首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The importance of dietary 20:5n‐3 (EPA), 22:6n‐3 (DHA) and 20:4n‐6 (ARA) for growth, survival and fatty acid composition of juvenile cockles (Cerastoderma edule) was investigated. Cockles of 6.24 ± 0.04 mm and 66.14 ± 0.34 mg (live weight) were distributed into three treatments where live microalgae diets were fed constantly below the pseudofaeces production threshold, for three weeks. Diets had distinct fatty acid profiles: high EPA (53% Chaetoceros muelleri + 47% Pyramimonas parkeae), no DHA (47% Brachiomonas submarina + 53% Tetraselmis suecica) and low ARA concentrations (73% P. parkeae + 27% Phaeodactylum tricornutum). Growth was positively affected by high EPA and low ARA diets, whereas no significant growth was observed for the no DHA diet. High mortality of cockles fed no DHA diet raises questions about its suitability for cockles. In balanced diets with EPA and DHA, lower concentrations of ARA do not limit growth. The impact of dietary fatty acids was evident in the fatty acids of neutral and polar lipids of cockles. In polar lipids of all cockles, there was a decrease in EPA, in contrast to an increase in DHA. The combination of EPA and DHA in a live microalgae diet was beneficial for the growth and survival of juvenile cockles.  相似文献   

2.
The main objective of this study was to evaluate the effect of methionine supplementation when reducing fishmeal levels in diets for white shrimp (Litopenaeus vannamei). Tested diets consisted of a positive control with 260 g/kg fishmeal (D1), two negative controls with 100 g/kg fishmeal and no amino acid (AA) supplementation (D2) or supplemented with lysine but not methionine (D3), and four additional diets with 100g/kg fishmeal supplemented with increasing levels of DL‐Met (1.0, 2.0 or 3.0 g/kg) (D4, D5, D6) or Met‐Met (1.0 g/kg) (D7). Each diet was fed to four groups of 30 shrimp for 8 weeks at a daily rate of 70 g/kg body weight. Reduction in fishmeal from 260 g/kg down to 100 g/kg did not significantly affect survival rate, feed conversion ratio (FCR), protein efficiency ratio (PER) or protein retention efficiency (PR%) of white shrimp. However, growth performance (final body weight, FBW; weight gain, WG; specific growth rate, SGR) was reduced when dietary fishmeal level was reduced from 260 g/kg (D1) to 100 g/kg without methionine supplementation (D2). The growth performance (FBW, WG and SGR) of shrimp was significantly increased by supplementation of the 100 g/kg fishmeal diet with increasing levels of DL‐Met (< .05). Same performance as positive control (D1) was achieved with diets containing 100 g/kg fishmeal and supplemented with 3.0 g/kg DL‐Met or 1.0 g/kg Met‐Met. The highest values of growth performance (FBW, WG and SGR) were found in shrimp fed D6 and D7 diets, which were significantly higher than those of shrimp fed D2 and D3 diets (< .05) but without statistical differences with shrimp fed D1, D4 and D5 diets (> .05). The highest values of whole‐body and muscle protein contents were found in shrimp fed D1 diet, which were significantly higher than those of shrimp fed all other diets (< .05). The highest value of intestinal tract proteolytic enzyme activity was found in shrimp fed Met‐Met‐supplemented diet (D7) and followed by the positive control diet (D1) and 3 g/kg DL‐Met‐supplemented diet (D6) (< .05). The highest values of apparent digestibility coefficients (ADCs) of dry matter and crude protein were found in Met‐Met‐supplemented diet (D7) and followed by the positive control diet (D1) (< .05). Shrimp fed the D1 diet showed the highest value of total essential amino acid (EAA) and was significantly higher than shrimp fed D2–D3 (< .05) but without significant difference with shrimp fed D4–D7 (> .05). In conclusion, results showed that same performance can be achieved with diets containing 260 or 100 g/kg fishmeal supplemented with 3.0 g/kg DL‐Met or 1.0 g/kg Met‐Met. Moreover, supplementation of limiting methionine in low‐fishmeal diets seems to improve the digestive proteolytic activity, improving digestibility of dry matter and protein, and eventually to promote growth of juvenile white shrimp in fishmeal reduction diets.  相似文献   

