首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
宋博文  杨航  冷向军  徐禛  姚文祥  李小勤 《水产学报》2023,47(5):059613-059613
为确定大口黑鲈幼鱼对饲料中锰的需求量,在含锰5.2 mg/kg的半精制饲料中分别添加0、4、8、16、32和64 mg/kg锰(以MnSO4·H2O形式),制成6种不同锰水平的饲料(5.2、9.6、13.5、20.7、 38.3和67.9 mg/kg),投喂初始体重(16.00±0.07) g的大口黑鲈幼鱼10周。结果显示,在基础饲料中添加锰,可显著提高大口黑鲈幼鱼的增重率,降低饲料系数,各组增重率与饲料系数在锰含量达到13.5 mg/kg后基本稳定。随饲料中锰含量的增加,血清T-SOD、Mn-SOD活性和全鱼、脊椎骨中的锰含量上升,并在饲料锰含量达到20.7mg/kg后趋于稳定,而血清丙二醛含量则表现为下降的趋势。全鱼铁、骨铁、骨锌和全鱼锰沉积率随饲料锰含量的增加而下降。研究表明,在半精制饲料中补充锰可以促进大口黑鲈幼鱼生长、提高饲料利用率、血清抗氧化能力、全鱼和骨锰的沉积。以增重率、饲料系数、全鱼锰和骨锰为评价指标,经折线回归分析,大口黑鲈幼鱼对饲料中锰的需求量分别为18.3、20.5、21.1和23.4 mg/kg干物质。  相似文献   

2.
Replacement of fish meal with plant products in aquafeeds results in the elimination of dietary compounds which may be important for optimal growth and physiology. A study was conducted to determine if supplementation with macro‐minerals and/or inositol would improve performance of rainbow trout (Oncorhynchus mykiss) fed a plant‐based diet. Four iso‐caloric and iso‐nitrogenous diets (40 g kg?1 protein and 15 g kg?1 lipid) were formulated and consisted of a fish meal‐based control diet (control) and three plant‐based experimental diets. Plant‐based diets were supplemented with either macro‐minerals and inositol (+MM+I), no macro‐minerals with inositol (?MM+I), and no macro‐minerals and no inositol (?MM?I). Sodium chloride, potassium chloride and magnesium oxide were the sources used in the macro‐mineral premix. There was no effect of diet on survival, but there was an effect of diet on weight gain, FCR, feed intake, HSI and nutrient retentions. Significant liver pathology was observed in trout fed plant‐based diets without MM supplementation. Supplementation of MM and inositol significantly improved weight gain of trout fed a plant‐based diet. Supplementation of MM and/or inositol also improved PRE and ERE. This study demonstrates the importance of supplementing these nutrients to trout fed fish meal free diets.  相似文献   

3.
A 9‐wk feeding experiment was conducted to investigate the effect of dietary ascorbic acid (AA) on growth performance and tissue compositions of Caspian brown trout. The fish (9.64 ± 0.62 g) were held in tanks at a density of 40 fish per tank. Five experimental diets were prepared by providing of 9.8, 43.8, 89.4, 188.5, and 384.2 mg AA equivalent/kg diet, respectively. At the end of the trial, an increasing trend was found on growth performance with the increase of AA supplementation. Fish fed diet supplemented with more than 188.5 mg/kg AA also had significantly higher bone collagen than fish fed diets containing 9.8 mg/kg AA (P < 0.05). According to the broken line, the dietary AA requirement of Caspian brown trout fingerlings was 177.24 mg AA/kg diet based on the weight gain, 186.97 mg AA/kg diet based on the protein tissue, and 163.95 mg AA/kg diet based on the bone collagen. Serum lysozyme and alternative complement pathway activities were also influenced by graded level of AA supplementation to the diet. The present research clearly indicated that AA is required for normal growth and enhancement of immune response in Caspian brown trout fingerlings.  相似文献   

