首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Advances in understanding insecticide resistance in the peach-potato aphid, Myzus persicae (Sulzer), at the genotypic, biochemical and molecular levels have led to rapid and precise methods for the detection of several resistance mechanisms (elevated carboxylesterase, modified acetylcholinesterase or MACE, and knockdown resistance or kdr) in individual insects, and for monitoring their frequencies over space and time. This paper summarises the results of two long-term surveys of resistance dynamics in M persicae in England, based on samples collected directly from field and glasshouse crops or from four 12.2-m suction traps. The study showed marked fluctuations in resistance frequencies that probably reflect the counteracting forces of selection imposed by insecticides for aphids possessing more copies of esterase resistance genes, and selection against these forms when insecticide use is relaxed. There is growing evidence that several different resistance mechanisms in M persicae have associated fitness costs. In the case of esterase and MACE, these costs are apparently strong enough to effect a decline in resistance frequency over winter, and a more prolonged decline over successive cropping seasons when aphid numbers are insufficient to trigger intensive chemical applications. Changes in the overall frequency of resistance genotypes may also be influenced by the predominance of year-round parthenogenesis in M persicae in the UK, leading to non-random associations between mechanisms and selection operating on clonal lineages rather than individual genotypes.  相似文献   

2.
Twenty-one clones of the peach-potato aphid, Myzus persicae (Sulzer), carrying various combinations of known mechanisms of insecticide resistance were assessed for their response to the new pyridine azomethine compound, pymetrozine, in leaf-dip bioassays. Pymetrozine was also applied as a foliar spray to populations of four different UK M persicae clones on potato plants in field-simulator chambers. Neither study showed any evidence of cross-resistance to this compound. Pymetrozine, used in conjunction with other effective aphicides, such as pirimicarb and imidacloprid, can therefore play an important role in insecticide resistance-management strategies for M persicae.  相似文献   

3.
A range of insecticides was applied at recommended application rates against populations of Myzus persicae (Sulzer) carrying various combinations of three insecticide resistance mechanisms (carboxylesterase-based metabolic resistance and two target-site mechanisms, known as MACE and kdr), supported on either Chinese cabbage or potatoes in field simulator cages. Patterns of response were similar on both host species. MACE conferred extreme resistance to pirimicarb and triazamate (dimethylcarbamate insecticides). The kdr mechanism was associated with resistance to lambda-cyhalothrin, cypermethrin and deltamethrin (pyrethroid insecticides). A mixture of pirimicarb plus lambda-cyhalothrin was only effective against M persicae not carrying kdr or carrying kdr and low carboxylesterase-based resistance. None of the insecticides tested was effective against M persicae carrying both MACE and kdr resistance. The implications of these findings for the formulation of control strategies, based on regular monitoring of resistance genotype frequencies, are discussed.  相似文献   

4.
The peach-potato aphid Myzus persicae (Sulzer) has developed a number of insecticide resistance mechanisms owing to the high selective pressure produced by world-wide insecticide treatments. Knowledge of the geographical distribution and the temporal evolution of these resistant phenotypes helps to develop suitable pest-management programs. Current understanding of the major mechanisms of resistance at the molecular level makes it possible to diagnose the presence of modified acetylcholinesterase (MACE) or knockdown resistance (kdr). This paper describes a rapid method for the identification of both resistance mechanisms in a single molecular assay by using restriction fragment length polymorphism of PCR products (RFLP-PCR) in individual as well as pooled aphids.  相似文献   

5.
蔬菜蚜虫抗药性现状及抗性治理策略   总被引:4,自引:0,他引:4  
蚜虫是为害蔬菜作物的一类重要害虫,如不防治会给蔬菜生产造成重大经济损失。长期以来主要依靠使用农药防治蔬菜蚜虫,但由于化学农药的不合理使用,蔬菜蚜虫对有机磷、拟除虫菊酯、氨基甲酸酯、新烟碱等多种类型的杀虫药剂均产生了不同程度的抗性。本文对常见的蔬菜蚜虫的抗药性现状、抗药性机理以及治理策略进行了论述,以期为该类害虫的可持续控制提供参考。  相似文献   