3.
A 10‐week feeding experiment was conducted to investigate the effects of dietary DHA/EPA ratio on juvenile Japanese seabass reared in sea floating cages. Six practical diets were formulated differing only in DHA/EPA ratio: 0.55 (Diet D/E0.55), 1.04 (D/E1.04), 1.53 (D/E1.53), 2.08 (D/E2.08), 2.44 (D/E2.44) and 2.93 (D/E2.93). All diets had the same contents of total n‐3 long‐chain polyunsaturated fatty acid (LC‐PUFA) and arachidonic acid (ARA). The results showed that the final weight and specific growth rate significantly increased with increasing dietary DHA/EPA ratio from 0.55 to 2.08 and thereafter declined. Activities of lysozyme and superoxide dismutase in serum in groups with DHA/EPA of 1.53–2.93 was significantly higher compared to group D/E0.55 while the activity of serum alternative complement pathway in group D/E2.93 was significantly lower compared with group D/E1.53. However, no difference was observed in activities of both respiratory burst of head kidney macrophage and serum catalase among dietary treatments. The per cent survival after air exposure in group D/E1.53, D/E2.08 and D/E2.93 was significantly higher compared with group D/E0.55. The fatty acid composition of whole body and tissues reflected closely those of diets, while fish accumulated more DHA than EPA in fish tissues, especially in muscle. These results suggested that at the same dietary contents of n‐3 LC‐PUFA (appr. 18% of TFA) and ARA (appr. 0.7% of TFA), moderate dietary DHA/EPA ratios of 1.53–2.08 significantly enhanced growth performances, certain innate immune responses, and the stress tolerance of Japanese seabass, in accordance with the preferential incorporation of DHA into fish tissues.  相似文献   

4.
Six diets were designed to investigate the effects of dietary docosahexaenoic acid (22:6n‐3; DHA) levels (0.5, 1.3, 2.3, 4.2, 8.1 and 15.9 g/kg diets) on growth performance, fatty acid profile and expression of some lipogenesis‐related genes of blunt snout bream (Megalobrama amblycephala). Fish (average weight: 26.40 ± 0.11 g) were randomly fed one of six diets for 8 weeks. Results indicated that the final body weight (FBW) and specific growth rate (SGR) of fish fed 1.3 g/kg DHA were significantly higher than other groups except for the 2.3 g/kg DHA (p < .05). Compared with other groups, the number of lipid droplet clusters of the liver stained with oil red O in the 2.3 g/kg DHA group was the highest, which was consistent with the lipid contents of whole body and liver. The DHA proportion in liver and muscle significantly increased with the increasing dietary DHA levels (p < .05), which reflected fatty acid profiles of diets. The highest mRNA expressions of acetyl‐CoA carboxylase α (ACCα), fatty acid synthase (FAS) and sterol regulatory element‐binding protein‐1 (SREBP‐1) occurred in the 1.3 g/kg DHA group, followed by 2.3 g/kg DHA. In summary, the supplementation of 1.3–2.3 g/kg DHA could improve growth performance and lipogenesis, and the dietary DHA could improve DHA and PUFA proportion in liver and muscle.  相似文献   

5.
The aim of this study was to determine if algal products rich in DHA or ARA are able to completely replace fish oil in microdiets for marine fish larvae, gilthead seabream and if extra supplementation with EPA may further enhance larval performance. For that purpose, 20 day‐old gilthead seabream larvae of 5.97 ± 0.4 mm mean total length and 0.12 ± 0.001 mg mean dry body weight were fed with five microdiets tested by triplicate: a control diet based on sardine oil; a diet containing AquaGrow® DHA (diet DHA) to completely substitute the sardine oil; a diet containing AquaGrow® ARA (diet ARA); a diet containing both products, AquaGrow® DHA and AquaGrow® ARA to completely substitute the fish oil; and, a diet containing both products, AquaGrow® DHA and AquaGrow® ARA, together with an EPA source. Temperature, air and salinity activity tests were also performed to detect larval resistance to stress. At the end of the experiment, final survivals did not differ among groups. The microorganism produced DHA was able to completely replace fish oil in weaning diets for gilthead seabream without affecting survival, growth or stress resistance, whereas the inclusion of microorganism produced ARA did not improve larval performance. Moreover, addition of EPA to diets with total replacement of fish oil by microorganism produced DHA and ARA, significantly improved growth in terms of body weight and total length. The results of this study denoted the good nutritional value of microorganisms produced DHA as a replacement of fish oil in weaning diets for gilthead seabream, without a complementary addition of ARA. However, dietary supplementation of EPA seems to be necessary to further promote larval performance.  相似文献   