4.
A feeding trial was conducted to quantify the effects of phytase at levels of 0, 500, 1,000, 2,000, 4,000, and 8,000 units (U) per kg diet on utilization of dietary protein and minerals by fingerling (12 g) channel catfish Ictalurus punctatus fed an all‐plant‐protein diet composed of soybean meal, corn, and wheat middlings. The effects of phytase on dephosphorylation of phytic acid (phytate) in the alimentary tract of catfish also were determined. After 14 wk, mean weight gains (30.2–43.9 g/fish), feed conversion ratios (2.27–2.40 g feed consumed/g weight gain), protein efficiency ratios (1.47–1.61 g weight gaid/g protein consumed), and dietary protein retentions (23.8–26.7%) did not differ significantly (P > 0.05) among treatment groups. A digestibility trial conducted after the feeding trial showed no difference (P > 0.05) in mean digestibility of diet dry matter (49.0–58.3%) or crude protein (85.4‐88.5%) among treatment groups. Concentrations of ash (46.7–48.6%), calcium (Ca, 17.9–18.5%), phosphorus (P, 9.1–9.5%), and manganese (Mn, 65.5–74.1 mg/kg) were significantly higher (P ≤ 0.05) in bone of fish fed ≥ 500 U/kg than in bone of fish fed 0 U/kg (ash, 43.5%; Ca, 16.4%; P, 8.4%; and Mn, 49.0 ma/kg), but concentrations of these minerals did not differ (P > 0.05) in bone of fish fed ≥ 500 Uk/g. The magnesium (Mg) content of bone did not differ (P > 0.05) between fish fed 0 U/kg (0.29%) or 500 U/kg (0.34%), but was significantly lower in fish fed 0 U/kg than in fish fed ≥ 1,000 U/kg (0.35–37%). Bone Mg levels did not differ (P > 0.05) among fish fed ≥ 500 U/kg. The amount of zinc (Zn) in bone of fish fed 8,000 U/kg (153.3 mg/kg) was significantly higher than that in fish fed 0 U/kg (115.7 mg/kg) or 500 U/kg (130.3 mg/ kg), but did not differ from Zn levels in bone of fish fed 1,000–4,000 U/kg (134.5–135.8 mg/ kg). Dephosphorylation of phytate occurred primarily in the stomach within 2–8 h after diet ingestion, depending on the level of phytase supplementation. Initial levels of total phytate in the diet decreased 32–94% in stomach contents of fish fed l,000–8,000 U/kg within 2 h after feeding. Eight hours after feeding, stomach contents of fish fed ≥ 1,000 U/kg contained less than 6% of initial total dietary phytate. Stomach contents of fish fed 500 U/kg retained 92% of initial total dietary phytate 2 h after feeding and 15% of total dietary phytate 8 h after feeding. Results of this study indicate that phytase supplementation at levels up to 8,000 U/kg diet did not increase weight gain or improve dietary protein utilization of channel catfish fed an all‐plant‐protein diet. Addition of phytase at a level of 1,000 U/kg diet was sufficient to significantly increase the Ca, P, Mg, and Mn content of bone, relative to fish fed an unsupplemented diet, and significantly decrease the quantity of total phytate in feces. A phytase level of 8,000 U/kg diet significantly increased the bioavailability of naturally occurring Zn in feed ingredients and increased the rate of phytate dephosphorylation in the stomach, compared with a diet containing no added phytase. Increased utilization of naturally occurring minerals in feed ingredients reduces the need for mineral supplements in diets and results in decreased elimination of minerals in feces. Thus, use of phytase in catfish feeds can be expected to provide both economic and environmental benefits.  相似文献   

5.
Rainbow trout (23.1 ± 0.4 g) were fed either a fishmeal‐ or plant‐based diet supplemented with various levels of zinc (0, 15, 30, 60 or 120 mg kg?1) for 12 weeks. Trout fed the fishmeal diet had significantly higher weight gain than with the plant‐based diet. Zinc supplementation in the fishmeal diet had no effect on growth performance, suggesting that additional dietary supplementation of zinc is not required. However, in trout fed the plant‐based diet, growth increased significantly up to 30 mg kg?1 zinc after which growth was not affected. Trout fed the plant‐based diet containing no zinc exhibited severe growth retardation, and in fish fed the 0 and 15 mg kg?1 zinc diets, cataracts were present. Use of broken‐line quadratic modelling suggests that dietary supplementation of zinc needed to prevent deficiency and promote adequate growth in rainbow trout fed the plant‐based diet in this study was 30.1 mg kg?1 (80 mg kg?1 total dietary zinc). This is higher than the NRC (2011, Nutrient Requirements of Fish and Shrimp) dietary recommended level of 15 mg kg?1 for rainbow trout. Following the NRC recommendation could lead to zinc deficiency in rainbow trout fed a plant‐based diet.  相似文献   

