 8 hr of transport. Cumulative survival of the fish in the 10 and 20 g/L groups (86.7% and 75% respectively) was significantly lower than in the 5 g/L group (100%) after 8 hr of transport (< .05). Serum cortisol and lactate levels were significantly higher after transport than pre‐stress levels, whereas the glucose level decreased significantly (< .05). Hepatic triglyceride and glycogen levels and superoxide dismutase and catalase activities were significantly lower in the 20 g/L group than in the 5 g/L group (< .05). The results show that high‐density transport increased ammonia–nitrogen and nitrite–nitrogen levels in the water as well as cortisol secretion and anaerobic metabolism in the F1 hybrid seabream, suggesting that total cholesterol and glycogen may be used to supply the energy demand and increased oxidative stress. These results will help to optimize the transport conditions for cultured hybrid seabream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号