共查询到20条相似文献,搜索用时 0 毫秒
1.
Fosse TK Toutain PL Spadavecchia C Haga HA Horsberg TE Ranheim B 《Journal of veterinary pharmacology and therapeutics》2011,34(4):338-349
The chiral pharmacokinetics and pharmacodynamics of ketoprofen were investigated in a placebo-controlled study in piglets after intramuscular administration of 6 mg/kg racemic ketoprofen. The absorption half-lives of both enantiomers were short, and S-ketoprofen predominated over R-ketoprofen in plasma. A kaolin-induced inflammation model was used to evaluate the anti-inflammatory, antipyretic and analgesic effects of ketoprofen. Skin temperatures increased after the kaolin injection, but the effect of ketoprofen was small. No significant antipyretic effects could be detected, but body temperatures tended to be lower in the ketoprofen-treated piglets. Mechanical nociceptive threshold testing was used to evaluate the analgesic effects. The piglets in the ketoprofen-treated group had significantly higher mechanical nociceptive thresholds compared to the piglets in the placebo group for 12-24 h following the treatment. Pharmacokinetic/pharmacodynamic modelling of the results from the mechanical nociceptive threshold testing gave a median IC(50) for S-ketoprofen of 26.7 μg/mL and an IC(50) for R-ketoprofen of 1.6 μg/mL. This indicates that R-ketoprofen is a more potent analgesic than S-ketoprofen in piglets. Estimated ED(50) for racemic ketoprofen was 2.5 mg/kg. 相似文献
2.
Twelve dogs were randomly divided into three groups. Group 1 dogs were given Escherichia coli endotoxin and then treated with flunixin meglumine. Group 2 dogs were given endotoxin as group 1, but untreated. Group 3 dogs were given flunixin meglumine alone. The dogs were monitored clinically and urine and serum samples were collected at regular intervals for 72 hours. All surviving dogs were humanely killed after 72 hours and examined for gross and histologic lesions. Group 1 dogs all survived 72 hours, but showed prerenal azotemia, hepatocellular damage, hemorrhagic enteritis, and numerous gastric ulcerations. Three of the four dogs in group 2 died before 72 hours. Group 2 dogs showed many of the same chemical and hemodynamic changes as group 1. They had severe hemorrhage into the intestinal lumen; however, there were no gastric ulcerations. Group 3 dogs all survived and showed little physical or hematologic change. The study suggested the following: 1) flunixin meglumine was an effective drug in ameliorating the fatal effects of canine endotoxemia, 2) the effects of endotoxin in combination with flunixin meglumine, at 1.1 mg/kg body weight, caused gastric ulcerations, and 3) in normal dogs flunixin meglumine at 1.1 mg/kg body weight did not cause severe side effects or gross lesions. 相似文献
3.
Pharmacokinetics of flunixin meglumine in dogs 总被引:4,自引:0,他引:4
The pharmacokinetics of flunixin meglumine, a potent nonsteroidal anti-inflammatory agent, were studied in 6 intact, awake dogs. Plasma samples were obtained up to 12 hours after IV administration of flunixin meglumine. Flunixin concentration was determined, using high performance liquid chromatography. Plasma data best fit a 2-compartment model. Distribution half-life was 0.55 hour; elimination half-life was 3.7 hours; volume of distribution (area) was 0.35 L/kg; volume of distribution at steady state was 0.18 L/kg; volume of the central compartment was 0.079 L/kg; and total body clearance was 0.064 L/hr/kg. Flunixin concentrations obtained over a 6-hour period in 3 dogs with septic peritonitis did not differ significantly from those obtained from healthy dogs. 相似文献
4.
《中国兽医杂志》2016,(2)
本文对自制氟苯尼考(FF)和氟尼辛葡甲胺(FM)复方制剂在猪体内的药代动力学进行了研究。试验选用健康断奶仔猪6头(30±5 kg),采用三周期交叉设计。FF给药剂量均为20 mg/kg体重。FM给药剂量均为2 mg/kg体重(以氟尼辛计),同一头猪不同给药的时间间隔为2周,给药途径均为颈部肌肉注射。试验结果显示,自制复方制剂与两种进口市售单方制剂在动物体内的药代过程基本一致,氟苯尼考和氟尼辛葡甲胺相对生物利用度分别为99.89%和108.78%,表明本复方注射液中两种药物的药效均与国外进口单方产品相当。一次给药即可获得两种进口单方制剂同时给药的良好疗效,且具有方便临床给药、减少动物应激的显著优点。 相似文献
5.