6.
To investigate the effects of dietary tryptophan on growth and glycometabolism in juvenile blunt snout bream, 450 fish (initial weight 23.33 ± 0.03 g) were fed six practical diets with graded levels of tryptophan (from 0.79 g/kg to 5.96 g/kg dry matter) for 8 weeks. Results showed that final weight, per cent weight gain (PWG), protein efficiency rate, feed intake and feed conversion ratio (FCR) were significantly improved by 2.80 g/kg diet. The maximum values of protein and ash were observed in 2.80 g/kg diet, while moisture was minimum. Lipid content of fish fed 3.95 g/kg diet was significantly higher than other diets. The highest plasma insulin‐like growth factor‐1 (IGF‐1) content was observed in 0.79 g/kg diet. In the liver, IGF‐1 mRNA levels were significantly downregulated by 2.80 g/kg dietary tryptophan, while glucokinase levels were by 3.95 g/kg, while glucose‐6‐phosphatase and phosphoenolpyruvate carboxykinase mRNA levels showed a converse trend compared with IGF‐1. Based on PWG and FCR, the optimal dietary tryptophan level was determined to be 1.99 g/kg (6.20 g/kg of dietary protein) and 1.96 g/kg (6.11 g/kg of dietary protein), respectively, using broken‐line regression analysis.  相似文献   

7.
An 8‐week feeding trial was conducted to estimate the optimum dietary manganese (Mn) requirement for juvenile hybrid grouper, Epinephelus lanceolatus × E. fuscoguttatus. The basal diet was formulated to contain 520 g/kg crude protein from casein and fishmeal. Manganese methionine was added to the basal diet at 0 (control group), 2.5, 5, 10, 20 and 40 mg Mn/kg diet providing 7.48, 10.34, 13.76, 19.72, 31.00 and 53.91 mg Mn/kg diet, respectively. Each diet was randomly fed to triplicate groups of juveniles, and each tank was stocked with 20 fish (initial weight, 60.06 ± 0.68 g). The manganese content in rearing water was monitored and kept below 0.01 mg/L. Results showed that the weight gain ratio (WGR), protein efficiency ratio (PER), specific growth rate (SGR), Mn contents in whole body, liver and vertebra, and activities of hepatic Mn superoxide dismutase (Mn‐SOD), total SOD (T‐SOD) and glutathione peroxidase (GSH‐PX) were significantly improved by dietary Mn supplementation (< .05). However, dietary Mn did not affect arginase (DArg) activity. The highest feed conversion ratio (FCR) was observed in fish fed the basal diet (< .05). No significant differences were found on the Cu and Zn contents in whole body by supplementing dietary Mn. Supplemented Mn in diets had significantly effect on liver and vertebral trace element deposition (< .05). Fish fed the basal diet had the highest Fe and Zn contents in vertebra (< .05). There were no significant differences on hepatic pyruvate decarboxylase (PDC) activity with supplemented Mn levels below 13.76 mg/kg. As biomarker of oxidative stress, malondialdehyde (MDA) content in liver was significantly higher in fish fed the basal diet (< .05). Using the broken‐line models based on SGR, dietary Mn requirement of the juvenile hybrid grouper was estimated to be 12.70 mg/kg diet.  相似文献   

