首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two methods were developed for the production of larval fish diets. The first method, microextrusion marumerization (MEM), has been tested in laboratory feeding trials for many years and produces particles that are palatable and water stable. The second method, particle‐assisted rotational agglomeration (PARA), produced diets that have lower density than diets produced by MEM. Each method was used to produce diets in the 250‐ to 400‐ and 400‐ to 700‐μm range and compared with a reference diet (Fry Feed Kyowa * [FFK]) for feeding larval walleye in two experiments. The effect of substituting 4% of the fish meal with freeze‐dried artemia fines was also investigated. In the first experiment, 30‐d survival was greater (P < 0.05) for fish fed a diet produced by PARA without Artemia (49.1.0%) than for fish fed the same diet produced by MEM (27.6%). The addition of Artemia to a diet produced by MEM did not increase survival of larval walleye. Fish fed the reference diet had 24.4% survival. In the second experiment, there was an effect of both processing method and Artemia supplementation, and an interaction of these effects, on survival. Fish fed a diet produced by PARA without Artemia supplementation had 48.4% survival, and fish fed the same diet produced by MEM had only 19.6% survival. Inclusion of 4% freeze‐dried Artemia improved (P < 0.04) survival of fish fed MEM particles but not those fed PARA particles. Fish fed FFK had greater weight gain than fish fed other diets in both experiments. Data indicate that the PARA method of diet processing produces smaller, lower density particles than the MEM process and that diets produced by the PARA process support higher survival of larval walleye with low capital and operating costs.  相似文献   

2.
The aim of this study was to determine if algal products rich in DHA or ARA are able to completely replace fish oil in microdiets for marine fish larvae, gilthead seabream and if extra supplementation with EPA may further enhance larval performance. For that purpose, 20 day‐old gilthead seabream larvae of 5.97 ± 0.4 mm mean total length and 0.12 ± 0.001 mg mean dry body weight were fed with five microdiets tested by triplicate: a control diet based on sardine oil; a diet containing AquaGrow® DHA (diet DHA) to completely substitute the sardine oil; a diet containing AquaGrow® ARA (diet ARA); a diet containing both products, AquaGrow® DHA and AquaGrow® ARA to completely substitute the fish oil; and, a diet containing both products, AquaGrow® DHA and AquaGrow® ARA, together with an EPA source. Temperature, air and salinity activity tests were also performed to detect larval resistance to stress. At the end of the experiment, final survivals did not differ among groups. The microorganism produced DHA was able to completely replace fish oil in weaning diets for gilthead seabream without affecting survival, growth or stress resistance, whereas the inclusion of microorganism produced ARA did not improve larval performance. Moreover, addition of EPA to diets with total replacement of fish oil by microorganism produced DHA and ARA, significantly improved growth in terms of body weight and total length. The results of this study denoted the good nutritional value of microorganisms produced DHA as a replacement of fish oil in weaning diets for gilthead seabream, without a complementary addition of ARA. However, dietary supplementation of EPA seems to be necessary to further promote larval performance.  相似文献   

3.
The effects of weaning strategies of cobia (Rachycentron canadum L.) larvae to commercial microdiets, either from rotifers or from Artemia, on growth, survival and enzymatic digestive capacity, were investigated. In the first experiment, cobia larvae were weaned from rotifers by co-feeding with a microdiet (Otohime) from 8, 13 or 20 days post-hatching (dph). The larvae in the control treatment were fed rotifers (2–12 dph), Artemia nauplii from 7 dph, and co-fed with the microdiet from 20 dph. In the second experiment, the larvae were weaned from Artemia, which was fed to the larvae from 7 dph, by co-feeding with a microdiet (NRD) from 8, 13 or 18 dph. The larvae in control treatment were fed rotifers, then Artemia to the end of the experiment (28 dph). Weaning of cobia larvae onto a microdiet directly from rotifers significantly reduced growth, survival and digestive capacity of the larvae and did not lead to larval acceptance of the microdiet, compared to those weaned from Artemia in the first experiment. Early weaning of cobia larvae onto NRD microdiet (on 8 or 13 dph) from Artemia in the second experiment also reduced growth, survival rate and gut maturation index, compared to those fed live feed. With available microdiets, weaning of cobia larvae could start from Artemia at around 18 dph in order to obtain comparable growth, survival and gut maturation to larvae fed live feed.  相似文献   

