首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 60-day feeding trial was conducted to delineate the effect of both gelatinized (G) and non-gelatinized (NG) corn with or without supplementation of exogenous α-amylase, either at optimum (35%) or sub-optimum (27%) protein levels, on blood glucose, and the key metabolic enzymes of glycolysis (hexokinase, HK), gluconeogenesis (glucose-6 phosphatase, G6Pase and fructose-1,6 bisphosphatase, FBPase), lipogenesis (glucose-6 phaosphate dehydrogenase, G6PD) and amino acid metabolism (alanine amino transfersae, ALT and aspartate amino transferase, AST) in Labeo rohita. Three hundred and sixty juveniles (average weight 10 ± 0.15 g) were randomly distributed into 12 treatment groups with each of two replicates. Twelve semi-purified diets containing either 35 or 27% crude protein were prepared by including G or NG corn as carbohydrate source with different levels of microbial α-amylase (0, 50, 100 and 150 mg kg−1). The G corn fed groups showed significantly higher (< 0.05) blood glucose and G6PD activity, whereas G6Pase, FBPase, ALT and AST activity in liver was higher in the NG corn fed group. Dietary corn type, α-amylase level in diet or their interaction had no significant effect (P > 0.05) on liver HK activity, but the optimum crude protein (35%) fed group showed higher HK activity than their low protein counterparts. The sub-optimum crude protein (27%) fed group showed significantly higher (P < 0.05) G6PD activity than the optimum protein fed group, whereas the reverse trend was observed for HK, G6Pase, FBPase, ALT and AST activity. Addition of 50 mg α-amylase kg−1 feed showed increased blood glucose and G6PD activity of the NG corn fed group, whereas the reverse trend was found for G6Pase, FBPase, ALT and AST activity in liver, which was similar to that of the G or NG corn supplemented with 100/150 mg α-amylase kg−1 feed. Data on enzyme activities suggest that NG corn in the diet significantly induced more gluconeogenic and amino acid metabolic enzyme activity, whereas G corn induced increased lipogenic enzyme activity. Increased amino acid catabolic enzyme (ALT and AST) activity was observed either at optimum protein (35%) irrespective of corn type or NG corn without supplementation of α-amylase irrespective of protein level in the diet.  相似文献   

2.
Juvenile Litopenaeus vannamei farmed at 3.0 psu were fed five diets containing glucose, sucrose, wheat starch, corn starch or potato starch as the carbohydrate (CBH) source. Shrimp were fed for 50 days to explore the effect of dietary CBH source on growth, body composition and ammonia tolerance. The specific growth rate of body length of shrimp fed glucose was the highest and significantly higher than those fed potato starch. The survival rate of shrimp fed glucose was 89.44%, and it was the highest and significantly higher than those fed wheat starch. Whole shrimp body crude protein and lipid of the corn starch group were 140.2 g kg?1 and 10.1 g kg?1 respectively. And they were significantly higher than those fed wheat starch. Shrimp fed potato starch had higher hepatopancreas and muscle glycogen. Shrimp fed sucrose had higher glucose‐6‐phosphate dehydrogenase and lower pyruvate kinase activities (P < 0.05). Besides, shrimp fed starch produced more B cells in hepatopancreas tubules than those fed glucose or sucrose. Shrimp fed different sources of CBH differed in the number of R cells. After 96‐h of ammonia nitrogen challenge, the survival rate of the treatments from high to low in turn was glucose, wheat starch, corn starch, sucrose and potato starch, and no significant differences were observed among all treatments. Based on shrimp growth and the economic problems of practical production, we recommend wheat starch as CBH source in practical diets for L. vannamei farmed at low salinities.  相似文献   

3.
A 60‐day experiment was carried out to investigate dietary starch levels on growth performance, hepatic glucose metabolism and liver histology of largemouth bass, Micropterus salmoides. Fish (initial weight 22.00 ± 0.02 g) were fed five graded levels of dietary corn starch (0, 50, 100, 150 and 200 g/kg). Fish fed low (0 and 50 g/kg) dietary starch showed significantly higher weight gain than other groups (p < .05). Liver lipid and glycogen accumulations were induced when dietary starch higher than 100 g/kg. After 20 days of feeding, hexokinase activity and mRNA expression were decreased in fish fed dietary starch higher than 150 g/kg (p < .05) and the pyruvate kinase showed the opposite tendency. Insulin receptor 1 (irs1), glucagon‐like peptide‐1 receptor and glucose transport protein 2 (glut2) mRNA expression were decreased with the increasing dietary starch after 10 days of feeding (p < .05). These results indicated gluconeogenesis was depressed and β‐oxidation was enhanced in response to high dietary starch, while the glycolysis was inhibited and endocrine system was impaired when fish fed high dietary starch; then, glucose homeostasis was disturbed and finally led to the glucose intolerance of largemouth bass.  相似文献   