8.
Two trials were conducted to evaluate the effects of chemically synthesized astaxanthin (Ax) on growth performance, survival, and stress resistance in larval and post‐larval kuruma shrimp (Marsupenaeus japonicus). Six dietary levels of Ax (0, 50, 100, 200, 400 and 800 mg/kg diet) were added to a baseline diet. As a first study, an 8‐day feeding trial was conducted on larval kuruma shrimp, with results showing that larvae‐fed diets supplemented with different Ax levels exhibited better performance during developmental and metamorphosis to postlarvae. Broken‐line regression analysis indicated that the optimal levels for growth and stress resistance of larvae were 168.9 mg/kg and 82.1 mg/kg diet, respectively. Second, a 30‐day feeding trial was conducted on post‐larval shrimp. Supplementation with 100 and 200 mg/kg Ax yielded significantly higher final body weight, body weight gain and specific growth rate than that in a control group. A cumulative mortality index for osmotic stress revealed significantly better performance in a group fed 200 mg/kg supplementation than in controls. Broken‐line regression analysis indicated that the optimal levels for growth and stress resistance of postlarvae were 108.7 mg/kg and 178.1 mg/kg diet, respectively. Based on these results, we suggest that carefully dosed Ax supplementation is a beneficial nutritional strategy for the early developmental stages of kuruma shrimp.  相似文献   

9.
Abstract.— This study was conducted to evaluate the effect of dietary protein concentration and an all‐plant diet on growth and processing yield of pond‐raised channel catfish Ictalurus punctatus. Four diets were formulated using plant and animal proteins to contain 24%n, 28%, 32%, or 36% crude protein with digestible energy to protein (DE/P) ratios of 11.7, 10.2, 9.0, and 8.1 kcal/g, respectively. An all‐plant diet containing 28% protein with a DE/P ratio of 10.2 kcal/g was also included. Channel catfish fingerlings averaging 40 g/fish were stocked into 24, 0.04‐ha ponds at a density of 18,530 fish/ha. Five ponds were used for each dietary treatment except for the all‐plant diet which had four replicates. The fish were fed once daily to apparent satiation for 160 d. No differences were observed in feed consumption, weight gain, survival, carcass and nugget yield, or fillet moisture and protein concentrations among treatments. Fish fed the 28% protein diet had a lower feed conversion ratio (FCR) than fish fed diets containing 24% and 32% protein, but had a FCR similar to fish fed the 36% protein diet. Fillet yield was higher for fish fed the 36% protein diet than fish fed the 24% protein diet. Visceral fat was lower in fish fed the 36% protein diet than fish fed other diets. Fish fed the 32% and 36% protein diets exhibited a lower level of fillet fat than fish fed the 24% protein diet. The 36% protein diet resulted in a lower level of fillet fat than fish fed the 28% protein diet. There was a positive linear regression in fillet yield and fillet moisture concentration and a negative linear regression in visceral fat and fillet fat against dietary protein concentration. No differences in any variables were noted between the 28% protein diets with and without animal protein except that fish fed the 28% protein diet without animal protein had a higher FCR than fish fed the 28% protein diet with animal protein. This observation did not appear to be diet related since FCR of fish fed the 32% protein diet containing animal protein was not different from that of fish fed the 28% all‐plant protein diet. Data from the present study indicate that dietary protein concentrations ranging from 24% to 36% provided for similar feed consumption, growth, feed efficiency, and carcass yield. However, since there is a general increase in fattiness and a decrease in fillet yield as the dietary protein concentration decreases or DEP ratio increases, it is suggested that a minimum of 28% dietary protein with a maximum DEIP ratio of 10 kcal/g protein is optimal for channel catfish growout.  相似文献   

10.
A 12‐week trial was performed with rainbow trout (Oncorhynchus mykiss) utilizing combinations of ingredients at two nutrient targets. Ingredient combinations were fishmeal‐based diet (FMD), animal product‐based diet (APD), plant product‐based diet (PPD), novel plant‐based diet (NPD) and potential future plant‐based diet (FPD). Two nutrient concentrations were targeted: 1) to meet published amino acid targets for rainbow trout utilizing approximately 450 g/kg crude protein (400–420 g/kg digestible protein) and 2) to meet the amino acid targets based on ideal amino acid balance of trout muscle for Lys, Met and Thr utilizing approximately 400 g/kg crude protein (370–380 g/kg digestible protein). Interactive effects between ingredient combination and nutrient concentration occurred across all response variables. When diets were formulated to Target 1, fish consuming FMD and APD displayed better weight gain and feed conversion ratio (FCR) than plant‐based diet, while graded effects were found within the plant‐based treatments. When differing ingredient combinations were utilized and formulated to Target 2, fish grew equally well except for the NPD treatment which supported lower growth and higher FCR. Based on the data from the current experiment, one can completely remove fishmeal from trout feeds and reduce protein levels when dietary digestible amino acids are balanced.  相似文献   