Pharmacokinetics of flunixin meglumine in the cow 总被引:6,自引:0,他引:6
Plasma levels of flunixin were measured in heifers after a single intravenous injection (1.1 mg kg-1), using high performance liquid chromatography. Plasma concentration versus time curves were best described by a two compartment model. The distribution phase (alpha) half-life was 0.294 hours, the elimination phase (beta) half-life was 8.12 hours and the volume of distribution was 1050 ml kg-1. 相似文献
6.
7.
The pharmacokinetics of flunixin meglumine in the sheep 总被引:4,自引:0,他引:4
E. M. WELSH Q. A. McKELLAR A. M. NOLAN 《Journal of veterinary pharmacology and therapeutics》1993,16(2):181-188
Flunixin meglumine was administered intravenously and intramuscularly in sheep and the pharmacokinetics of the drug studied. Plasma concentrations of flunixin were measured by high performance liquid chromatography. The decline in plasma- flunixin concentration with time was best fitted by a triexponential equation. The pharmacokinetics following intravenous administration of 1.0 mg/kg indicate that flunixin has a rapid distribution half-life (t½π = 2.3 min), a slow body clearance rate (Clb = 0.6 ml/kg/min) and an elimination half-life of 229 min. Similarly, at 2.0 mg/kg, flunixin is rapidly distributed from the plasma, t½π = 2.7 min, has a slow body clearance rate (C/b = 0.7 mk/lg/min) and an elimination half-life of 205 min.
Following intramuscular injection flunixin is rapidly and well absorbed from the injection site. It had a mean maximum concentration ( Cmax ) of ≫5.9 μg/ml when administered at a dose rate of 1.1 mg/kg, and a relative bioavailability of 70%. Plasma concentrations increase proportionally to dose over the range 1.1 mg/kg-2.2 mg/kg when administered by the intramuscular route. 相似文献
Following intramuscular injection flunixin is rapidly and well absorbed from the injection site. It had a mean maximum concentration ( C
8.
Disposition and excretion of flunixin meglumine in horses 总被引:3,自引:0,他引:3
L R Soma E Behrend J Rudy R W Sweeney 《American journal of veterinary research》1988,49(11):1894-1898
The disposition of flunixin meglumine administered IV at a dosage of 1.1 mg/kg was described by a 2-compartment model; the alpha and beta half-lives (t1/2) were 0.61 and 1.5 hours, respectively. When administered IV at a rate of 2.2 mg/kg, the disposition was best described by a 3-compartment model, and the alpha, beta, and lambda t1/2 were 0.16, 1.52, and 6.00 hours, respectively. The zero-time plasma concentrations after flunixin meglumine was administered at 1.1 and 2.2 mg/kg were 9.3 +/- 0.76 and 21.5 +/- 7.4 mg/L, respectively. The bioavailability after oral administration of 1.1 mg/kg was 85.8%. The absorption t1/2 was 0.57 hours, with a peak concentration of 2.50 +/- 1.25 mg/L. The cumulative urinary recoveries for IV and oral administrations were 61.0% and 63.3%, respectively, of the dose for the 12-hour collection period. The final asymptotic points of urine excretion after IV and oral administrations were 406.4 +/- 65.5 and 357.7 +/- 53.5 mg, respectively, which represented 75.5 and 77.5% of the drug accounted for between 30 and 35 hours after administration. Flunixin meglumine was rapidly excreted in urine over a 2- to 4-hour period after drug administration and was highly bound to protein in plasma. 相似文献
9.
10.
OBJECTIVE: To examine pharmacokinetic interactions of flunixin meglumine and enrofloxacin in dogs following simultaneously administered SC injections of these drugs. ANIMALS: 10 Beagles (4 males and 6 females). PROCEDURE: All dogs underwent the following 3 drug administration protocols with a 4-week washout period between treatments: flunixin administration alone (1 mg/kg, SC); simultaneous administration of flunixin (1 mg/kg, SC) and enrofloxacin (5 mg/kg, SC); and enrofloxacin administration alone (5 mg/kg, SC). Blood samples were collected from the cephalic vein at 0.5, 0.75, 1, 1.5, 2, 3, 5, 8, 12, and 24 hours following SC injections, and pharmacokinetic parameters of flunixin and enrofloxacin were calculated from plasma drug concentrations. RESULTS: Significant increases in the area under the curve (32%) and in the elimination half-life (29%) and a significant decrease (23%) in the elimination rate constant from the central compartment of flunixin were found following coadministration with enrofloxacin, compared with administration of flunixin alone. A significant increase (50%) in the elimination half-life and a significant decrease (21%) in the maximum plasma drug concentration of enrofloxacin were found following coadministration with flunixin, compared with administration of enrofloxacin alone. CONCLUSIONS AND CLINICAL RELEVANCE: The observed decrease in drug clearances as a result of coadministration of flunixin and enrofloxacin indicates that these drugs interact during the elimination phase. Consequently, care should be taken during the concomitant use of flunixin and enrofloxacin in dogs to avoid adverse drug reactions. 相似文献
11.