4.
Because of high costs and labour requirements along with the highly variable nutritional value of live feeds, we investigated the possibility of early weaning for barramundi (Lates calcarifer Bloch) larvae aimed at reducing the use of Artemia. Two commercial microdiets, Gemma Micro (Skretting, Australia) and Proton (INVE, Belgium) were compared for growth and survival of larvae using three weaning protocols, until 33 days posthatch (dph). Enriched rotifers were fed to larvae in all protocols through mouth opening until 21, 18 and 30 dph (protocols 1, 2 and 3, respectively). At 13 dph, enriched Artemia metanauplii were introduced to weaning protocols 1 and 2, and continued until 29 and 24 dph, respectively, whereas protocol 3 did not receive Artemia. Microdiet was initiated at 20, 16 and 13 dph in protocols 1, 2 and 3, respectively. Barramundi larvae grew successfully to 33 dph when co‐fed rotifers and microdiet, and significantly larger larvae resulted from feeding Gemma Micro rather than Proton, when Artemia were not used. However, larvae weaned onto Proton using a longer period of Artemia provision were significantly larger than larvae reared according to all other protocols. Survival was significantly higher in all Gemma Micro protocols when compared with Proton protocols. This was in part due to higher cannibalism when using Proton compared with Gemma Micro (22.8 ± 0.9% and 9.2 ± 0.6%, respectively). Cannibalism became more noticeable in all protocols when the larvae reached 7–8 mm standard length and further increased after the cessation of live feed. Tank biomass production was the highest when larvae were weaned onto Gemma Micro including a short period of Artemia provision as a result of a combination of high growth and survival. However, similar biomass production resulted when larvae were weaned directly from rotifers onto Gemma Micro and/or from a prolonged Artemia period onto proton. The success of weaning barramundi larvae directly to microdiet from rotifers, thus eliminating the need for Artemia, was influenced by the microdiet. Relatively higher levels of free amino acids and lipids were believed to contribute to increasing larval growth and survival. Larvae that were fed Gemma Micro showed higher growth when Artemia were utilized for a shorter period, while Proton‐fed larvae benefited from an extended Artemia feeding period.  相似文献   

5.
A 30‐day feeding experiment was conducted in blue tanks (70 × 50 × 60 cm, water volume 180 L) to determine the effects of dietary lipid levels on the survival, growth and body composition of large yellow croaker (Pseudosciaena crocea) larvae (12 days after hatchery, with initial average weight 1.93 ± 0.11 mg). Five practical microdiets, containing 83 g kg?1 (Diet 1), 126 g kg?1 (Diet 2), 164 g kg?1 (Diet 3), 204 g kg?1 (Diet 4) and 248 g kg?1 lipid (Diet 5), were formulated. Live feeds (Artemia sinicia nauplii and live copepods) were used as the control diet (Diet 6). Each diet was randomly assigned to triplicate groups of tanks, and each tank was stocked with 3500 larvae. During the experiment, water temperature was maintained at 23(±1) °C, pH 8.0 (±0.2) and salinity 25 (±2) g L?1. The results showed that dietary lipid significantly influenced the survival and growth of large yellow croaker larvae. Survival increased with the increase of dietary lipid from 83 to 164 g kg?1, and then decreased. The survival of larvae fed the diet with 83 g kg?1 lipid (16.1%) was significantly lower than that of larvae fed other diets. However, the survival in larvae fed the diet with 16.4 g kg?1 lipid was the highest compared with other artificial microdiets. Specific growth rate (SGR) significantly increased with increasing dietary lipid level from 83 to 164 g kg?1 (P < 0.05), and then decreased. The SGR in larvae fed the diet with 164 g kg?1 lipid (10.0% per day) was comparable with 204 g kg?1 lipid (9.6% per day), but were significantly higher than other microdiets (P < 0.05). On the basis of survival and SGR, the optimum dietary lipid level was estimated to be 172 and 177 g kg?1 of diet using second‐order polynomial regression analysis respectively.  相似文献   