11.
A 16‐week experiment was conducted to determine the dietary riboflavin requirement of the fingerling Channa punctatus (6.7 ± 0.85 cm; 4.75 ± 0.72 g) by a feeding casein–gelatin‐based (450 g/kg crude protein; 18.39 kJ/g gross energy) purified diet containing graded levels of riboflavin (0, 2, 4, 6, 8, 10 and 12 mg/kg diet) to triplicate groups of fish near to satiation at 09:30 and 16:30 hr. Absolute weight gain (AWG), protein efficiency ratio (PER), specific growth rate (SGR, % per day), protein retention efficiency (PRE%) and RNA/DNA ratio were positively affected by increasing concentrations of dietary riboflavin to 6 mg riboflavin per kg diet. Feed conversion ratio (FCR) decreased up to 6 mg riboflavin per kg diet but did not decrease further with higher riboflavin supplementation. Hepatic thiobarbituric acid‐reactive substance (TBARS) concentration also supported the pattern of FCR, whereas superoxide dismutase and catalase activities increased with increasing concentrations of dietary riboflavin from 0 to 6 mg/kg. Liver riboflavin concentrations increased with increasing levels of riboflavin up to 8 mg/kg diet. Broken‐line regression analysis of AWG, PRE and liver riboflavin concentrations of fingerling C. punctatus with dietary riboflavin level indicated optimum growth and liver riboflavin saturation at 5.7, 6.1 and 7.7 mg riboflavin per kg diet, respectively.  相似文献   

12.
在纯化饲料中分别添加生物素0、0.05、0.10、0.20、0.40、0.80、1.60 mg/kg投喂初始质量为(5.92±0.25)g的草鱼(Ctenopharyngodon idellus)幼鱼8周,研究了不同生物素添加量对草鱼幼鱼生长性能、饲料系数、机体营养成分、血清生化指标的影响。试验结果显示:与对照组相比,添加生物素提高了草鱼幼鱼的增重率、特定生长率,降低了饲料系数。添加量为0.40 mg/kg时草鱼幼鱼的特定生长率和增重率最大,饲料系数最低,并与对照组存在显著差异(P<0.05);添加不同水平生物素对草鱼幼鱼全鱼水分、粗蛋白、粗脂肪含量无显著影响,但添加量为0.40 mg/kg时粗蛋白含量最大。0.10 mg/kg组和0.20 mg/kg组的全鱼灰分含量显著高于对照组(P<0.05);添加生物素对血清总蛋白(TP)、血糖(GLU)和总胆固醇(TC)无显著影响,但显著提高了血清甘油三酯(TG)含量,各添加组TG含量均显著高于对照组(P<0.05),1.60 mg/kg添加组的高密度脂蛋白胆固醇(HDL-C)和低密度脂蛋白胆固醇(LDL-C)含量显著高于对照组(P<0.05)。综合本试验结果,草鱼幼鱼饲料中生物素适宜添加量为0.40 mg/kg。  相似文献   

13.
This study was conducted to determine effects of dietary Fe levels on growth performance, hepatic lipid metabolism and antioxidant response for juvenile yellow catfish Pelteobagrus fulvidraco. Yellow catfish were fed six isonitrogenous and isolipidic diets containing Fe levels of 16.20, 34.80, 54.50, 76.44, 100.42 and 118.25 mg/kg for 8 weeks. Weight gain (WG) and specific growth rate (SGR) increased with dietary Fe levels from 16.20 to 54.50 mg/kg diet and then plateaued over the level. Feed conversion rate (FCR) was highest and protein efficiency rate (PER) was lowest for fish fed the lowest Fe levels of diet. Fe contents in whole body and liver increased with increasing dietary Fe levels. Hepatic lipid content was lowest, but mRNA levels of carnitine palmitoyltransferase (CPT‐1) and peroxisome proliferator‐activated receptor α (PPARα) were highest for fish fed 54.50 mg Fe/kg diet. Fish fed adequate dietary Fe levels reduced hepatic malondialdehyde (MDA) level and increased activities of antioxidant enzymes Superoxide dismutase (SOD), Catalase (CAT) and GS. Based on the broken‐line regression analysis of WG against dietary Fe levels, optimal dietary Fe requirement for yellow catfish was 55.73 mg Fe/kg diets. Fe‐induced changes in MDA levels and antioxidant enzymatic activities paralleled with the change in hepatic lipid content, suggesting the potential relationship between oxidative stress and hepatic lipid accumulation in yellow catfish.  相似文献   