12.
M. D. Kleinhenz N. K. Van Engen P. J. Gorden B. KuKanich S. M. Rajewski P. Walsh J. F. Coetzee 《Journal of veterinary pharmacology and therapeutics》2016,39(6):612-615
This study describes the pharmacokinetics of topical and intravenous (IV) flunixin meglumine in Holstein calves. Eight male Holsteins calves, aged 6 to 8 weeks, were administered flunixin at a dose of 2.2 mg/kg intravenously. Following a 10‐day washout period, calves were dosed with flunixin at 3.33 mg/kg topically (transdermal). Blood samples were collected at predetermined times from 0 to 48 h for the intravenous portions and 0 to 72 h following topical dosing. Plasma drug concentrations were determined using liquid chromatography with mass spectroscopy. Pharmacokinetic analysis was completed using noncompartmental methods. The mean bioavailability of topical flunixin was calculated to be 48%. The mean AUC for flunixin was determined to be 13.9 h × ug/mL for IV administration and 10.1 h × ug/mL for topical administration. The mean half‐life for topical flunixin was 6.42 h and 4.99 h for the intravenous route. The Cmax following topical application of flunixin was 1.17 μg/mL. The time to maximum concentration was 2.14 h. Mean residence time (MRT) following IV injection was 4.38 h and 8.36 h after topical administration. In conclusion, flunixin when administered as a topical preparation is rapidly absorbed and has longer half‐life compared to IV administration. 相似文献
13.
Prats C El Korchi G Giralt M Cristòfol C Peña J Zorrilla I Saborit J Pérez B 《Journal of veterinary pharmacology and therapeutics》2005,28(6):525-530
A commercial doxycycline formulation was administered in drinking water to 12 pigs at the recommended dose of 10 mg/kg daily for 5 days. The mean plasma concentration at steady-state was 1.37 +/- 1.21 microg/mL, which was reached at 68 +/- 27.2 h postadministration. Absorption and elimination half-life values were 7.20 +/- 2.42 and 7.01 +/- 2.10 h, respectively. Most plasma concentrations during dosing were higher than the minimum inhibitory concentrations (MICs) described for the main porcine bacterial pathogens of the respiratory tract (Pasteurella multocida, Actinobacillus pleuropneumoniae, Bordetella bronchiseptica and Mycoplasma hyopneumoniae). It is concluded that when pigs were treated with doxycycline in drinking water at the recommended rate, therapeutically effective concentrations were achieved throughout the treatment period, supporting the clinical use of this tetracycline in the control of respiratory infections. However, inter-animal differences were marked. 相似文献
14.
Jesús Mendoza Lilia Gutierrez Jos . Gutirrez Felipe A. Bustos Hector Sumano 《Journal of veterinary pharmacology and therapeutics》2019,42(3):300-308
The pharmacokinetics, PK/PD ratios, and Monte Carlo modeling of enrofloxacin HCl‐2H2O (Enro‐C) and its reference preparation (Enro‐R) were determined in cows. Fifty‐four Jersey cows were randomly assigned to six groups receiving a single IM dose of 10, 15, or 20 mg/kg of Enro‐C (Enro‐C10, Enro‐C15, Enro‐C20) or Enro‐R. Serial serum samples were collected and enrofloxacin concentrations quantified. A composite set of minimum inhibitory concentrations (MIC) of Leptospira spp. was utilized to calculate PK/PD ratios: maximum serum concentration/MIC (Cmax/MIC90) and area under the serum vs. time concentration of enrofloxacin/MIC (AUC0‐24/MIC90). Monte Carlo simulations targeted Cmax/MIC = 10 and AUC0‐24/MIC = 125. Mean Cmax obtained were 6.17 and 2.46 μg/ml; 8.75 and 3.54 μg/ml; and 13.89 and 4.25 μg/ml, respectively for Enro‐C and Enro‐R. Cmax/MIC90 ratios were 6.17 and 2.46, 8.75 and 3.54, and 13.89 and 4.25 for Enro‐C and Enro‐R, respectively. Monte Carlo simulations based on Cmax/MIC90 = 10 indicate that only Enro‐C15 and Enro‐C20 may be useful to treat leptospirosis in cows, predicting a success rate ≥95% when MIC50 = 0.5 μg/ml, and ≥80% when MIC90 = 1.0 μg/ml. Although Enro‐C15 and Enro‐C20 may be useful to treat leptospirosis in cattle, clinical trials are necessary to confirm this proposal. 相似文献
15.
