首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of efficient cost‐effective diets is a critical component in the refinement of production technologies for the largemouth bass, Micropterus salmoides (LMB). One of the first steps in reducing feed costs can be to decrease the amount of fish meal in the diet. The objective of this study was to evaluate reduced levels of fish meal, and a least‐cost formulation diet, for second year growout of LMB under practical pond conditions. Twelve 0.04‐ha ponds were stocked with juvenile LMB (210.1 ± 3.3 g) at a stocking density of 8650 fish/ha (350 fish/pond). Each pond was randomly assigned one of the four dietary treatments with three replicate ponds per treatment. The three experimental diets contained varying levels of fish meal. Diets FM‐45, FM‐24, and FM‐8 contained 45, 23.5, and 8% fish meal, respectively. In diets FM‐24 and FM‐8, fish meal was replaced by varying levels of poultry by‐product meal, soybean meal, and blood meal. The fourth diet was a commercial salmonid diet widely used as a LMB growout feed (Nelson and Sons, Inc., Silvercup TM , Steelhead, Murray, UT, USA). This diet served as a commercial control (CC) and contained 46% crude protein. The experimental diets were formulated to be isonitrogenous and isocaloric with the CC diet and were fed once daily to apparent satiation for 180 d. At harvest, there were no significant differences between treatments ( P > 0.05 ) in terms of survival, which averaged 95% overall. Mean weights of fish fed the three experimental diets FM‐45, FM‐24 and FM‐8 were not significantly different ( P > 0.05 ) and averaged 518, 546, and 529 g, respectively, but were all significantly greater ( P≤ 0.05 ) than those fed the CC (488 g). Feed conversion ratio (FCR) of fish fed the FM‐45 and FM‐8 diets (1.43 and 1.46, respectively) was significantly greater ( P≤ 0.05 ) than those fed the FM‐24 diet (1.34). The FCR of fish fed the CC diet (1.39) was not significantly different ( P > 0.05 ) from fish fed other diets. Feed cost per unit of weight gain ($US/kg) was significantly lower ( P≤ 0.05 ) in fish fed the FM‐24 and FM‐8 diets ($0.73 and $0.72/kg, respectively) than in fish fed other diets. Feed cost per unit gain of fish fed the FM‐45 diet ($0.83/kg) was significantly lower ( P≤ 0.05 ) than those fed the CC diet ($1.04/kg). There were no significant differences ( P > 0.05 ) in dress‐out percentages or proximate composition among fish fed the four diets. This study indicates that fish meal levels in feeds used for the second year growout of LMB can be reduced to ≥ 8% of the formulation without reducing survival or growth and without negatively impacting body composition.  相似文献   

2.
This study was carried out to estimate lysine, methionine and arginine dietary requirements of juvenile Atlantic ditch shrimp, Palaemonetes varians. Three series of five isoproteic and isoenergetic diets [45% crude protein (CP), 14.7 MJ digestible energy (DE)/kg] were formulated to contain increasing levels of either lysine (1.2–2.8 g/100 g of diet), methionine (0.5–1.3 g/100 g of diet + 0.8% cysteine) or arginine (1.1–2.7 g/100 g of diet) and adequate levels of all other essential nutrients. Each experimental diet was fed to three groups of postlarvae (initial weight = 17 mg each) for 45 days at 19.9 ± 0.1°C. The dietary requirements for maximizing weight gain of juvenile Pvarians, estimated using broken‐line analysis vs. exponential model and expressed as per cent of dry diet, were 2.42 vs. 2.63; 0.96 vs. 0.99 and 2.05 vs. 2.39 for lysine, methionine and arginine respectively. These estimates of requirements of lysine, methionine and arginine for juvenile Pvarians appear to be similar to those reported for penaeid shrimp species.  相似文献   