6.
为研究不同转食策略对胭脂鱼仔鱼和稚鱼生长和存活率的影响,实验采用2种转食策略投喂初始体质量为(9.50±0.84)mg的胭脂鱼仔鱼到其60 dph(days post hatching),(1)按转食起始点不同分为3组,转食起始点分别为15dph(W15)、20 dph(W20)和25 dph(W25),结果显示:3个组的存活率均达8 0%以上,W20组存活率最高,为91.21%±1.93%,但差异不显著;各组特定生长率(SGR)整体呈下降趋势,全部转食饲料到实验结束即35~60 dph时间段内,W20和W25的SGR显著高于W15,且这2组差异不显著;W25的全长和体质量最高,W15最低且显著低于另外2组;W20和W25的体质量差异不显著;(2)在20 dph开始转食,按转食过渡时间长短不同分为3组,分别是转食过渡时间为5 d(W20-1)、10 d(W20-2)和15 d(W20-3),结果显示:W20-2和W20-3的存活率不存在显著性差异,分别为95.73%±0.60%和91.21%±1.93%,显著高于W20-1;各组SGR整体呈下降趋势,全部转食饲料到实验结束即35~60 dph时间段内,W20-2和W20-3的SGR显著高于W20-1,且这2组差异不显著;W20-3全长和体质量均显著高于其他2组。以上结果表明,延后转食时间起始点和延长转食过渡时间,其转食后的SGR、全长和体质量有增大趋势,但在不显著影响鱼苗生长和存活的前提下,应尽量缩短生物饵料投入的时间,降低养殖成本。因此本研究中,转食起始点为20 dph,转食过渡时间为10 d是最适宜胭脂鱼仔鱼的转食策略。  相似文献   

7.
In previous studies, combined inclusion of Zn, Mn and Se in early weaning diets improved larval growth, but suggested a potential toxicity by one of these elements. The present study aimed to determine the effect of the single inclusion of Zn, Mn, Se or Cu, their combination (Control+) or their absence (Control?) on larval diets. At the end of the trial, survival was significantly (p < .05) lowest in fish fed C+ diet (17.16 ± 7% mean ± SD), followed by that of larvae fed Mn diet (21.91 ± 7%). The highest survival was obtained by Cu diet (35.27 ± 15%), followed by C? diet (34.58 ± 9%). Cu and Se supplementation significantly improved total length and body weight, in comparison with the C? fish. On the contrary, fish fed Mn and C+ showed the lowest growth. Supplementation with Zn or Cu significantly increased CuZnsod, whereas gpx was significantly upregulated in fish fed Se and C+ diets. ARA/EPA level was significantly highest and DHA/EPA lowest in larvae fed the Cu diet in fish fed C+ diet. The results pointed out the importance of supplementation with Cu, as well as Se and Zn, on early weaning diets for gilthead sea bream, and the potential toxic effect of Mn.  相似文献   

8.
Two experiments were carried out to test microparticulate diets forweaning hatchery-produced larvae and juveniles of bullseye pufferSphoeroides annulatus. The diets were formulated with differentprotein sources: diet 1 with a combination of decapsulated cysts ofArtemia and fishmeal, and diet 2 with a combination offishmeal, squid, tuna gonad and shrimp meal. In the first experiment60-days-old fish were weaned with the microdiets over five days. Fishsurvival after 11 weeks of feeding was 92% for diet 1, 85%for diet 2, and 95% for the control fish fed Artemianauplii. Once it was determined that bullseye puffer can be adequatelyreared with artificial dry diets, diet 1 was used to test earlier timesfor weaning to reduce the period of Artemia feeding. In thesecond experiment, three different times were tested for initiation ofweaning in sibling fish larvae, i.e., at 29, 34, and 39 days post-hatch.Small differences in weight, length and survival were found amongweaning treatments after 23 days of feeding. When weaned at day 29post-hatch, fish larvae grew from an initial weight of 38.4 mg andlength of 11.1 mm to a final weight and length of 405.7 mg and 25.1 mmrespectively. Final survival in this treatment was 49.3%. Thereduced period of Artemia feeding would provide an economicalalternative for the species to take into consideration for its cultureat commercial scale.  相似文献   