6.
The relationship between dose for each of four biorational insecticides (pyrethrins, neem extract, capsiacin extract, insecticidal soap) and mortality of the green peach aphid (Myzus persicae) was determined using a laboratory bioassay. These insecticides were toxic to aphids and paired mixtures of the insecticides provided synergistic activity as measured by aphid mortality under the laboratory bioassay conditions. Capsiacin extracts were found to provide low levels of mortality alone but acted synergistically in mixtures with the other insecticides and provided higher than expected levels of mortality. Activity as determined in the laboratory for each insecticide was not evident under field-use conditions in five separate experiments. Under field conditions and using common application methods, these insecticides did not provide significant levels of control of aphids.  相似文献   

7.
The essential oil of Hemizygia petiolata Ashby (Lamiaceae) contains high levels (>70%) of the sesquiterpene (E)-beta-farnesene, the alarm pheromone for many economically important aphid species. In order to test the suitability of H. petiolata oil as a source of (E)-beta-farnesene for use in new integrated aphid control strategies, behavioural responses of pest aphid species were studied in laboratory and field experiments. In alarm pheromone assays the peach-potato aphid, Myzus persicae Sulzer, and the pea aphid, Acyrthosiphon pisum (Harr), showed a lower level of response to the oil than expected given the high levels of (E)-beta-farnesene. It was shown that minor components in the oil, (+)-bicyclogermacrene and (-)-germacrene D, caused inhibition of the alarm response for M. persicae and A. pisum respectively. Nevertheless, in olfactometer studies the oil was directly repellent to A. pisum and the grain aphid, Sitobion avenae F. Sitobion avenae was not only repelled by (E)-beta-farnesene but also by (-)-germacrene D. Furthermore, although it was not directly repellent to M. persicae, the oil interfered with its attraction to host plant stimuli. In field plot experiments, numbers of A. pisum were significantly reduced in plots treated with a slow release formulation of the oil, when compared with control plots.  相似文献   

8.
采用微量毛细管点滴法筛选出比河北廊坊桃蚜相对敏感种群更为敏感的甘肃宕昌桃蚜种群,建立了18种杀虫剂对桃蚜敏感种群的毒力基线,可作为今后国内各地监测桃蚜抗药性水平的敏感基线。用氧乐果、氰戊菊酯及其氧乐果+氰戊菊酯对桃蚜敏感种群进行抗性选育,汰选20次时桃蚜对混剂氧乐果+氰戊菊酯只产生4.85倍的抗药性,比氧乐果单剂(7.39倍)抗性发展速度幔,尤其比氰戊菊酯单剂(87.21倍)更慢,表明桃蚜易对菊酯类药剂产生抗药性,混剂可以延缓产生抗药性。  相似文献   