3.
This research aimed to evaluate the effects of two dietary fat levels [low fat (LF) (10%), high fat (HF) (20%)] and sources [fish oil (FO), vegetable oil (VO)] on the growth and some physiological parameters of Caspian brown trout fingerlings for 60 days. Tuna oil or blends of canola and soybean oils (85:15) were added to diets to design four feeds namely LFFO, HFFO, LFVO and HFVO according to the fat levels and sources. The fish fed the LFFO diet had lower weight gain than the other fish (P<0.05). The total n‐6 fatty acids increased in fish fed diets with the blends of VO, while the total n‐3 fatty acids decreased in these fish (P<0.05). Serum lysozyme activity was higher in fish fed the HFVO diet than the other fish (P<0.05). Serum glucose, total cholesterol, triglyceride and very low‐density lipoprotein were lower in fish fed LFFO than the other fish (P<0.05). The present study demonstrates that in terms of fish growth, VOs can be used as an alternate source of dietary fat, whereas fish health and nutritional value are improved with the LFFO diet. According to these results, a partial substitution of FO by VO in high‐level fat diets is suggested for long‐term feeding of Caspian brown trout.  相似文献   

4.
A feeding trial was conducted to quantify the effects of phytase at levels of 0, 500, 1,000, 2,000, 4,000, and 8,000 units (U) per kg diet on utilization of dietary protein and minerals by fingerling (12 g) channel catfish Ictalurus punctatus fed an all‐plant‐protein diet composed of soybean meal, corn, and wheat middlings. The effects of phytase on dephosphorylation of phytic acid (phytate) in the alimentary tract of catfish also were determined. After 14 wk, mean weight gains (30.2–43.9 g/fish), feed conversion ratios (2.27–2.40 g feed consumed/g weight gain), protein efficiency ratios (1.47–1.61 g weight gaid/g protein consumed), and dietary protein retentions (23.8–26.7%) did not differ significantly (P > 0.05) among treatment groups. A digestibility trial conducted after the feeding trial showed no difference (P > 0.05) in mean digestibility of diet dry matter (49.0–58.3%) or crude protein (85.4‐88.5%) among treatment groups. Concentrations of ash (46.7–48.6%), calcium (Ca, 17.9–18.5%), phosphorus (P, 9.1–9.5%), and manganese (Mn, 65.5–74.1 mg/kg) were significantly higher (P ≤ 0.05) in bone of fish fed ≥ 500 U/kg than in bone of fish fed 0 U/kg (ash, 43.5%; Ca, 16.4%; P, 8.4%; and Mn, 49.0 ma/kg), but concentrations of these minerals did not differ (P > 0.05) in bone of fish fed ≥ 500 Uk/g. The magnesium (Mg) content of bone did not differ (P > 0.05) between fish fed 0 U/kg (0.29%) or 500 U/kg (0.34%), but was significantly lower in fish fed 0 U/kg than in fish fed ≥ 1,000 U/kg (0.35–37%). Bone Mg levels did not differ (P > 0.05) among fish fed ≥ 500 U/kg. The amount of zinc (Zn) in bone of fish fed 8,000 U/kg (153.3 mg/kg) was significantly higher than that in fish fed 0 U/kg (115.7 mg/kg) or 500 U/kg (130.3 mg/ kg), but did not differ from Zn levels in bone of fish fed 1,000–4,000 U/kg (134.5–135.8 mg/ kg). Dephosphorylation of phytate occurred primarily in the stomach within 2–8 h after diet ingestion, depending on the level of phytase supplementation. Initial levels of total phytate in the diet decreased 32–94% in stomach contents of fish fed l,000–8,000 U/kg within 2 h after feeding. Eight hours after feeding, stomach contents of fish fed ≥ 1,000 U/kg contained less than 6% of initial total dietary phytate. Stomach contents of fish fed 500 U/kg retained 92% of initial total dietary phytate 2 h after feeding and 15% of total dietary phytate 8 h after feeding. Results of this study indicate that phytase supplementation at levels up to 8,000 U/kg diet did not increase weight gain or improve dietary protein utilization of channel catfish fed an all‐plant‐protein diet. Addition of phytase at a level of 1,000 U/kg diet was sufficient to significantly increase the Ca, P, Mg, and Mn content of bone, relative to fish fed an unsupplemented diet, and significantly decrease the quantity of total phytate in feces. A phytase level of 8,000 U/kg diet significantly increased the bioavailability of naturally occurring Zn in feed ingredients and increased the rate of phytate dephosphorylation in the stomach, compared with a diet containing no added phytase. Increased utilization of naturally occurring minerals in feed ingredients reduces the need for mineral supplements in diets and results in decreased elimination of minerals in feces. Thus, use of phytase in catfish feeds can be expected to provide both economic and environmental benefits.  相似文献   