4.
A feeding trial was conducted to investigate the complete substitution of either fish oil (FO) or squid liver oil (SLO) with crude palm oil (CPO), canola oil (CO) sunflower oil (SFO) or linseed oil (LO), as the sole added lipid source in diets fed to triplicate groups of giant freshwater prawn, Macrobrachium rosenbergii (initial weight = 0.42 ± 0.01 g) for 6 weeks. Prawns fed the CO or SLO diets showed significantly higher (< 0.05) specific growth rate than those fed the FO or CPO diets. The feed conversion ratio of the prawns was significantly better when fed the CO diet, compared with the FO, CPO, SFO and LO diets. The muscle eicosapentaenoic acid content of prawns fed the vegetable oil (VO) diets were not significantly different (P > 0.05) from those fed the FO diet, although all VO‐based diets led to a significantly lower docosahexaenoic acid content compared with prawns fed the FO or SLO diet. The whole‐body total carotenoid content was significantly lower for prawns fed the SLO diet compared with prawns on the CO or CPO diets. The successful use of VO instead of marine‐based oils in prawn diets will likely reduce feeding costs associated with M. rosenbergii aquaculture.  相似文献   

5.
Two experiments were performed to investigate the digestibility and utilization of carbohydrate sources by Australian snapper Pagrus auratus. In the first experiment, snapper of two different size classes (110 and 375 g) were fed a reference diet containing no starch (REF) or diets containing 150 (PN15), 250 (PN25), 350 (PN35) or 450 g kg?1 (PN45) of 100% gelatinized wheat starch to investigate the interactive effects of fish size and starch inclusion level on apparent organic matter (OM) or gross energy (GE) digestibility (ADC), post‐prandial plasma glucose concentration, hepatosomatic index (HSI) and liver or tissue glycogen content. A second experiment used a 72 h time course study to investigate the ability of larger snapper (300–481 g) to clear an intra‐peritoneal injection of 1 g d ‐glucose kg?1 body weight (BW). Organic matter and GE ADCs declined significantly in both fish sizes as the level of starch increased (PN45energy small fishenergy large fish). There was no interaction between fish size and inclusion level with respect to GE or OM ADCs. Gross energy ADC for both sized fish was described by the linear function GE ADC=104.97 (±3.39)–0.109 (±0.010) × inclusion level (R2=0.86). Hepatosomatic index, liver and muscle glycogen concentrations were significantly elevated in both small and large snapper‐fed diets containing gelatinized starch compared with snapper fed the REF diet. Three‐hour post‐prandial plasma glucose concentrations were not significantly affected by fish size, inclusion level or the interaction of these factors (REF=PN15=PN25=PN35=PN45), and ranged between 1.60 and 2.5 mM. The mean±SD resting level of plasma glucose (0 h) was 2.4±1.1 mM. Circulating levels of plasma glucose in snapper peaked at 18.9 mM approximately 3 h after intra‐peritoneal injection and fish exhibited hyperglycaemia for at least 12–18 h. There were no significant differences between the plasma glucose concentrations of snapper sampled 0, 18, 24, 48 or 72 h after injection (0=18=24=48=72<12< 1<3=6 h), indicating snapper required almost 18 h to regulate their circulating levels of glucose to near‐basal concentrations. Australian snapper are capable of digesting moderate levels of gelatinized wheat starch; however, increasing the dietary content of starch resulted in a reduction in OM and GE digestibility. Smaller snapper appear to be less capable of digesting gelatinized starch than larger fish, and levels above 250 and 350 g kg?1 of diet are not recommended for small and large fish respectively. Snapper subjected to an intra‐peritoneal injection of d ‐glucose have prolonged hyperglycaemia; however, the post‐prandial response to the uptake of glucose from normally digested gelatinized starch appears to be more regulated.  相似文献   