9.
The aim of this study was to investigate the effect of natural zooplankton versus rotifers and the effect of prey size on the growth and survival of cod larvae. At 20 days post hatch (DPH) myotome height, standard length and dry mass were significantly higher in larvae fed zooplankton compared to those fed rotifers. The dry mass at age 25 DPH was 135 μg (±45), 331 μg (±114), 391 μg (±121) for larvae fed rotifers, small size and large size plankton, respectively. At 25 days post hatch, the survival rates were 41.8% (±10.5), 90.7% (±2.3) and 91.4% (±1.7) for larvae reared on rotifers, small size and large size plankton, respectively. The limited growth and survival of cod larvae reared on rotifers were not mainly caused by the small size of rotifers. Large differences in skin coloration between larvae in the rotifer group and the two zooplankton groups were observed, probably caused by the large difference in astaxanthin levels in rotifers and natural zooplankton. We suggest that the nutritional composition of rotifers is a limiting factor for cod larvae growth and survival.  相似文献   

10.
This study evaluated weaning success of California halibut, Paralichthys californicus, larvae onto a microdiet at various stages of development utilizing growth, survival and digestive enzyme activity. Weaning onto a microdiet was evaluated at 16, 26, 36 and 46 days posthatch (dph). Alkaline and acid proteases and leucine aminopeptidase activities were measured after weaning and compared between the weaned treatment and Artemia‐fed controls. Survival was significantly lower in the microdiet‐fed treatments compared to the control groups. Growth was significantly reduced in all weaning treatments compared to the control, except for the 46 dph group. No differences in enzyme activities were detected between treatment and diet at 16 and 26 dph; however, activities were higher for the microdiet‐fed larvae at 36 and 46 dph. This study demonstrates that California halibut larvae possess a differentiated and effective digestive system early in development and can be weaned with relative success (>40% survival) before completion of the metamorphosis (i.e., 36 dph). The lack of weaning success at an early date cannot be entirely because of the absence of a functional stomach but could be related to, among other factors, the low‐microdiet ingestion rates observed and higher leaching of smaller microdiets.  相似文献   

11.
The performance of Australian snapper, Pagrus auratus, larvae from 4 to 33 days posthatch (dph) under two environmental rearing regimes was evaluated in 2000‐L commercial‐scale larval rearing tanks (N = 3 tanks/treatment). The treatments were the following: (1) a varying regime of salinity (20–35 ppt), temperature (24 C), and photoperiod (12 light [L] : 12 dark [D] to swim bladder inflation and then 18L : 06D) and (2) a constant regime of salinity (35 ppt), temperature (21 C), and photoperiod (14L : 10D). The final total length (TL) and wet and dry weights (mean ± SEM) of larvae grown in the varying regime were greater (15.6 ± 0.5 mm; 42.4 ± 3.4 mg wet weight; and 7.3 ± 0.6 mg dry weight) than those of larvae grown in the constant regime (11.1 ± 0.2 mm; 12.9 ± 0.8 mg wet weight; and 2.1 ± 0.2 mg dry weight). By 33 dph, larvae in the varying regime were fully weaned from live feeds to a formulated pellet diet and were suitable for transfer from the hatchery to a nursery facility. In contrast, larvae in the constant regime were not weaned onto a pellet diet and still required live feeds. Neither survival (Treatment 1, 14.2 ± 3.0% and Treatment 2, 13.3 ± 1.9%) nor swim bladder inflation (Treatment 1, 70.0 ± 17.3% and Treatment 2, 70.0 ± 11.5%, by 13 dph) was affected by rearing regime. The incidence of urinary calculi at 7 dph was greatest initially in the varying regime; however, by 19 dph, when larvae were 8.0 ± 0.28 mm TL, very few larvae in this treatment had urinary calculi. In contrast, many larvae in the constant regime had developed urinary calculi and this continued until the end of the experiment. The incidence of urinary calculi was not associated with larval mortality. Extrapolation of the snapper larval growth curves for the constant larval rearing regime predicts that a further 15–18 d, or approximately 1.5 times longer, will be required until these larvae attain the same size and development of larvae reared in the varying regime.  相似文献   