9.
BACKGROUND: Parthenogenetic clones of the green peach aphid, Myzus persicae (Sulzer), and the cotton aphid, Aphis gossypii Glover, were tested with the anthranilic diamide insecticide cyantraniliprole (i.e. DuPont? Cyazypyr?) in systemic‐uptake bioassays to investigate potential for cross‐resistance conferred by mechanisms of insecticide resistance to organophosphates, carbamates and pyrethroids and, in the case of M. persicae, reduced sensitivity to neonicotinoids. These data were compared with the response of field samples of M. persicae and A. gossypii collected from around Europe. RESULTS: Cyantraniliprole was not cross‐resisted by any of the known insecticide resistance mechanisms present in M. persicae or A. gossypii. The compound was equally active against resistant and susceptible aphid strains. The responses of the M. persicae field samples were very consistent with a maximum response ratio of 2.9 compared with a standard laboratory clone. The responses of the A. gossypii field samples were more variable, although a majority of the responses were not statistically different. CONCLUSION: Cyantraniliprole is currently the only anthranilic diamide (IRAC MoA 28) insecticide targeting aphid species such as M. persicae and A. gossypii. There is no evidence to suggest that the performance of this compound is affected by commonly occurring mechanisms that confer resistance to other insecticide chemistries. Cyantraniliprole is therefore a valuable tool for managing insecticide resistance in these globally important pests. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
Laboratory bioassays applying the neonicotinoid insecticides imidacloprid, acetamiprid and nitenpyram against clones of the peach-potato aphid Myzus persicae (Sulzer) demonstrated that these compounds effectively circumvent the known carboxylesterase, modified acetylcholinesterase (MACE) and knock-down (kdr) insecticide resistance mechanisms in this species. However, some clones showed cross-tolerance (up to 18-fold) of these compounds relative to susceptible standards. A survey assessing the frequency of neonicotinoid tolerance in M persicae in the UK, based on samples collected from the field and glasshouses between 1997 and 2000, showed that such tolerance is still rare. Experiments on neonicotinoid-susceptible and -tolerant populations of M persicae under simulated field conditions in the laboratory showed that, although the latter were well controlled by imidacloprid applied at recommended application rates, they were more likely to survive and reproduce when this compound was applied at lower concentrations. Such conditions are probably periodically present in imidacloprid-treated field and glasshouse crops. Selection favouring tolerant forms of M persicae could lead to increases in their frequency and the evolution of more potent resistance to neonicotinoids.  相似文献   

11.
BACKGROUND: The accuracy of predicting the survival of insecticide‐resistant aphids following the application of commonly used insecticides from the carbamate, the pyrethroid, a mix of the two or the neonicotinoid chemical classes was evaluated in a potato field in Scotland. Equal proportions of five genotypes of the peach‐potato aphid, Myzus persicae (Sulzer), with none, resistance to dimethyl‐carbamates, resistance to pyrethroids or combinations conferring resistance to both chemical classes were released into potato field plots. The insecticides were sprayed separately onto these plots, the aphid populations were analysed after 6–8 days and the process repeated. RESULTS: For each assessment after the three separate spray events, plots treated with the carbamate had 48, 147 and 28%, those treated with pyrethroid 53, 210 and 89%, those treated with carbamate/pyrethroid 28, 108 and 64% and those treated with neonicotinoid 43, 55 and 11% of the numbers of M. persicae by comparison with untreated controls. Only the proportions of surviving aphids from the genotype containing no insecticide resistance traits and the genotype containing elevated carboxylesterases matched ratios predicted from the selective advantage afforded by the resistance traits alone. Survival of aphids from the other three genotypes that carried 1–3 of the insecticide resistance traits differed from expectations in all cases, possibly owing to physiological differences, including their vulnerability to predators and hymenopterous parasitoids present at the site and/or their carrying unknown insecticide resistance mechanisms. CONCLUSION: Control strategies based on knowledge of the genetically determined insecticide resistance profile of an M. persicae population alone are insufficient. Hence, other important factors contributing to aphid survival under insecticide pressure need to be considered. Copyright © 2012 Society of Chemical Industry  相似文献   

12.
测定了吡虫啉、鱼藤酮、阿维菌素和印楝素4种杀虫剂对桃蚜及其捕食性天敌异色瓢虫成虫的相对毒力。4种药剂对桃蚜的毒力大小依次为阿维菌素>吡虫啉>鱼藤酮>印楝素,其LC50分别为0.042、1.96、6.54和10.17 mg/L。对异色瓢虫的LC50则分别为1009.42、201.89、8202.90和大于7500 mg/L,益害毒性比分别为24033.81、103.01、1254.27和大于786.63。4种药剂在有效防治桃蚜的前提下对天敌异色瓢虫的安全性依次为阿维菌素>鱼藤酮>印楝素>吡虫啉。阿维菌素、吡虫啉、印楝素和鱼藤酮这4种药剂均可在蚜虫综合治理中发挥有效的作用。  相似文献   