6.
An experiment was conducted in order to evaluate the effects of feeding frozen Artemia diets differing in arachidonic acid-to-eicosapentaenoic acid ratios (ARA/EPA) on growth, survival and stress coping ability of Senegalese sole post-larvae (19–31 days after hatch). Two experimental diets presenting high (‘High’; 3.0) or low (‘Low’; 0.7) ARA/EPA ratios were tested under two rearing conditions: undisturbed (C) and stressed by a 2-min air exposure every two days (S). Growth, survival and basal cortisol levels were similar between groups indicating that independently of dietary ARA/EPA ratios, fish were able to cope with the repeated stress imposed. Also, cortisol levels at 3 h past air exposure were determined in all groups at the end of the experiment. Among fish fed the ‘Low’ diet, C groups seemed to present a quicker recovery from the acute stress (basal-like levels) than S groups. Repeated stress effects were not apparent in fish fed the ‘High’ diet and, relative to basal levels, twofold higher cortisol concentrations were detected at 3 h, in both C and S groups. This study suggests the importance of ARA in steroidogenesis regulation and the modulatory role of EPA in this process. Despite the tolerance to a wide range of dietary ARA/EPA as indicated by growth and survival results, acute stress coping response may be more efficient in Senegalese sole post-larvae fed low ARA/EPA ratios and, under these particular conditions, a faster recovery of cortisol to basal values could be indicative of rearing conditions (undisturbed vs. repeatedly stressed).  相似文献   

7.
The objectives of this study were to determine the effects of the dietary docosahexaenoic acid (DHA) to arachidonic acid (ARA) ratio on the survival, growth, hypersaline stress resistance and tissue composition of black sea bass larvae raised from first feeding to metamorphic stages. Larvae were fed enriched rotifers Brachionus rotundiformis and Artemia nauplii containing two levels of DHA (0% and 10% total fatty acids=TFA) in conjunction with three levels of ARA (0%, 3% and 6% TFA). On d24ph, larvae fed the 10:6 (DHA:ARA) treatment showed significantly (P<0.05) higher survival (62.3%) than larvae fed 0:0 (DHA:ARA) (27.4%). Notochord length and dry weight were also significantly (P<0.05) greater in the 10:6 (DHA:ARA) treatment (8.65 mm, 2.14 mg) than in the 0:0 (DHA:ARA) (7.7 mm, 1.65 mg) treatment. During hypersaline (65 g L−1) challenge, no significant differences (P>0.05) were observed in the median survival time (ST50) between larvae fed 10% DHA (ST50=25.6 min) and larvae fed 0% DHA (ST50=18.2 min). The results suggested that black sea bass larvae fed prey containing 10% DHA with increasing ARA within the range of 0–6% showed improved growth and survival from first feeding through metamorphic stages.  相似文献   

8.
The aim of this study was to evaluate the long‐term effects (7‐month experiment) of diets consisting of fish oil (Kilka fish) and vegetable oil (rapeseed) on the reproductive performance of sterlet sturgeon (Acipenser ruthenus) broodstock. Forty‐five broodstock (990.3 ± 20.05 g) were randomly allocated to three different diet treatments. Three experimental diets were formulated with graded levels of fish oil (100% FO), vegetable oil (100% VO), and a combination of fish and vegetable oil (50% FO + 50% VO). At the end of the 7‐month feeding trial period, the weight gain and final weight were changed significantly different between the treatments (p < 0.05). Broodstock fed the FO + VO diet had higher growth than those fed the only FO or VO diets (p < 0.05). The highest germinal vesicle migration percentage was observed in FO + VO treatment (p < 0.05). The DHA/EPA, DHA/ARA and EPA/ARA ratios in oocyte exhibited a significant difference in the different treatments (p < 0.05). This study indicates that nutrition of broodstock with diet including FO + VO (p < 0.05) can positively affect the growth performance of larvae compared with only FO or VO diets. Furthermore, the high levels of 18:1n‐9, AL and ALA contents in oocytes from broodstock fed VO and the lowest ALA content in oocytes from broodstock fed FO underlined the important role of broodstock diets in the reproductive process and embryonic and/or larval developments of sterlet.  相似文献   