12.
The tongue sole Cynoglossus semilaevis, an inshore fish in China, has showed great potential in aquaculture recently. However, poor survival was recorded during the period of weaning from live Artemia to artificial diets. In this paper, the influence of co‐feeding larvae with live and inert diet on weaning performance was described. The C. semilaevis larvae were reared at 21 ± 1 °C and fed four different feeding regimes from 6 days post‐hatching (dph): A, Artemia (10 individuals mL?1); B, Artemia (5 individuals mL?1); C, mixed diet (10 Artemia individuals mL?1 and 12 mg L?1 inert diet); and D, mixed diet (5 Artemia individuals mL?1 and 12 mg L?1 inert diet). Rotifers were also supplied in all cases during the first days of feeding. Mixed diets of commercial formulated feed and live prey (rotifers and Artemia) allowed larvae to complete metamorphosis, achieving similar specific growth rate (SGR) (18.5 ± 1.4% and 18.7 ± 1.6%) and survival (40 ± 7.6% and 48.5 ± 6.8%) compared with larvae fed on live feed alone (SGR of 18.3 ± 1.2%, 19.3 ± 1.9% and survival of 41.2 ± 11.3%, 38 ± 4.9%). However, in metamorphosed fish, when live feed was withdrawn on 31 dph, there was significant difference (P < 0.05) in survival and growth among treatments. Metamorphosed fish, previously fed mixture diets during larval stages, had similar survival (62.1 ± 7.6% and 62.8 ± 3.9% for regimes C and D, respectively) but higher than that obtained for fish that previously fed on live feed (49.3 ± 2% and 42.1 ± 3.9% for regimes A and B, respectively) after weaning (day 60). The SGR of weaned fish previously fed live feed was similar (3.1 ± 0.6% and 2.92 ± 0.6% for regimes A and B, respectively) but lower than that recorded for fish that was fed from day 6 to day 30 on the mixed diet (4.5 ± 1.1% and 4.9 ± 0.3% for regimes C and D, respectively). It is suggested that weaning of C. semilaevis from early development would appear to be feasible and larval co‐feeding improves growth and survival.  相似文献   

13.
Black catfish (Rhamdia quelen) is a species of interest for aquaculture in Brazil, Argentina and Uruguay. A feeding trial was conducted to evaluate the effect of feeding R. quelen larvae on either only an artificial diet or in combination with Artemia nauplii (AN) on larval performance and fatty acid composition. For 12 days, larvae were fed from first feeding (3 days after hatching, TL = 5.88 ± 0.23 mm) with artificial food only or a combination of artificial food and AN (co‐feeding). At the end of the trial, total length of co‐fed larvae was significantly higher than that of larvae fed solely artificial food (P < 0.001). No significant differences were found in survival rates. Co‐feeding microdiet with a small amount of AN significantly affected larval fatty acid composition. Lipid and fatty acid composition of food and larvae revealed the importance of n‐3 fatty acids for growth of black catfish larvae and that, as most freshwater fish, R. quelen larvae can elongate and desaturate linolenic acid to n‐3 highly unsaturated fatty acids. Results suggest that R. quelen larvae can be fed from first feeding on microdiets as unique food source, although better larval performances are obtained by co‐feeding with a small amount of AN.  相似文献   

14.
The success of microdiets commonly used in the cultivation of marine fish larvae is limited to serving as partial replacements for live food. This limited success is thought to be associated with a reduced digestive ability due to an incompletely developed digestive system. The enhanced growth obtained from live food has been partially attributed to the digestive enzyme activity of the food organism. The present study was designed to test the effect of an exogenous digestive enzyme incorporated. into a microdiet on the growth of Sparus aurata. Larval gilthead seabream, 20–32 days old, were fed 14C labelled microdiets containing a commercial pancreatic enzyme at different concentrations (0, 0.1 and 0.05g / 100 g dry diet). Rates of ingestion and assimilation were measured and their relationship to dry weight was determined. Our results show that the success of the microdiet as a food for larval gilthead seabream was limited by the larva's low ingestion rate which only approached its maintenance requirement. In addition, the presence of digestive enzyme in the microdiet enhanced its assimilability by 30%. Larval growth over ten days was 0, 100 and 200% on microdiet free of added enzymes, one with added enzymes and a live food regime, respectively. It is our opinion that successful development of microdiets for Sparus aurata must be based on diets improved both in digestibility and attraction to the larvae. Further studies are now underway to determine the nutritional requirements of gilthead seabream larvae using the experimental method developed in the present study. This research was carried out in partial fulfillment of the requirements for the M.Sc. degree.  相似文献   