13.
Myzus persicae samples were collected from populations present on a range of field crops between 1997 and 2000. A combination of biochemical, DNA-based diagnostics and bioassays was used to assess the presence of three insecticide resistance mechanisms: elevated carboxylesterase (E4 or FE4), insensitive acetylcholinesterase and insensitive sodium channels (knockdown resistance, kdr). For the carboxylesterases, both the levels of enzyme and the type of gene present (E4 or FE4) were determined. The results showed that during the time period studied there was a dramatic reduction in the proportion of aphids with very high levels of E4 and an increase in those with lower levels of FE4. There was also a slightly different E4 gene present in a limited number of samples. The change in esterase genes was accompanied by a virtual loss of the insensitive AChE variant and a maintenance of aphids with kdr. The selection pressures and other factors leading to these changes in field populations of M persicae are discussed.  相似文献   

14.
A microencapsulated formulation that gives a burst release of piperonyl butoxide (PBO) several hours before a burst release of a conventional pyrethroid can effectively overcome metabolic resistance in Bemisia tabaci Gennadius, Helicoverpa armigera (Hübner), Aphis gossypii Glover and Myzus persicae Sulzer. This increase in efficacy against resistant pests was reflected in a field trial against B. tabaci on cotton, eliminating the need for two treatments. The ratio between the active insecticide and the synergist was found to be crucial in reducing resistance factors.  相似文献   

15.
Biological characterization of sulfoxaflor, a novel insecticide   总被引:1,自引:0,他引:1  
BACKGROUND: The commercialization of new insecticides is important for ensuring that multiple effective product choices are available. In particular, new insecticides that exhibit high potency and lack insecticidal cross‐resistance are particularly useful in insecticide resistance management (IRM) programs. Sulfoxaflor possesses these characteristics and is the first compound under development from the novel sulfoxamine class of insecticides. RESULTS: In the laboratory, sulfoxaflor demonstrated high levels of insecticidal potency against a broad range of sap‐feeding insect species. The potency of sulfoxaflor was comparable with that of commercial products, including neonicotinoids, for the control of a wide range of aphids, whiteflies (Homoptera) and true bugs (Heteroptera). Sulfoxaflor performed equally well in the laboratory against both insecticide‐susceptible and insecticide‐resistant populations of sweetpotato whitefly, Bemisia tabaci Gennadius, and brown planthopper, Nilaparvata lugens (Stål), including populations resistant to the neonicotinoid insecticide imidacloprid. These laboratory efficacy trends were confirmed in field trials from multiple geographies and crops, and in populations of insects with histories of repeated exposure to insecticides. In particular, a sulfoxaflor use rate of 25 g ha?1 against cotton aphid (Aphis gossypii Glover) outperformed acetamiprid (25 g ha?1) and dicrotophos (560 g ha?1). Sulfoxaflor (50 g ha?1) provided a control of sweetpotato whitefly equivalent to that of acetamiprid (75 g ha?1) and imidacloprid (50 g ha?1) and better than that of thiamethoxam (50 g ha?1). CONCLUSION: The novel chemistry of sulfoxaflor, its unique biological spectrum of activity and its lack of cross‐resistance highlight the potential of sulfoxaflor as an important new tool for the control of sap‐feeding insect pests. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
Insecticide sprays were applied to Myzus persicae (Sulzer) populations carrying various combinations of three insecticide resistance mechanisms (esterase-based metabolic resistance and two target site mechanisms, known as MACE and kdr), supported on host plants growing in field simulator cages. The study showed that MACE confers extreme resistance to pirimicarb and triazamate (carbamate insecticides) but not to deltamethrin + heptenophos (16 + 1) (Decisquick) or dimethoate (an organophosphorus insecticide). Resistance to dimethoate depends solely on levels of esterase-based resistance, while resistance to Decisquick depends on kdr and esterase. None of the four insecticides is effective against aphids carrying MACE combined with extreme esterase-based resistance. This knowledge, in association with current monitoring of the mechanisms, will play an important role in making decisions on insecticide use against M persicae in the UK. © 1999 Society of Chemical Industry  相似文献   