5.
A 12‐wk experiment was conducted to determine the dietary biotin requirement of the fingerling Catla catla (7.9 ± 0.37 cm; 3.5 ± 0.12 g). Eight diets (35% crude protein, 16.72 kJ/g gross energy) with different levels of biotin (0, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0, and 2.5 mg/kg diet) were fed to triplicate groups of fish to apparent satiation. Highest percent weight gain, protein retention efficiency, and best feed conversion ratio were observed in fish fed 0.5 mg biotin per kg diet. However, fish fed diets containing dietary biotin of 1.0, 1.5, 2.0, and 2.5 mg/kg did not show significant (P > 0.05) differences compared to those fed on dietary biotin of 0.5 mg/kg. Hematological indices, including hematocrit value, hemoglobin content, and red blood cell counts were found to be directly proportional (P < 0.05) to the dietary biotin levels up to 0.5 mg/kg, beyond which a plateau was recorded. Pyruvate carboxylase activity (PCA) was also found to increase with the incremental levels of dietary biotin up to 0.5 mg/kg and further increasing dietary biotin concentration led to stagnation in PCA of fish. Liver biotin concentrations responded positively (P < 0.05) until saturation, which occurred at 1.0 mg/kg diet. Broken‐line analysis of percent weight gain, protein retention efficiency, PCA, and liver biotin concentrations demonstrated that fingerling C. catla require biotin in the range of 0.41–0.87 mg/kg diet.  相似文献   

6.
A trial was conducted to determine the effect of ascorbyl‐2‐monophosphate Na/Ca (AMP‐Na/Ca) on blood chemistry and nonspecific immune response of red sea bream juveniles. Test diets with three levels of AsA (free, 107, and 325 mg/kg diet) were fed to juvenile red sea bream (36.0 ± 1.3 g) two times a day for 3 wk. There were no significant differences in hematocrit, glucose, and blood urea nitrogen. Total cholesterol and triglyceride in plasma of fish fed AsA‐free diet was significantly (P < 0.05) higher than that of fish fed two other diets. There were no significant differences in serum albumin, total bilirubin, and total serum protein. Glutamyl oxaloacetic transaminase in serum of fish fed diets containing 107 and 325 mg of AsA were significantly (P < 0.05) lower than that of fish fed AsA‐free diet. Serum lysozyme activity (LA) of fish fed diets containing 107 and 325 mg of AsA were significantly (P < 0.05) higher than that of fish fed AsA‐free diet. There was no significant difference in mucus LA. The results mentioned above demonstrated that AMP‐Na/Ca is a bioavailable AsA source for red sea bream juveniles. Supplement of more than 107 mg AsA/kg in diets improved blood chemistry and nonspecific immune function of red sea bream juveniles.  相似文献   

7.
Problems of limited number of dry feeds as supplement or replacement of live feeds have led to poor larval nutrition in many species of fish. Therefore, the suitability of co‐feeding 8‐day‐old African catfish (Clarias gariepinus) posthatch larvae using live feed (Artemia salina) and formulated dry diet containing freshwater atyid shrimp (Caridina nilotica) during weaning was investigated. The experiment ended after 21 days of culture and respective groups compared on the basis of growth performance, survival, feed utilization and nutrient utilization. Larvae co‐fed using 50%Artemia and 50% formulated dry diet resulted in significantly (P < 0.05) better growth performance, food gain ratio (FGR), protein efficiency ratio (PER) and productive protein values (PPV) than other treatments. The lowest growth performance occurred in larvae weaned using 100% formulated and commercial dry diets. Better survival of over 90% was obtained in larvae weaned using 50%Artemia and 50% dry diet, while abrupt weaning using 100% dry diets resulted in lower survival (<75%). These results support a recommendation of co‐feeding C. gariepinus larvae using a formulated dry diet containing C. nilotica and 50% live feed when weaning is performed after 8 days posthatching period.  相似文献   