14.
An 8‐week feeding trial was conducted to investigate the effect of dietary selenium (Se) on feed intake, weight gain and antioxidant activity in juvenile grass carp (11.2 ± 0.03 g). Six Se levels (0.13, 0.41, 0.56, 1.12, 2.18 and 4.31 mg/kg) of semi‐purified diets were assayed in triplicate. The maximum weight gain, specific growth rate and feed intake were obtained in fish fed with 1.12 mg Se/kg diet. Hepatic glutathione peroxidase activity was markedly increased when dietary Se ≤1.12 mg/kg diet and reached a plateau when dietary Se ≥1.12 mg/kg diet. Hepatic superoxide dismutase and serum catalase activities in juvenile grass carp fed with 0.56, 1.12 and 2.18 mg Se/kg diets were all significantly higher than those in the other groups. The malondialdehyde content in liver and serum was firstly decreased and then increased with increasing dietary Se content, and the lowest content was observed in fish fed with 1.12 mg Se/kg diet. With the increase in Se level, the activities of serum alanine aminotransferase and aspartate aminotransferase were reduced. In addition, serum alkaline phosphatase activity and albumin content were highest in fish fed with 1.12 mg Se/kg diet. This study indicated that both the Se deficiency and excess of Se caused negative effect on the oxidative stress in juvenile grass carp and suggested that the health‐giving concentration of dietary inorganic Se was 1.12 mg/kg diet. Moreover, based on the broken‐line regression analysis of weight gain, the optimal concentration of dietary inorganic Se was 0.83 mg/kg for juvenile grass carp.  相似文献   

15.
To investigate the potential synergistic effects of dietary ascorbic acid (AA), α‐tocopheryl acetate (TA) and selenium (Se) supplementation above minimum requirement levels on the growth performance and disease challenge of fingerling Nile tilapia, Oreochromis niloticus L., five experimental diets were formulated: control (150 mg AA, 100 mg TA and 0.2 mg Se per kg diet), excessive ascorbic acid (eAA) (2000 mg AA, 100 mg TA and 0.2 mg Se per kg diet), excessive α‐tocopheryl acetate (eTA) (150 mg AA, 240 mg TA and 0.2 mg Se per kg diet), excessive selenium (eSe) (150 mg AA, 100 mg TA and 0.5 mg Se per kg diet) and excessive all (eALL) (2000 mg AA, 240 mg TA and 0.5 mg Se per kg diet). Experimental fish averaging 2.9 were randomly distributed in each aquarium as a group of 40 fish with total weight 116±2.9 g (mean±SD). Each diet was fed on a dry‐matter basis to fish in three randomly selected aquaria at a rate of 4–8% of total body weight daily. After 10 weeks of the feeding trial, fish fed eAA, eTA and eALL diets had significantly higher weight gain, feed efficiency ratio, protein efficiency ratio and specific growth rate than fish fed eSe and control diets (P<0.05). There was no significant difference among fish fed five experimental diets in cumulative mortalities when fish were challenged with Edwardsiella tarda at the end of the experimental period. These results indicate that sufficient supplementation of dietary AA or TA had positive effects on growth performance, but there was no synergistic effect of excessive dietary AA, TA and Se supplementation on growth performance and disease resistance to E. tarda in fingerling Nile tilapia.  相似文献   