9.
Six isonitrogenous and isolipidic diets were formulated containing two astaxanthin (AX; 0 and 90 mg/kg) and three vitamin E (VE) levels (0, 25 and 50 mg/kg). There were three replicates (18 crabs per replicate) for each treatment. Juvenile swimming crab (initial weight 31.65 ± 0.06 g/crab) were fed different diets for 8 weeks. After the feeding trial, growth performance was not significantly affected by the different treatments. Crabs fed with AX‐supplemented diets showed more redness. Whole body 22:6n‐3, 22:4n‐6 and 20:5n‐3 levels increased with the dietary addition of AX (= .009, = .002 and = .042, respectively). The malondialdehyde (MDA) concentrations of fresh/frozen hepatopancreas and frozen muscle were significantly decreased by the dietary AX supplementation (p < .001, = .010 and = 0.011, respectively). These findings provide evidence that dietary AX has an ability to improve the redness of the shell and reduce the MDA concentrations of tissues. Furthermore, there is no strong interactive relationship between dietary VE and AX on the coloration and fatty acid concentrations for the swimming crab.  相似文献   

10.
Two experiments were carried out to investigate the effects of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (ARA) levels in rotifers (Brachionus plicatilis) and Artemia on the survival, development and metamorphosis of mud crab Scylla paramamosain larvae. Five different lipid emulsions, varying in the level of total n‐3 and n‐6 highly unsaturated fatty acids (HUFA), DHA, EPA and ARA were used to manipulate the fatty acid profile of the live food. Fatty acid profiles of the live food and crab larvae at zoea one, three and five stages were analysed to study the HUFA uptake by the larvae. The fatty acid content of the live food affected the fatty acid profiles of the crab larvae. In both experiments, the survival rate in the zoeal stages was not statistically different among treatments. However, larval development rate and metamorphosis success were affected by the dietary treatments. In this respect, the DHA/EPA ratio in the live food seems to be a key factor. Enrichment emulsions with a very high (50%) total HUFA content but a low DHA/EPA ratio (0.6), or zero total HUFA content caused developmental retardation and/or metamorphosis failure. An emulsion with a moderate total HUFA (30%) and a high DHA/EPA ratio (4) was the best in terms of larval development during the zoeal stages and resulted in improved metamorphosis. Dietary ARA seemed to improve first metamorphosis, but its exact role needs further clarification. For the larval rearing of S. paramamosain, an enrichment medium containing about 30% total n‐3 HUFA with a minimum DHA/EPA ratio of 1 is recommended. Further investigation is needed on the total HUFA and optimum DHA/EPA ratio requirements for each crab larval stage.  相似文献   

11.
The green algae Haematococcus pluvialis is an important source of natural astaxanthin as feed additive. This study was conducted to investigate the effects of dietary supplementation of H. pluvialis powder on gonadal development, coloration and antioxidant capacity of adult male Chinese mitten crab Eriocheir sinensis, and four experimental diets were formulated to contain 0, 0.2%, 0.4% and 0.6% of H. pluvialis powder. There were four treatments (defined as D1~D4) in this study and each treatment had three replicates. Dietary H. pluvialis contents had no significant effects on survival, body weight gain rate and gonadal development of male E. sinensis. For colour parameters, the total carotenoids content in carapace and hepatopancreas as well as hepatopancreatic lightness (L*) and carapace redness (a*) increased significantly with increasing dietary H. pluvialis (< 0.05). For the antioxidant indices in the serum, D4 had the lowest activities of superoxide dismutase (SOD) and peroxidase (POD), but the highest glutathione peroxidase (GSH‐Px) and lactic dehydrogenase (LDH), while the malondialdehyde (MDA) in serum and hepatopancreas decreased significantly with the rising content of dietary H. pluvialis (< 0.05); D1 had the highest levels of SOD, POD and GSH‐Px in hepatopancreas. For the non‐specific immune indices, the highest activities of acid phosphatase (ACP) and γ‐glutamyl transpeptidase (γ‐GT) were found on the serum of D3 and D4 (< 0.05). D1 had the highest levels of ACP and alkaline phosphatase (ALP) in hepatopancreas, while D2 and D3 had the lowest levels of ALP and ACP respectively. These results suggested the optimal dietary natural astaxanthin level was around 40 mg/kg diets.  相似文献   