8.
A 16‐week feeding trial was conducted to determine the dietary pantothenic acid requirement of fingerling Channa punctatus. Six casein–gelatin‐based diets (450 g/kg CP; 18.39 kJ/g GE) with graded levels of pantothenic acid (0, 10, 20, 30, 40 and 50 mg/kg diet) were fed to triplicate groups of fish (6.2 ± 0.71 cm; 4.26 ± 0.37 g) near to apparent satiation. The growth evaluation in terms of absolute weight gain (AWG), feed conversion ratio (FCR) and protein retention efficiency (PRE) indicated the best performance (p < .05) in fish fed diet containing 30 mg/kg pantothenic acid. Highest haemoglobin, haematocrit and RBCs counts were also obtained in fish fed diet with 30 mg/kg pantothenic acid. Mean cell haemoglobin and mean cell volume were found to be lowest in fish fed pantothenic acid‐free diet indicating the anaemia in this group of fish. Superoxidase dismutase and catalase activities of liver tissue were found to improve (p < .05) with the increasing levels of dietary pantothenic acid from 0 to 30 mg/kg. However, liver pantothenic acid concentration responded positively with the increasing levels of pantothenic acid up to 40 mg/kg diet and then stagnation in liver pantothenic acid concentration with the further inclusion of pantothenic acid was recorded. Second‐degree polynomial regression analysis of AWG, FCR and PRE exhibited the pantothenic acid requirement at 36.4, 32.8 and 34.7 mg/kg diet, respectively. Data generated during this study would be useful in formulating pantothenic acid‐balanced commercial feeds for the intensive culture of this fish.  相似文献   

9.
Abstract.— A 12‐wk feeding trial was conducted in cages with juvenile Nile tilapia Oreochromis niloticus to evaluate distillers grains with solubles (DDGS) as a direct feed, the effects of pelleting on its utilization, and the compatibility of caged tilapia and prawns in polyculture. Nine 1.0‐m3 cages were stocked with 200 juvenile (26 ± 0.9 g) tilapia. Cages were suspended in a 0.2‐ha pond stocked with juvenile freshwater prawns Macrobrachium rosenbergii at 40,000/ha. Three replicate cages were randomly assigned to each dietary treatment. In one dietary treatment DDGS was fed as an unpelleted loose grain ration (26% protein). In a second dietary treatment fish were fed DDGS that had been steam‐pelleted (23% protein). Fish in a third dietary treatment were fed a commercial catfish diet (31% protein) for comparison. After 12 wk, individual weight, individual length, and specific growth rate were significantly higher (P < 0.05) and feed conversion ratio was significantly lower (P < 0.05) for fish fed the commercial catfish diet than for fish fed either unpelleted or pelleted DDGS. Specific growth rate was significantly higher (P < 0.05) for fish fed pelleted DDGS than for fish fed unpelleted DDGS. Survival did not differ significantly (P > 0.05) among treatments (>95%). Although growth was increased in fish fed the commercial diet, their cost of production (<0.66/kg gain) was significantly higher (P < 0.05) than in fish fed unpelleted and pelleted DDGS (<0.26/ kg gain and <0.37/kg gain, respectively). The costs of gain in fish fed unpelleted DDGS was significantly lower (P < 0.05) than in fish fed the pelleted DDGS. Prawn production was 1,449 kg/ha and addition of tilapia in polyculture increased total pond productivity approximately 81 %. These data suggest that DDGS provides economical growth in tilapia when fed as a direct feed and that polyculture of tilapia may improve overall pond efficiency in freshwater prawn production ponds, even at temperate latitudes.  相似文献   

10.
Cachara, Pseudoplatystoma reticulatum, is a high commercial value carnivorous catfish in Brazil, but whose dietary protein requirement is still unknown. Aiming to determine this requirement, groups of 15 juveniles (16.08 ± 1.13 g) were fed isoenergetic diets (4600 kcal/kg gross energy) with increasing levels of crude protein (30, 35, 40, 45, 50, and 55%). After 60 d, regression analysis revealed a quadratic effect (P < 0.05) of increasing dietary crude protein concentration on growth variables. The highest weight gain and specific growth rate as well as the best feed conversion were shown by fish fed the 50% crude‐protein diet. Similarly, protease activities were significantly higher (P < 0.05) in fish fed 50% crude protein. However, the highest protein retention was observed in fish fed the 45% crude‐protein diet. Protein and dry matter digestibilities did not differ (P > 0.05) for diets containing 40, 45, or 50% crude protein. Therefore, based on weight gain and at a dietary energy concentration of 4600 kcal/kg, the estimated protein requirement for juvenile cachara between 16 and 85 g is 49.25% crude protein. This is equivalent to 44.79% digestible protein and a gross energy to digestible protein ratio of 10.27 kcal/g.  相似文献   