16.
In the present study, the effects of different sources of selenium (Se; sodium selenite or selenomethionine) supplementation on the growth and serum concentrations of oxidative stress markers [malondialdehyde (MDA), 8‐isoprostane, glutathione peroxidase (GSH‐Px) activity] and muscle Se, MDA and heat shock protein 70 (Hsp70) levels in rainbow trouts were evaluated. The fish (n = 360; 0 + years old) with initial average weight of 20 ± 0.8 g were randomly assigned to 12 treatment groups consisting of 3 replicates of 10 fish each in a 2 × 2 × 3 factorial arrangement of treatments (stocking densities, Se sources, Se levels). The fish were kept at low (25 kg m?3) or high (100 kg m?3) stocking densities and fed a basal (control) diet or the basal diet supplemented with either 0.15 or 0.30 mg of Se kg?1 of diet from two different forms: sodium selenite or selenomethionine. High stocking density decreased weight gain, feed intake and feed conversion ratio (FCR) when basal diet was fed (P = 0.001). A linear increase in feed intake and weight gain and improvement in FCR were found in sodium selenite (P = 0.01)‐ or selenomethionine (P = 0.001)‐supplemented fish reared under crowding conditions. Serum and muscle Se levels and serum GSH‐Px activity increased (P = 0.001) linearly, whereas serum and muscle MDA concentrations and serum 8‐isoprostane decreased linearly as dietary sodium selenite (P = 0.01) or selenomethionine (P = 0.001) supplementation increased. Selenomethionine and sodium selenite supplementation decreased Hsp70 in the muscle of fish reared under crowding conditions (P < 0.05). Supplementation with Se improved growth and antioxidant status of fish and the effects of selenomethionine were relatively greater than sodium selenite in the crowded groups. Results suggest that crowding conditions cause significant detrimental effects in rainbow trout indicated by increased oxidative stress, reduced feed intake and body weight gain. ?t also indicates that dietary Se supplementation offers a feasible way of reducing the losses in performance of rainbow trout reared under crowding conditions. Selenomethionine seems to be more effective than sodium selenite and the higer dose in the present study also seems to be more effective than the lower dose.  相似文献   

17.
以酪蛋白、明胶和鱼粉为蛋白源配制6组实验饲料,分别在饲料中添加0、75、150、300、600和1 200mg/kg的肌醇,每组设3个重复,连续投喂初始体质量(10.01±0.24)g的胭脂鱼(Myxocyprinus asiaticus)幼鱼8周,考察饲料中添加不同水平的肌醇对胭脂鱼幼鱼生长性能、全鱼以及肌肉营养成分和部分血清生化指标的影响,以确定胭脂鱼幼鱼饲料中肌醇的适宜添加量。结果显示:随着饲料中肌醇含量增加,胭脂鱼幼鱼增重率、成活率和特定生长率呈先上升后稳定的趋势,均在300 mg/kg组时达到稳定;饲料肌醇对全鱼体成分无显著性影响,肌肉脂肪含量在300 mg/kg组时显著低于未添加组;饲料中肌醇对血清总胆固醇、低密度脂蛋白胆固醇和血清甘油三酯均有显著性影响;饲料中肌醇(150 mg/kg)不足时,血清中谷草转氨酶和谷丙转氨酶的活性显著高于其它实验组。以特定生长率为评价指标,经折线回归分析,饲料中补充310.3 mg/kg的肌醇时,胭脂鱼幼鱼获得最大生长。  相似文献   

18.
A 12‐wk experiment was conducted to determine the dietary biotin requirement of the fingerling Catla catla (7.9 ± 0.37 cm; 3.5 ± 0.12 g). Eight diets (35% crude protein, 16.72 kJ/g gross energy) with different levels of biotin (0, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0, and 2.5 mg/kg diet) were fed to triplicate groups of fish to apparent satiation. Highest percent weight gain, protein retention efficiency, and best feed conversion ratio were observed in fish fed 0.5 mg biotin per kg diet. However, fish fed diets containing dietary biotin of 1.0, 1.5, 2.0, and 2.5 mg/kg did not show significant (P > 0.05) differences compared to those fed on dietary biotin of 0.5 mg/kg. Hematological indices, including hematocrit value, hemoglobin content, and red blood cell counts were found to be directly proportional (P < 0.05) to the dietary biotin levels up to 0.5 mg/kg, beyond which a plateau was recorded. Pyruvate carboxylase activity (PCA) was also found to increase with the incremental levels of dietary biotin up to 0.5 mg/kg and further increasing dietary biotin concentration led to stagnation in PCA of fish. Liver biotin concentrations responded positively (P < 0.05) until saturation, which occurred at 1.0 mg/kg diet. Broken‐line analysis of percent weight gain, protein retention efficiency, PCA, and liver biotin concentrations demonstrated that fingerling C. catla require biotin in the range of 0.41–0.87 mg/kg diet.  相似文献   

