首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 323 毫秒
1.
2.
3.
4.
5.
Two common endocrine disorders, pituitary pars intermedia dysfunction and equine metabolic syndrome, predispose horses and ponies to laminitis and may even induce the condition. The exact mechanisms involved in endocrinopathic laminitis have not been elucidated but hyperinsulinaemia and insulin resistance are currently being investigated. Obesity and regional adiposity may also contribute to laminitis susceptibility through the release of inflammatory cytokines and adipokines. In the case of pituitary pars intermedia dysfunction, glucocorticoid excess is likely to weaken hoof structures, alter vascular dynamics within the foot and induce or exacerbate insulin resistance. This review will summarise current theories regarding the pathophysiology of endocrinopathic laminitis and provide recommendations for the diagnosis and management of these common equine endocrine disorders.  相似文献   

6.
7.
8.
Equine metabolic syndrome (EMS) is prevalent in the equine population, and somatostatin analogs might be useful for diagnosis and/or treatment of EMS in horses. The purpose of this study was to evaluate the glucose and insulin responses to subcutaneous and intravenous administration of somatostatin. Six healthy research horses were included in this prospective study. An initial pilot study was performed to assess several different doses (10–22 µg/kg [4.5–10 µg/lb]) in two horses, then a final dosage of 22 µg/kg (10 µg/lb) was administered to six horses IV and SQ in a two‐period randomized cross‐over study performed over a 3‐month study period. Blood samples were collected for measurement of plasma insulin and glucose concentrations during a 24‐hr study period. Both IV and SQ somatostatin resulted in decreased insulin and increased glucose concentrations. SQ somatostatin resulted in a longer clinical effect, with return to baseline insulin occurring at 1.5 hr postadministration, versus 45 min for IV. Both IV and SQ administration of somatostatin to normal horses resulted in decreased insulin and increased glucose concentrations, likely due to suppression of insulin secretion by somatostatin. A more prolonged effect was seen following SQ administration as compared to IV administration, and no adverse effects were noted at varying doses. This study provides additional information regarding the effect of somatostatin administration on insulin and glucose concentrations in clinically healthy horses.  相似文献   

9.
10.
11.
Diet-induced central obesity and insulin resistance in rabbits   总被引:4,自引:0,他引:4  
The present study was designed to examine whether rabbits fed a diet containing high fat and sucrose could develop obesity and insulin resistance (IR), the major pathophysiological features of metabolic syndrome. Male Japanese white rabbits were fed either a normal chow diet (control) or high fat and sucrose diet (HFSD) for 36 weeks. Plasma levels of triglycerides (TG), total cholesterol (TC), glucose and insulin were measured. To evaluate glucose metabolism, we performed an intravenous glucose tolerance test. In addition, we compared adipose tissue accumulation in HFSD-fed rabbits with that in normal rabbits. HFSD constantly and significantly led to an increase in body weight of HFSD-fed rabbits, caused by significantly higher visceral adipose tissue accumulation. Although there were no differences in plasma TG, TC, glucose, insulin levels and blood pressure between the two groups, HFSD-fed rabbits showed impaired glucose clearance associated with higher levels of insulin secretion compared to control rabbits. Our results showed that HFSD induced IR and increased adipose accumulation in rabbits, suggesting that HFSD-fed rabbits may become a model for research on human IR and obesity.  相似文献   

12.
13.
14.
15.
16.
Reasons for performing study: Insulin resistance (IR) is a risk factor for pasture‐associated laminitis in equids and alimentary carbohydrate overload may trigger laminitis. Whether glucose metabolism responses to carbohydrate overload are more pronounced in insulin‐resistant horses requires further study. Hypothesis: Horses pretreated with endotoxin to alter insulin sensitivity differ significantly in their glucose and insulin responses to carbohydrate overload. Methods: Horses (n = 24) were divided into 3 groups. A lipopolysaccharide (LPS; n = 8) group that received endotoxin as an 8 h 7.5 ng/kg bwt/h i.v. continuous rate infusion, an oligofructose (OF; n = 8) group that received an infusion of saline followed by 5 g/kg bwt OF via nasogastric intubation, and a LPS/OF (n = 8) group that received LPS followed 16 h later by OF. Glucose and insulin dynamics were evaluated at ‐24 h and 48 h using the frequently sampled i.v. glucose tolerance test and minimal model analysis. Physical examinations and haematology were performed and the severity of laminitis assessed. Results: Horses receiving LPS developed leucopenia and both LPS and OF induced clinical signs consistent with systemic inflammation. Insulin sensitivity significantly decreased (P<0.001) over time, but responses did not differ significantly among groups. Time (P<0.001) and treatment × time (P = 0.038) effects were detected for the acute insulin response to glucose, with mean values significantly increasing in LPS and LPS/OF groups, but not the OF group. Five horses in the LPS/OF group developed clinical laminitis compared with 0 and 2 horses in the LPS and OF groups, respectively. Conclusions: Endotoxaemia and carbohydrate overload reduce insulin sensitivity in horses. Endotoxin pretreatment does not affect the alterations in glucose metabolism induced by carbohydrate overload. Potential relevance: Insulin sensitivity decreases after carbohydrate overload in horses, which may be relevant to the development of pasture‐associated laminitis.  相似文献   