11.
An eight‐week research was conducted to investigate the effects of single or combined administration of sodium propionate (Na‐P) and sodium acetate (Na‐A) on the performance of yellowfin seabream (Acanthopagrus latus) juveniles (6.5 ± 0.3 g). A plant protein (PP)‐rich diet was supplemented with sole or blends of organic acid salts (OAS) namely Na‐P and Na‐A to design six experimental feeds including control (without OAS), Na‐P5 (5 g/kg Na‐P), Na‐P10 (10 g/kg Na‐P), Na‐A5 (5 g/kg Na‐A), Na‐A10 (10 g/kg Na‐A) and Na‐P + A (5 g/kg Na‐P + 5 g/kg Na‐A). Except for Na‐A5 group, the other OAS‐supplemented treatments had higher growth and feed efficiency ratio than the control (p < .05). The inclusion of OAS in the experimental feeds pronouncedly enhanced plasma lysozyme and alternative complement pathway activities compared to the control. Furthermore, fish fed on the OAS‐supplemented diets had greater catalase and glutathione peroxidase activities in the liver than the control (p < .05). Total antioxidant capacity in the liver of fish fed on the OAS‐supplemented diet also was higher than the control. Fish fed on the OAS‐supplemented diets had higher pepsin, trypsin and lipase activities than the control. The insulin‐like growth factor 1 (IGF‐1) gene expression was remarkably down‐regulated in the liver of fish fed on the OAS‐supplemented diets compared to the control especially in groups fed on the Na‐P10 and Na‐A10 diets. The greatest IGF‐1 gene down‐regulation level in the gut was in fish fed on the Na‐P5 and Na‐P10 diets. The interleukine‐1β in the gut was remarkably up‐regulated in the control compared to the other groups (p < .05). The lactic acid bacterial colonies count in the gut of the control was lower than the OAS‐supplemented groups. Based on the findings of the present study, supplementing PP‐rich diets with 10 g/kg Na‐P or blends of Na‐P (5 g/kg) and Na‐A (5 g/kg) beneficially alleviated inflammatory responses and improved immune parameters and digestive capacity in yellowfin seabream juveniles.  相似文献   

12.
The current study evaluated the effects of fish oil replacement with eicosapentaenoic acid‐enriched single‐cell microalgae in the diets of larval and postlarval kuruma shrimp. Experimental diets containing different level of Nannochloropsis sp. powder (10, 40, 70 g/kg) and lipids (2, 8, 10, 14, 35, 58 g/kg) were evaluated. The substitution of fish oil with algal powder significantly improved shrimp growth compared to that in the control group, with the highest final body weight recorded at 70 g/kg in larvae and 40 g/kg in postlarvae. Larvae fed algal lipids with a dry weight percentage in the diet of greater than 10 g/kg showed significantly lower performance than those in the control group. The neutral lipids in the tissue of the postlarvae that had been fed algal lipids had an improved fatty acid profile, as the content of highly unsaturated fatty acids increased compared to that in the other groups. The content of docosahexaenoic acid increased in the tissue, indicating the possible occurrence of the metabolism and accumulation of Nannochloropsis sp. essential fatty acids. Algal powder could replace FO up to 140 g/kg in shrimp diets without compromising growth and FA profiles.  相似文献   

13.
The aim of our experiment was to determine the dietary niacin requirement of genetically improved farmed tilapia (GIFT) tilapia, Oreochromis niloticus, reared in freshwater. Six semi‐purified diets were formulated to contain graded levels of niacin (6.4 [basal diet], 16.8, 36.8, 68.5, 143.8, and 297.8 mg/kg). Each diet was fed to triplicate groups of 30 fish (initial average weight 87.2 ± 3.3 g) for 12 wk in 5.6‐m3 aquaria (r = 1.5 m, h = 0.8 m). Results showed that the weight gain rate (WGR) of the fish increased linearly with dietary niacin levels increasing, but there were no further benefits above 36.8 mg/kg. The niacin concentrations in fish livers were positively correlated with dietary levels of niacin and plateaued when niacin in diet exceeded 84.6 mg/kg. With increasing dietary niacin level, serum high density lipoprotein cholesterol (HDLC) content significantly increased, while serum triacylglycerol (TG) content significantly decreased (P < 0.05). There were no significant differences in serum glucose (GLU) and total cholesterol (T‐CHO) contents in the separate fish groups (P > 0.05). Broken‐line regression analysis showed that GIFT tilapia (87–376 g) require a minimum of 20.4 mg/kg niacin in the diet for maximal growth, and 84.6 mg/kg for the highest liver niacin accumulation.  相似文献   