12.
Efficacy of Thymus vulgaris essential oils was assessed on growth, immune response and disease resistance of rainbow trout (Oncorhynchus mykiss). Fish weighing 10 g were fed with dietary supplemented of the oils at 0.5, 1.0 and 2.0 ml/kg feed for 2 months. Fish fed with the oils at 0.5 ml/kg feed demonstrated a better weight gain and specific growth rate, compared to other treatments (p < .05). Fish fed with 1.0 ml the oils showed the highest up‐regulation of complement component 3 (C3) and (cluster of differentiation 4) (CD4) genes expression (p < .05), while lysozyme gene expression level significantly increased in fish fed with 2.0 ml of the oils. In addition, at the end of the experiment, the expression of C3 and CD4 genes were significantly up‐regulated in fish fed with 1.0 and 2.0 ml of the oils, while IL‐1ß and lysozyme genes expression levels were significantly decreased in fish fed 2.0 ml oils, towards the end of the trial (p < .05). There was a fluctuation in the levels of Alanine aminotransferase, Aspartate aminotransferase and Alkaline phosphatase in all treatments during the experiment. When treated fish were challenged with Aeromonas hydrophila, the highest survival rate was observed in 0.5 ml/kg treatment, followed by 2 and 1 mg/kg treatments. Overall, these findings demonstrated that dietary administration of T. vulgaris oils especially at 0.5 mg/kg feed can be considered as a potential component for enhancing of the growth, immune responses and disease resistance of trout against motile Aeromonas septicemia caused by A. hydrophila.  相似文献   

13.
Five isoproteic (54.8%) and isolipidic (24.1%) microdiets, which varied in their docosahexaenoic acid (DHA) content (0.25%, 0.75%, 1.64%, 1.99% and 3.17%; dw), were manufactured to determine its effects on longfin yellowtail Seriola rivoliana larvae in terms of fish biological performance, whole body fatty acid profile and incidence of skeletal anomalies from 30 dah (11.31 ± 1.79 Total Length, TL) to 50 dah (19.80 ± 0.58 mm TL). The inclusion of dietary DHA up to 3.17% (dw) improved larval resistance to air exposure, although DHA did not significantly affect fish final growth or final survival. Indeed, high levels of dietary DHA (1.99% and 3.17%, dw) tended to increase the incidence of skeletal anomalies in S. rivoliana larvae, albeit no significant differences were observed. Furthermore, the occurrence of severe anomalies such as kyphosis and lordosis, was mainly associated to the larvae fed the highest levels of dietary DHA. In terms of survival, increasing dietary DHA levels did not significantly affect longfin yellowtail survival rate, despite a tendency for enhanced survival. The results of the present study proved that the inclusion of dietary DHA in inert diets up to a 3.17% (dw) and a DHA/EPA ratio above 3.1 increased the final survival and stress resistance in S. rivoliana larvae.  相似文献   

14.
This study was conducted to evaluate the effect of dietary taurine supplementation on growth, immunity and resistant to dry stress of rice field eel (Monopterus albus) fed low fish meal diets. Six isonitrogenous and isolipid diets (32% fish meal) supplemented with six taurine concentrations (0, 0.3, 0.6, 0.9, 1.2 and 1.5 g/kg; designated as T0, T0.03, T0.06, T0.09, T0.12 and T0.15 groups, respectively) were prepared. A diet including 42% fish meal (FM group) was also included as a reference. The results showed that specific growth rate (SGR) in FM group was significantly higher than that in lower fish meal treatments. SGR significantly increased and slowly decreased with the increase in taurine supplementation level. Lipase activity value in intestine of M. albus fed FM diet was maximum, and with the increase in taurine supplementation level, lipase activity significantly increased and slowly decreased. The FM group had relative higher total antioxidant capacity (T‐AOC) content, catalase (CAT), total superoxide dismutase (T‐SOD), and lyzozyme (LZM) activities in serum than the other groups. With the increase in dietary taurine supplementation level, the CAT, T‐SOD, T‐AOC and LZM activities in serum significantly increased and then decreased. In the dry stress experience, the adrenaline (AD), cortisol (COR), glucose (GLU), total cholesterol (CHOL), and malondialdehyde (MDA) concentrations, T‐AOC content, CAT and T‐SOD activities in serum of M. albus in the four groups first increased and reached the peak at 2 hr, and then decreased under air‐exposure stress. Compared to the FM group, T0.15 group had relative higher T‐AOC content, CAT and T‐SOD activities, and lower AD, COR GLU, TC and MDA concentrations.  相似文献   