17.
18.
Equine metabolic syndrome (EMS) is a worldwide disease in horses that parallels human diabetes mellitus type 2. In both diseases, patients show an altered peripheral insulin sensitivity as a key feature. In humans, multiple studies have demonstrated the beneficial effect of magnesium supplementation on insulin sensitivity. However, serum magnesium levels vary and are therefore not a reliable indicator of the patients’ magnesium status. Determining the intracellular free magnesium concentration appears to be a more sensitive diagnostic indicator. In this study, the free intracellular magnesium concentration was measured using mag‐fura 2 spectrophotometry in blood lymphocytes in 12 healthy, non‐obese horses at 9 a.m., 12 a.m. and 4 p.m. to establish reference ranges according to a protocol designed for human blood lymphocytes. Additionally, the serum magnesium concentration was measured. In all horses, the total serum magnesium concentration was within the reference range. The mean free magnesium concentration in blood lymphocytes of all horses was 0.291 ± 0.067 mmol/L with no significant difference between the time points. The reference range for the free intracellular magnesium concentration in equine lymphocytes was set at 0.16–0.42 mmol/L. The established values are slightly lower than those in healthy humans. The designed protocol for the measurement of the intracellular free magnesium concentration might be an excellent research tool to assess the cellular magnesium status and to reliably diagnose an altered magnesium homeostasis in EMS. Further studies shall elucidate possible alterations in cellular magnesium status in horses with EMS.  相似文献   

19.
Reasons for performing study: Hyperinsulinaemia has been implicated in the pathogenesis of laminitis; however, laminar cell types responding to insulin remain poorly characterised. Objectives: To identify laminar cell types expressing insulin receptor (IRc) and/or insulin‐like growth factor‐1 receptor (IGF‐1R); and to evaluate the effect of dietary nonstructural carbohydrate (NSC) on their expression. Methods: Mixed‐breed ponies (n = 22) received a conditioning hay chop diet (NSC ~6%); following acclimation, ponies were stratified into lean (n = 11, body condition score [BCS]≤4) or obese (n = 11, BCS ≥7) groups and each group further stratified to remain on the low NSC diet (n = 5 each for obese and lean) or receive a high NSC diet (total diet ~42% NSC; n = 6 each for obese and lean) for 7 days. Laminar samples were collected at the end of the feeding protocol and stained immunohistochemically for IRc and IGF‐1R. The number of IRc(+) cells was quantified; distribution of IGF‐1R was qualitatively described. Laminar IRc content was assessed via immunoblotting. Results: The number of IRc(+) cells was greater in the laminae of high NSC ponies than low NSC ponies (P = 0.001); there was a positive correlation between the change in serum insulin concentration and number of IRc(+) cells (r2= 0.74; P<0.0001). No epithelial IRc(+) cells were observed; IRc(+) cells were absent from the deep dermis. Analysis of serial sections identified IRc(+) cells as endothelial cells. The distribution of IGF‐1R was more extensive than that of IRc, with signal in vascular elements, epithelial cells and fibroblasts. Conclusions: Increased dietary NSC results in increased laminar endothelial IRc expression. Laminar keratinocytes do not express IRc, suggesting that insulin signalling in laminar epithelial cells must be mediated through other receptors (such as IGF‐1R). Potential relevance: Manipulation of signalling downstream of IRc and IGF‐1R may aid in treatment and prevention of laminitis associated with hyperinsulinaemia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号