14.
Excessive carbohydrates (CHO) in diets for largemouth bass (LMB), Micropterus salmoides, are suspected of accumulating glycogen in hepatocytes, which may result in liver dysfunction. This study evaluated the effect of graded levels of dietary CHO on growth, survival, and liver histology of LMB. One hundred feed‐trained advanced fingerling LMB (128.5 ± 21.5 g) were stocked into each of nine 3400 ‐ L polyethylene tanks. Tanks were randomly assigned one of three experimental diets containing different CHO levels (13, 19, or 25% of diet). The extruded diets were approximately isonitrogenous (42% crude protein) and isocaloric (3 kcal/g energy). There were three replicate tanks per dietary treatment. Bass were fed to apparent satiation twice daily for 148 d. Survival was significantly higher (P ≤ 0.05) for fish fed the 13 and 19% CHO diets (89 and 90%, respectively) compared to those fed the 25% CHO diets (82%). Average harvest weight of fish fed the 13% CHO diet (380 g) was significantly greater (P ≤ 0.05) than for fish fed other diets. Average harvest weight of fish fed the 19% CHO diet (347 g) was significantly greater (P ≤ 0.05) than for fish fed the 25% CHO diet (310 g). Specific growth rates (%/d) were significantly higher (P ≤ 0.05) in fish fed the 13 and 19% CHO diets than in fish fed 25% CHO diet. Feed conversion ratios for fish fed the 13 and 19% CHO diets (2.3 and 2.4, respectively) were both significantly lower (P ≤ 0.05) than in fish fed the 25% CHO diet (3.6). There were no significant differences (P > 0.05) in condition factor, protein efficiency ratio, hepatosomatic index, or liver glycogen concentration among fish fed the different experimental diets. Overall, mean blood glucose levels in fish fed the 13 and 19% CHO diets (61.0 and 71.2 mg/dL, respectively) were significantly lower (P ≤ 0.05) than in fish fed the 25% CHO diet (87 mg/dL). Histopathological examination of livers from fish fed the three diets was used to score the degree of vacuolization of hepatic tissues (0 = normal, 1 = slight, 2 = mild, 3 = moderate, and 4 = severe). Regression of vacuolization scores on dietary CHO levels was statistically significant (P ≤ 0.05) and indicated a direct positive relationship between liver vacuolization and dietary CHO level (R2 = 0.57). These data indicate that LMB grow faster and use feeds more efficiently when CHO are maintained at <20% of diet. CHO levels >20% negatively impacted liver histology, but a liver tissue analyses did not document glycogen accumulation.  相似文献   

15.
The present study was conducted to evaluate the efficacy of organic acid blends as dietary antibiotic replacer in marine fish olive flounder, Paralichthys olivaceus. Fish averaging 3.5 ± 0.05 g (mean ± SD) were fed one of the four experimental diets: (1) without antibiotic or organic acid (Control/CON); (2) with antibiotic—50 mg oxytetracycline per kg body weight per day (OTC); (3) with organic acid blend A—4 g/kg diet (OAA); and (4) with organic acid blend B—4 g/kg diet (OAB), for 10 weeks. At the end of the experiment, total intestinal bacterial counts in fish‐fed OAA, OAB and OTC were significantly lower than that of fish‐fed CON diet (< 0.05). Further, the group of fish‐fed organic acid blends (OAA, OAB) or antibiotic (OTC)‐supplemented diets exhibited lower intestinal Vibrio sp. counts compared with fish‐fed CON diet. Disease challenge test with bacteria Edwardsiella tarda showed significantly lower cumulative mortality rates for the group of fish‐fed OAA, OAB or OTC than that of fish‐fed CON diet (< 0.05). There were no negative effects on the growth, serological characteristics and proximate composition among the group of fish‐fed different experimental diets. Therefore, the present experiment demonstrates that blends of organic acid could be a promising alternative to dietary antibiotics for the preventive and/or curative health management in marine fish olive flounder aquaculture.  相似文献   