15.
A pilot‐scale trial to rear fat snook Centropomus parallelus through larval, weaning and nursery phases was conducted in Florianópolis, Brazil. Eggs (96% fertilization) from captive broodstock, induced to spawn using 50 μg/kg LHRHa were stocked in two 4,000‐L cylindrical fiberglass tanks at a mean density of 19.2 eggs/L. Nannochloropsis oculata was stocked with the eggs and maintained at a mean density of 0.5–1.0 ± 106 cells/mL up to 31 dph (31 dph). Hatching averaged 90%. Larvae were fed rotifers Brachionus rotundiformis enriched with an oil emulsion from 3 dph to 36 dph (30–40 rotifers/mL) and Artermia meta‐nauplii enriched with Selco from 22 dph to 60 dph (mean 2.9 meta‐nauplii/mL). Weaning began at 45 dph with an artificial dry diet NRG (50% protein), supplied together with concentrated and enriched Artemia meta‐nauplii. No critical period of mortality was observed during larval rearing. During the 43 days of weaning and nursery, less than 1% mortality was recorded. Food conversion rate during nursery was 1.17, with a change in the coefficient of variation of mean total length of 1.3%. Specific total growth rate in weight was 13.0 %/d and mean growth in total length and total weight were 0.65 mm/d and 24.0 mg/d over the whole rearing trial respectively. Mean total length and total weight of juveniles were 57.6 ± 0.1 mm and 2.11 ± 0.12 g, respectively, and the length‐weight relationship was W = 8.29931 ± 10–5 TL3.049607 (r= 0.9986). on 88 dph when the trial was terminated. The condition factor on 88 dph was 1.104. On 88 dph a total of 35,000 juveniles were harvested, overall survival was 25.5% with mean final density of 4.4 fishn and biomass of 6.9 kg/m3. The present trial demonstrated the feasibility of mass production of fat snook. Possible improvements necessary for commercial cultivation of fat snook C. parallelus are discussed.  相似文献   

16.
Heterobranchus longifilis larvae were reared over a 35 d period to evaluate the effects of stocking densities and feeding regimes on growth and survival. In experiment 1, larvae (12.3?±?2.1 mg) were stocked into glass aquaria at densities of 1, 2, 5, 10, 15, 20, and 25 larvae L?1. Larvae were fed on Artemia nauplii ad libitum. Significant variations in terms of growth performance and feed utilization occurred at all levels of density treatments. Specific growth rate (SGR), body weight gain (BWG), and feed efficiency (FE) of the larvae decreased significantly as density increased. However, survival rate increased with the increase of stocking density. In experiment 2, larvae (13.4?±?1.1 mg) stocked at a density of 15 larvae L?1, in the same conditions as experiment 1, were fed on three different regimes: Artemia nauplii; 35%?protein beef brain; and 35%?protein commercial catfish feed (CN+). SGR, BWG, and coefficient of variation (CV) of larvae fed on Artemia nauplii were significantly higher than those fed on beef brain and CN+. The survival rate of larvae fed on beef brain was significantly higher (88.40?±?9.75%) than those of Artemia (69.21?±?6.69%) and CN+ (40.40?±?6.22%). The results of this study suggest that the optimum stocking density is 15 larvae L?1 and the beef brain can be used as alternative feed to Artemia in rearing H. longifilis larvae.  相似文献   

17.
In this study bullseye puffer, Sphoeroides annulatus larvae were reared from hatching through to 1 or 2 months after weaning on an experimental scale in three replicate 600 L tanks and on three occasions during the spawning season (nine tanks in total). The rearing protocol used was green water (Nannochloropsis oculata and Isochrysis sp.) 100 000 cells mL?1 from 0 to 11 days after hatch (DAH), 5–10 rotifers, Brachionus rotundiformis mL?1 from 2 to 26 DAH, 0.1–1 Artemia mL?1 from 21 to 34 DAH and weaning from 29 to 34 DAH. Survival to a month after weaning was 1%, a total of 3153 juveniles were produced with an average wet weight of 0.29 ± 0.07 g and a length of 27.5 ± 0.82 mm.  相似文献   