15.
This study was designed to use sucrose as carbon source to investigate the effect of biofloc technology on water quality and feed utilization in the cultivation of gibel carp (Carassius auratus gibelio var. CAS III). Three isolipidic and isoenergetic diets were formulated containing graded levels of dietary protein (257.4, 300.7 and 353.4 g/kg). The control group (P34) was fed with 353.4 g/kg protein diet without biofloc. Three biofloc treatments (P24 + B, P29 + B and P34 + B) were fed with the three diets with daily sucrose supplementation and continuous air inflation. The results found that the sucrose supplementation could generate biofloc and increased biofloc volume (BFV,< 0.05). The concentration of total ammonia nitrogen (TAN), nitrate nitrogen (NO3‐N) and the total phosphorus (TP) of all tanks decreased in biofloc groups, and the total nitrogen (TN) of P24 + B treatment tanks was significantly lower than that of the control group (< 0.05). The growth of P24 + B and P29 + B group was similar with that of control group (> 0.05). Feed conversion ratio (FCR) of P29 + B was lower than P24 + B and P34 + B (< 0.05). Protein retention efficiency (PRE) of P24 + B group was significantly higher than other treatments (< 0.05). Phosphorus retention efficiency (PhRE) of P24 + B group was the highest among all treatments. Compared with the control group, P29 + B group had an improved total antioxidant capacity (T‐AOC), superoxide dismutase (SOD) activity and contained the lowest malondialdehyde level (MDA). The present results indicated that low‐protein diet is more suitable for gibel carp in zero‐water exchange biofloc system compared with high‐protein diet.  相似文献   

16.
Five experimental diets containing different lipid sources, fish oil (D1), soybean lecithin (D2), corn oil (D3), canola oil (D4) and olive oil (D5), were evaluated in Atractosteus tropicus larvae for the relative gene expression of the enzymes fatty acid synthase (fas), acetyl‐CoA carboxylase 1 (acc1) and carnitine palmitoyltransferase 1C (cpt1c), in addition to their effects on larval growth, survival and cannibalism during a 30‐day feeding trial. Higher growth and survival were obtained in treatments D1 and D2, and lower performance in diets D3, D4 and D5. The highest levels of expression of fas and acc1 occurred in larvae fed with D1, which contained high amounts of n‐3 long‐chain polyunsaturated fatty acids (LC‐PUFA), mainly DHA and EPA FA are regulators of lipogenesis. The higher cpt1c expression in plant‐based diets is attributed to the fact that these diets are rich in α‐linolenic acid (ALA) and low DHA, EPA and ARA levels that favour ß‐oxidation. In conclusion, the diets with fish oil (D1) and soybean lecithin (D2) were the best treatments for larval growth, survival and cannibalism and thus appear to meet both lipid and energy requirements of A. tropicus larvae, meanwhile the use of vegetable oils influences the expression of intermediary lipogenic genes.  相似文献   

17.
Nile tilapia juveniles (8.35 ± 0.80 g) were fed on four levels (0.0%; 0.5%; 1.0%; 2.0%, 4.0%) of Aurantiochytrium sp. meal (ALL‐G‐RICH?), a source of docosahexaenoic acid (DHA). The 1% Aurantiochytrium sp. meal diet was compared to a control diet, which contained the same amount of DHA as cod liver oil (CLO) at 1.7% diet. Groups of 25 fish were stocked in 100 L tanks and fed twice daily until apparent satiation, for 57 days, at 28°C. Increasing dietary Aurantiochytrium sp. meal reduced the body retention of DHA and n‐3 polyunsaturated fatty acids (n‐3 PUFA) but increased the body retention of alpha‐linolenic (α‐LNA), linoleic (LOA) and n‐6 polyunsaturated fatty acids (n‐6 PUFA). Fatty acid profile in tilapia muscle was affected by increasing dietary inclusions of Aurantiochytrium sp. meal, with an increase in DHA, α‐LNA, n‐3 PUFA and n‐3 long chain‐polyunsaturated fatty acids (n‐3 LC‐PUFA) but a decrease in monounsaturated fatty acids (MUFA), n‐6 PUFA and n‐6 long‐chain polyunsaturated fatty acids (n‐6 LC‐PUFA). There was a larger body retention of DHA, α‐LNA, LOA, n‐3 PUFA and n‐6 PUFA fatty acids and a higher percentage of DHA, n‐3 PUFA and n‐3 LC‐PUFA in muscle fatty acid profile in fish fed on CLO diets than in those fed on 1% Aurantiochytrium sp. Therefore, Aurantiochytrium sp. meal is an alternative source of DHA for Nile tilapia diets.  相似文献   