16.
The expression of immune‐related genes and immune responses to Aeromonas hydrophila were investigated on Oreochromis niloticus (6.07 ± 0.07 g), by feeding them six different diets for 8 weeks to apparent satiation. Diets contained fish oil (60g/kg FO), virgin coconut oil (60g/kg VCO) and corn oil (60g/kg CO) as sole lipids or blends of 30g/kg FO + 30g/kg VCO (3FVCO), 30g/kg FO + 30g/kg CO (3FCO) and 30g/kg VCO + 30g/kg CO (VO). Fish fed 3FCO recorded higher final weight, percentage weight gain (%WG) and specific growth rate (%SGR) but not significantly higher than all other groups. Triglyceride was higher in fish fed 3FCO than 3FVCO and CO (p ? 0.05), whereas total immunoglobulin (TIg) was not significant (p ? 0.05) between groups. Lysozyme activity was significantly higher in fish fed diet CO while groups FO, 3FCO and VCO recorded the least activities (p ? 0.05). Although alternative complement activity (ACH50), complement proteins (C3 and C4), was not influenced, antibody titre production was significantly higher in fish fed diet 3FCO and lower in group CO. mRNA expression of IL‐1β was significantly upregulated in fish fed VO while the expression of C‐type lysozyme and TGF‐β was not significantly influenced across treatments, although group fed FO recorded higher expression levels, respectively. Lower mortalities of fish were recorded in groups fed 3FCO and VO after 14 days postchallenge with A. hydrophila disease indicating the enhancing effects of vegetable oils to boost immune response and resistance to disease. The study concludes that alternative lipid sources with high polyunsaturated fatty acids (PUFAs‐ALA and LA) (CO) and blend of saturated fatty acids (SFA)(VCO) can partially and or exclusively replace FO with an improved effect on tilapia and resistance to A. hydrophila in tilapia.  相似文献   

17.
Spirulina has been highlighted as a valuable complementary ingredient in aquafeeds due to its high protein and vitamin content, in addition to other nutritional benefits. To evaluate the effect of dietary spirulina inclusion in fish meal sparing (FMS) on juvenile Caspian brown trout as a slow‐growth fish, a complete randomized experimental design was developed with five treatments: 0% (control), 2% FMS (13.2 g/kg spirulina in diet), 4% FMS (26.4 g/kg spirulina in diet), 6% FMS (39.6 g/kg spirulina in diet) and 8% FMS (52.8 g/kg spirulina in diet). Six hundred juveniles (11.0 ± 1.0 g) were assigned to 15 experimental tanks. Although this fish is sensitive to diet composition, fish fed the 6% FMS and 8% FMS diets had a significantly higher weight gain rate (239.51% and 231.27%) and specific growth rate (1.74% bw per day and 1.71% bw per day) compared with those fed the control diet. Furthermore, 6% FMS and 8% FMS treatments had statistically higher protein efficiency (0.76 and 0.78), lipid efficiency (1.89 and 1.94) and statistically lower feed conversion ratio (2.47 and 2.41) compared with other treatments, respectively (p < 0.05). In terms of whole‐body composition, the higher amount of protein and lower content of lipid were observed in fish fed the 8% FMS diets as compared to control. Although no significant differences in ash and moisture content were observed, the highest protein deposition (157.3 g/kg) and the lowest lipid content (77 g/kg) in whole body were reported in fish fed 8% FMS diet. Based on the fillet fatty acid outcome, fish fed the 8% FMS diet had significantly higher saturated fatty acids (SFAs), C20:3n‐6, C18:3n‐3, polyunsaturated fatty acids (PUFAs) and total n‐3 fatty acids as compared to those fed the control diet (p < 0.05). Accordingly, increasing dietary spirulina content significantly enhanced the amount of these fatty acids in fish fillet. As regards of whole‐body amino acid profile, arginine and lysine in fish fed 6% FMS and 8% FMS diets were higher and lower than in those fed the control diet, respectively (p < 0.05). Fillet and skin colour parameters, such as luminosity, redness and yellowness, significantly increased with spirulina supplementation with the 8% FMS treatment displaying higher values than the control. In summary, according to our results, 8% FMS (52.8 g/kg spirulina in diet) treatment improved juvenile Caspian brown trout growth, carcass composition and pigmentation.  相似文献   