19.
Two basal diets M0 and V0 were formulated with marine and plant based ingredient composition. Seven experimental diets were prepared from the two basal diets namely M0, M100, V0, V30, V60, V100 and V150 by incorporating different levels of a micromineral premix (Cu, Fe, Mn, Se and Zn). Triplicate groups of rainbow trout (initial weight: 20 g) reared at 17°C were fed one of each diet to apparent visual satiation over 12 weeks. Among the V diet fed fish, growth and feed intake exhibited maximal response at V60 level of premix inclusion; Apparent availability coefficient of Fe, Cu and Zn decreased linearly with increasing level of premix whereas apparent availability coefficient of Mn and Se was unaffected. The available dietary concentration in basal V0 diet was for Fe, 20.6; Cu, 2.8; Mn, 6.5; Zn, 17.3 and Se, 0.195 (in mg/kg DM) and in the M0 diet for Fe, 63.3; Cu, 5.2; Mn, 2.9; Zn, 35.2 and Se, 0.87 (in mg/kg DM). In reference to NRC (Nutrient requirements of fish and shrimp. Washington, DC: National Research Council, The National Academies Press, 2011) recommendations, the V0 basal diet accounted for 34.3%, 92.9%, 53.9%, 115% and 130.2% and the contribution from M0 diet for 105.5%, 173.3%, 24.2%, 234.7% and 580% of the minimal dietary inclusion levels of Fe, Cu, Mn, Zn and Se to rainbow trout, respectively. However, data on whole body mineral contents showed that normal levels were maintained only for Cu and Mn through supply from basal V0 diet. For Zn and Se, available supply even from the highest supplemented diet (V150) was not sufficient to maintain normal body mineral levels of rainbow trout in the present study. On the whole, optimal dietary inclusion levels of microminerals are altered while using fishmeal‐free diets for rainbow trout.  相似文献   

20.
宋博文  杨航  李小勤  王璞  何明  徐禛  杨品贤  冷向军 《水产学报》2021,45(10):1715-1725
为确定大口黑鲈幼鱼对饲料锌的适宜需求量,以酪蛋白、明胶和鱼粉为主要蛋白质源,以ZnSO_4·H_2O为锌源制作半精制基础饲料,分别向基础饲料中添加0、25、50、100和200 mg/kg锌,制成5种含不同锌水平饲料(24.8、48.8、78.9、126.1和223.6 mg/kg干物质)(命名为Zn-25、Zn-49、Zn-79、Zn-126和Zn-224),投喂初始体质量为(10.99±0.07) g的大口黑鲈幼鱼8周。结果显示,饲料中补充25 mg/kg锌(Zn-49)显著提高了大口黑鲈增重率,降低了饲料系数,进一步提高锌的添加量后,各组增重率和饲料系数趋于稳定。当饲料锌含量为25~49 mg/kg时,T-SOD和CuZn-SOD活性增加,锌含量达到49 mg/kg后,其活性保持基本稳定,而AKP活性在Zn-79组最高。大口黑鲈全鱼和脊椎骨中的锌含量随饲料中锌含量的增加而上升,当饲料锌含量达到126 mg/kg (Zn-126)后,全鱼和脊椎骨中的锌含量不再显著增加,而全鱼铁、骨铁、骨锰含量和全鱼铁、锌沉积率则随饲料锌含量的增加而下降。研究表明,在半精制饲料中补充锌可以显著改善大口黑鲈的生长和饲料利用,提高血清免疫能力、全鱼锌和骨锌的沉积,以增重率、饲料系数、全鱼锌和骨锌为指标,基于折线模型确定大口黑鲈幼鱼对饲料中锌的需求量分别为45.5、44.6、121.8和130.5 mg/kg干物质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号