18.
We examined the effect of dietary eicosapentaenoic acid (EPA, 20:5n‐3) on growth, survival, pigmentation and fatty acid composition of Senegal sole larvae. From 3 to 40 days post‐hatch (dph), larvae were fed live food that had been enriched using one of four experimental emulsions containing graduated concentrations of EPA and constant docosahexaenoic acid (DHA, 22:6n‐3) and arachidonic acid (ARA, 20:4n‐6). Final proportions of EPA in the enriched Artemia nauplii were described as ‘nil’ (EPA‐N, 0.5% total fatty acids, TFA), ‘low’ (EPA‐L, 10.7% TFA), ‘medium’ (EPA‐M, 20.3% TFA) or ‘high’ (EPA‐H, 29.5% TFA). Significant differences among dietary treatments in larval length were observed at 25, 30 and 40 dph, and in dry weight at 30 and 40 dph, although no significant correlation could be found between dietary EPA content and growth. Eye migration at 17 and 25 dph was affected by dietary levels of EPA. Significantly lower survival was observed in fish fed EPA‐H diet. Lower percentage of fish fed EPA‐N (82.7%) and EPA‐L (82.9%) diets were normally pigmented compared with the fish fed EPA‐M (98.1%) and EPA‐H (99.4%) enriched nauplii. Tissue fatty acid concentrations reflected the corresponding dietary composition. ARA and DHA levels in all the tissues examined were inversely related to dietary EPA. This work concluded that Senegal sole larvae have a very low EPA requirement during the live feeding period.  相似文献   

19.
This study investigated the effects of varying dietary levels of decosahexaenoic acid (DHA) on growth performance, proximate composition and whole body fatty acid profiles of juvenile silver pomfret, Pampus argenteus. Triplicate groups of fish (30.55 ± 0.08 g) were fed diets containing 5.2%, 9.31% and 13.38% DHA (% of total fatty acids) or 0.85%, 1.52% and 2.18% DHA on dry diet weight for diets 1, 2 and 3 respectively. Survival was not affected by dietary DHA levels. The growth performance and feed utilization parameters of fish fed diets 2 and 3 were significantly (< 0.05) higher than those fed diet 1, although these parameters in diets 2 and 3 did not differ significantly (P > 0.05). Whole body lipid and fatty acid profiles were influenced by dietary DHA levels. Significantly higher n‐3 fatty acids particularly DHA, DHA:EPA(eicosapentaenoic acid) ratios and n‐3:n‐6 ratios were observed in fish fed diets 2 and 3 compared to those fed diet 1. Better growth performance and higher whole body DHA:EPA (2.31, 2.29) ratios and n‐3:n‐6 ratios (2.17, 2.12) observed in fish fed diets 2 and 3, respectively, suggests that silver pomfret juveniles have a higher requirement for n‐3 fatty acids, notably DHA for optimum growth and survival.  相似文献   

20.
To optimize broodstock management for Seriola rivoliana, a survey over 5 years was performed to evaluate the effects of successive hormonal inductions with GnRHa or dietary regime on spawning quality. Running males and females with an oocyte diameter > 500 μm were injected with GnRHa. The spawning quality was compared among consecutive years and different moments along the spawning season. Besides, three different feeding regimes were tested. Spawning quality parameters were not significantly affected by time along the spawning season, whereas they were clearly influenced by diet. Particularly, broodfish fed the mackerel regime (M) showed a significantly higher number of eggs than other treatments. Besides, dietary protein content significantly improved broodstock fecundity of S. rivoliana. Moreover, hatching rates were also higher in broodfish fed mackerel and the dietary docosahexaenoic acid (DHA) levels significantly increased this parameter. Despite polar lipids were not significantly affected, neutral lipids fatty acid composition of S. rivoliana eggs showed higher 18:2n‐6 in eggs, whereas ARA content was not affected. The results of this study denoted the high fecundity and good spawning quality of S. rivoliana broodfish and suggested the importance of high protein, energy and DHA levels in broodstock diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号