16.
Giorgi M Cuniberti B Ye G Barbero R Sgorbini M Vercelli C Corazza M Re G 《Veterinary journal (London, England : 1997)》2011,190(1):143-149
Tepoxalin is a non-steroidal anti-inflammatory drug with analgesic, anti-inflammatory, and antipyretic properties and has been recently introduced into veterinary medicine. The aim of this study was to evaluate the pharmacokinetic/pharmacodynamic (PK/PD) profile of tepoxalin to assess whether it would be suitable for clinical use in horses. Six female fasting/fed horses were given 10mg/kg tepoxalin orally in a cross-over study. After administration, tepoxalin underwent rapid and extensive hydrolytic conversion to its carboxylic acid metabolite RWJ-20142. In animals that had been fed, the plasma concentrations of tepoxalin were undetectable, whereas in fasting animals they were close to the limit of quantification of the method. No differences between the fasting/fed groups in RWJ-20142 plasma concentrations were shown. Tepoxalin showed a strong and long-lasting ex vivo inhibitory activity against cyclooxygenase (COX)-1, mainly due to its main metabolite RWJ-20142. Tepoxalin and RWJ-20142 do not seem to possess either COX-2 or 5-lipoxygenase inhibitory activity in the horse. These features suggest that the drug is a selective COX-1 inhibitor in horses, with no significant anti-inflammatory activity. Thus, its long term use in equine practice could be of concern. 相似文献
17.
18.
Presently, in the United States, there are no nonsteroidal anti-inflammatory drugs, except aspirin, that are approved for use in animals intended for food production. Use of phenylbutazone, flunixin meglumine, and dipyrone for treatment of food animals may be considered in special circumstances. Such use requires strict adherence to FDA guidelines for extra-label use of drugs. Flunixin meglumine and phenylbutazone have been shown to have a favorable influence on the course and outcome of certain diseases. This report reviews information concerning the pharmacology, pharmacokinetics, and therapeutics of phenylbutazone and flunixin as they have been used on an experimental basis in food animals. 相似文献
19.
20.
Coakley M Peck KE Taylor TS Matthews NS Mealey KL 《American journal of veterinary research》1999,60(11):1441-1444
OBJECTIVE: To compare serum disposition of flunixin meglumine after i.v. administration of a bolus to horses, donkeys, and mules. ANIMALS: 3 clinically normal horses, 5 clinically normal donkeys, and 5 clinically normal mules. PROCEDURE: Blood samples were collected at time zero (before) and 5, 10, 15, 30, and 45 minutes, and at 1, 1.25, 1.5, 1.75, 2, 2.5, 2.75, 3, 3.5, 4, 4.5, 5, 5.5, 6, and 8 hours after i.v. administration of a bolus of flunixin meglumine (1.1 mg/kg of body weight). Serum was analyzed in duplicate by the use of high-performance liquid chromatography for determination of flunixin meglumine concentrations. The serum concentration-time curve for each horse, donkey, and mule were analyzed separately to estimate noncompartmental pharmacokinetic variables RESULTS: Mean (+/-SD) area under the curve for donkeys (646 +/- 148 minute x microg/ml) was significantly less than for horses (976 +/- 168 minute x microg/ml) or for mules (860 +/- 343 minute x microg/ml). Mean residence time for donkeys (54.6 +/- 7 minutes) was significantly less than for horses (110 +/- 24 minutes) or for mules (93 +/- 30 minutes). Mean total body clearance for donkeys (1.78 +/- 0.5 ml/kg/h) was significantly different from that for horses (1.14 +/- 0.18 ml/kg/h) but not from that for mules (1.4 +/- 0.5 ml/kg/h). Significant differences were not found between horses and mules for any pharmacokinetic variable. CONCLUSION AND CLINICAL RELEVANCE: Significant differences exist with regard to serum disposition of flunixin meglumine in donkeys, compared with that for horses and mules. Consequently, flunixin meglumine dosing regimens used in horses may be inappropriate for use in donkeys. 相似文献