17.
Four chitinase inhibitors, cyclo-(Proline-Tyrosine), cyclo-(Histidine-Proline), allosamidin and psammaplin A, were selected for in vitro feeding experiments with the peach-potato aphid, Myzus persicae (Sulzer), under controlled photoperiod and temperature conditions. Artificial diets were used to provide chitinase inhibitors at 10, 50 and 100 microg mL(-1) to M. persicae. Except for cyclo-(Proline-Tyrosine), which did not modify aphid demographic parameters, chitinase inhibitors induced differential aphicidal effects on M. persicae. At all doses, cyclo-(Histidine-Proline) induced significant effects affecting daily fecundity, intrinsic rate of natural increase (r(m)) and doubling time of population. When compared with the control diet, allosamidin decreased nymph survival and daily fecundity, increasing the doubling time of population from 1 to 1.5 days. Psammaplin A was the most toxic inhibitor when delivered via artificial diet, as it induced the death of all aphids reared at 50 and 100 microg mL(-1). The results demonstrate the potential use of chitinase inhibitors as aphid management tools.  相似文献   

18.
Changes in global temperature and humidity as a result of climate change are producing rapid evolutionary changes in many animal species, including agricultural pests and disease vectors, leading to changes in allele frequencies of genes involved in thermotolerance and desiccation resistance. As some of these genes have pleiotropic effects on insecticide resistance, climate change is likely to affect insecticide resistance in the field. In this review, we discuss how the interactions between adaptation to climate change and resistance to insecticides can affect insecticide resistance in the field using examples in phytophagous and hematophagous pest insects, focusing on the effects of increased temperature and increased aridity. We then use detailed genetic and mechanistic studies in the model insect, Drosophila melanogaster, to explain the mechanisms underlying this phenomenon. We suggest that tradeoffs or facilitation between adaptation to climate change and resistance to insecticides can alter insecticide resistance allele frequencies in the field. The dynamics of these interactions will need to be considered when managing agricultural pests and disease vectors in a changing climate. © 2019 Society of Chemical Industry  相似文献   

19.
草地贪夜蛾抗药性现状及化学防治策略   总被引:4,自引:0,他引:4  
本文就草地贪夜蛾抗药性研究的历史、现状以及如何进行化学防治进行了比较系统的分析。针对国内外草地贪夜蛾发生的现状,从抗药性程度及交互抗性、种群遗传、抗药性机制以及化学防治的关键技术等方面进行了讨论。提出了化学防治要尽量做到药剂品种、时间和空间的配合;掌握好药剂防治的两个窗口期,一是害虫本身敏感的窗口期即从孵化到3龄初,二是孵化后到钻蛀前;分阶段选择适宜药剂类型用于化学防治。除了考虑杀虫剂作用机制类别外,作用方式也要考虑。卵高峰期施用具有触杀活性的药剂配合具有杀卵活性的药剂添加具有渗透功能的助剂,孵化高峰期施用触杀药剂配合胃毒药剂,后期大龄幼虫可以考虑胃毒药剂为主的化学防治策略。  相似文献   

20.
麦蚜是为害小麦的一类重要害虫,广泛分布于我国各小麦种植区.2016年-2018年我国麦蚜总体偏重发生,严重影响小麦产量和品质,造成巨大的经济损失.拟除虫菊酯类杀虫剂是防治麦蚜的主要杀虫剂类型之一,但由于化学农药的长期使用,麦蚜对拟除虫菊酯类杀虫剂产生了不同程度的抗性.本文综述了拟除虫菊酯类杀虫剂作用机制、麦蚜对拟除虫菊...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号