18.
The aim of this study was to investigate effects of dietary geniposide (GP) on growth performance, flesh quality, and lipid metabolism of grass carp, Ctenopharyngodon idella (95.2 ± 0.6 g), fed seven different diets, including a control diet; Eucommia ulmoides (EU)–supplemented diet (20 g/kg); and GP‐supplemented diets containing 100, 200, 400, 600, and 800 mg/kg GP, respectively. Weight gain rate was significantly improved (P < 0.05) and feed conversation ratio was significantly decreased (P < 0.05) by supplementation of EU. Grass carp fed 100–800 mg/kg GP‐supplemented diets showed significantly higher total collagen and alkaline‐insoluble collagen content in muscle than control (P < 0.05). Contents of total collagen and the alkaline‐insoluble collagen content in the skin of grass carp were significantly increased by dietary 600–800 mg/kg GP and EU (P < 0.05). Fish fed diets containing 600–800 mg/kg GP showed significantly lower muscle crude lipid content than the EU, control, and 100–400 mg/kg GP groups (P < 0.05). Fish fed 400–800 mg/kg GP diets had significantly higher muscle fiber density and lower muscle fiber diameter and serum triglyceride level than the control (P < 0.05). In conclusion, supplementation of GP could improve flesh quality, but not growth of grass carp. The supplemental level of GP for improving flesh quality was estimated to be a 400–600 mg/kg diet.  相似文献   

19.
To quantify the dietary potassium requirement of fingerling Labeo rohita (6.2 ± 0.12 cm; 1.98 ± 0.06 g), seven purified experimental diets (350 g/kg crude protein and 16.72 kJ/g gross energy) with graded levels of potassium (0.32, 1.35, 2.41, 3.46, 6.48, 9.47 and 12.39 g/kg diet) were fed to triplicate groups of fishes at 08:00, 12:00 and 16:00 hr to apparent satiation for 8 weeks. Live weight gain (LWG; 671.46%), specific growth rate (3.65%/day), protein efficiency ratio (2.16), protein gain (PG; 2.41 g/fish) and feed conversion ratio (1.32) were found to be best in fish fed diet containing 3.46 g/kg potassium. Gill Na+‐K+ ATPase activity was also highest in fish fed diet with 3.46 g/kg potassium. Potassium content of whole‐body, vertebrae and scales increased significantly with the increase in dietary potassium level up to 6.48 g/kg. Significant changes were also noted in serum malondialdehyde content, superoxide dismutase, catalase, glutathione peroxidase and alkaline phosphatase activity. Based on the maximum live weight and protein gain observed in the present study, the inclusion of 3.55 g/kg potassium is recommended for developing potassium‐balanced commercial feeds for intensive culture of fingerling L. rohita.  相似文献   

20.
A 10‐wk feeding trial was conducted to estimate the dietary protein requirements of juvenile Dianchi golden‐line barbell, Sinocyclocheilus grahami (initial average weight 7.55 g). Five isocaloric diets were formulated to contain graded levels of protein (29, 34, 39, 44, and 49%). Each diet was fed to triplicate groups of fish in a recirculating rearing system maintained at 18–22 C. Feed intake of fish fed the diet with 39% protein was significantly higher than those fed the diet with 29, 34, and 49% protein (P < 0.05). Weight gain, specific growth rate (SGR), and protein gain significantly increased with increasing dietary protein levels up to 39% (P < 0.05), whereas no significant differences were observed among fish fed the diet with 39, 44, and 49% protein (P > 0.05). In contrast, feed conversion ratio was significantly decreased with increasing dietary protein levels up to 39%. Maximum protein retention and protein efficiency ratio were observed in fish fed the diet with 39% protein. The regression analysis based on SGR and protein gain showed that the dietary protein requirements of juvenile S. grahami were 38.57% or 41.09% (equivalent to ca. 32.94% or 35.42% estimated digestible protein) of diet with a calculated digestible energy of 3.6 kcal/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号