18.
The effects of two microencapsulated feeds were evaluated on development, growth, survival, proteolytic activity, and biochemical composition of white shrimp, Litopenaeus vannamei, larvae. The treatments were: (1) basal microcapsules (BM), (2) microcapsules containing krill hydrolysate (BMK), and (3) live food control (LFC: Artemia franciscana nauplii) with all treatments receiving algae (Chaetoceros ceratosporum and Tetraselmis chuii). No significant differences were found in development index and survival among larvae. Growth rate was significantly higher in larvae fed LFC (15 ± 0.06%/d) as compared with those offered the BM diet (7.5 ± 0.5%/d) with the BMK (11 ± 0.04%/d) treatment producing intermediate results. The activity of total proteases and chymotrypsin decreased significantly after Mysis I (MI) in larvae fed LFC or BMK. Protein content of larvae increased significantly toward PL1. The acylglycerides content in MIII fed on LFC (2.3 ± 0.2%/dw) was higher than that MI fed BM (1 ± 0.01%/dw). No difference was observed in the cholesterol (CH) content of the larvae. The acylglycerides/protein and cholesterol/protein ratios showed a decreasing pattern between MI and PL1, indicating that these two ratios were related to ontogenetic shifts. These results demonstrate improvements in microparticulate diets when krill hydrolysates are included in the formulation.  相似文献   

19.
The scale‐up of spotted rose snapper, Lutjanus guttatus, larval rearing is described. Fertilized eggs (480,000) were obtained from a 1‐d harvest of a natural spawning captive broodstock acclimatized for 1 yr and 6 mo in two fiberglass tanks (18 m3). Fourteen hours after spawning, 89.6% of the collected eggs were floating, of which 96.2% were transparent with live embryos. Incubation at 25–26 C lasted 21 h, with 90.2 ± 2.1% hatching percentage of normal larvae. The percentage of viable larvae at 48 h after hatching was 79.7 ± 1.9%. Initial stocking density was 10.4 ± 1.0 larvae/L 2 days after hatching (d.p.h.). A total of 22,600 juveniles (1256 ± 170 juveniles/m3) were harvested from six 3‐m3 cylindrical fiberglass tanks. Average survival was 12.1 ± 1.1%. Final mean length and weight were 5.5 ± 0.05 cm and 2.24 ± 0.04 g, respectively. Growth expressed in total length was TL = 2.1476e0.0543t (R2 = 0.9911). Final mean biomass and condition factor were 2.8 kg/m3, 12.3% and 1.346. General length‐weight ratio was W = 0.05460 LT2.2306.  相似文献   

20.
Early weaning in spotted sand bass larvae, Paralabrax maculatofasciatus, was evaluated, testing a combination of two weaning times, 17 and 22 d after hatching (d.a.h.), and three different microparticulate diets. Protein in diets was mainly from sardine meal and from 15% squid meal, beef blood meal, or fish protein hydrolysate. Anatomical (standard length), histological (gut development), and biochemical (highly unsaturated fatty acids) parameters were measured in larvae, as well as survival and resistance to a stress test measured 40 d.a.h. For larvae weaned at 17 d.a.h., the best growth and survival were obtained with diets containing fish protein hydrolysates; for larvae weaned at 22 d.a.h., best results were obtained with squid meal and fish protein hydrolysate. Growth and survival were significantly lower when using beef blood meal in both weaning treatments. The best relative and total survival were for larvae weaned at 22 d.a.h. After the resistance test, 100% survival occurred in larvae fed on any microparticulate diet and either weaning treatment. No significant differences in arachidonic acid, eicosapentaenoic acid, or docosahexaenoic acid concentrations in fish fed on any diet occurred. Results suggest that weaning at 22 d.a.h. with diets containing fish protein hydrolysate or squid meal is preferred by this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号