6.
The effect of the different dietary carbohydrate types and levels on growth performance, haematological indices and hepatic hexokinase (HK) and glucokinase (GK) genes expression involved in control of glucose metabolism, was studied in juvenile mirror carp (Cyprinus carpio). Two carbohydrates (glucose and starch) diets with two levels (250 and 500 g kg?1) were fed to triplicate groups of 35 fish for 60 days. The best weight gain rate and specific growth rate were observed in fish fed with 250 g kg?1 glucose diet and 500 g kg?1 starch diet (< 0.05). Fish fed with 500 g kg?1 glucose showed low feed utilization, with the highest food conversion ratio and the lowest protein efficiency ratio (< 0.05). Hepatosomatic index was significantly higher in fish fed with glucose diets and the 500 g kg?1 starch diet compared to 250 g kg?1 starch. CHOL, HDL‐C and LDL‐C were significantly highest in fish fed with 500 g kg?1 starch than all other diets (< 0.05). Hepatic GK mRNA expression level and activity were positively related to glucose and starch levels (< 0.05). Correlation analysis showed that hepatic glycogen concentration was increased by dietary carbohydrate content (< 0.05). These results suggest that GK may play a major role in the postprandial glucose utilization in juvenile mirror carp.  相似文献   

7.
The effect of dietary supplementation of probiotic bacterium Bacillus licheniformis on the histopathological changes in Macrobrachium rosenbergii juveniles (4.0 ± 0.02 g) challenged with known pathogenic strain of Vibrio alginolyticus are reported. Two isocaloric basal diets supplemented with probiotic bacteria B. licheniformis (1.0 × 109 cfu/g feed) and other without probiotic supplementation were fed to the M. rosenbergii juveniles for 45 days. The histological observations revealed no significant changes in the hepatopancreas and gut tissues of both the experimental and the control groups which indicate that the present bacterium is a safe candidate probiont for the host. Prawns were challenged with V. alginolyticus after 45 days of feeding with probiotic diet. The histopathological studies of the hepatopancreas revealed that M. rosenbergii fed with probiotic‐supplemented diet showed less changes as compared to the prawns fed with control diet on second and fourth day of post‐experimental challenge with V. alginolyticus. Histopathological observations revealed that the gills of the prawns fed with control diet were severely affected in comparison to the prawns fed with probiotic‐supplemented diet after challenging with V. alginolyticus. Results from this study revealed the improved protection by dietary incorporation of B. licheniformis in reducing the histopathological manifestations due to V. alginolyticus infection in freshwater prawn.  相似文献   

8.
Three isonitrogenous diets containing 60 g kg–1, 90 g kg–1 or 120 g kg–1 lipid were formulated and fed to the Litopenaeus vannamei (2.00 ± 0.08 g) under two salinities (25 or 3 psu) in triplicate for 8 weeks. Shrimp fed 90 g kg–1 lipid had higher weight gain and specific growth rate than shrimp fed the other two diets regardless of salinity, and the hepatosomatic index increased with increasing dietary lipid at both salinities. The shrimp at 3 psu had significantly lower survival and ash content, higher condition factor, weight gain and specific growth rate than the shrimp at 25 psu. Increasing dietary lipid level induced the accumulation of serum MDA regardless of salinity, and at 3 psu, it reduced the serum GOT and GPT activities and the mRNA expression of TNF‐α in intestine and gill of L. vannamei. The hepatopancreatic triacylglycerol lipase (TGL) and CPT‐1 mRNA expression showed the highest value in shrimp fed 90 g kg–1 lipid diet at 3 psu. This study indicates that 120 g kg–1 dietary lipid may negatively affect the growth and induce oxidative damage in shrimp, but can improve immune defence at low salinity; 60 g kg–1 dietary lipid cannot afford the growth and either has no positive impact on the immunology for L. vannamei at 3 psu.  相似文献   

9.
10.
Two experiments were conducted to ascertain the utilization of different carbohydrate sources and different forms of starch present in bagrid catfish (Mystus nemurus) fry. The nutritional quality and starch forms of cornstarch, dextrin, broken rice, and sago flour were evaluated in a 4 × 2 factorial design. All diets were formulated to be isonitrogenous (400 g kg?1 crude protein) and isolipidic (150 g kg?1 crude lipid), fed to triplicate groups of bagrid catfish fry (initial weight 6.04 ± 0.04 g). Growth studies, enzymatic response and postprandial plasma glucose were observed. A two‐way anova (P > 0.05) analysis of the data obtained showed that the final body weight, specific growth rate (SGR) and food conversion ratio (FCR) were significantly affected by carbohydrate source, but not significantly affected by starch form. Fish fed broken rice and corn starch had similar SGR and FCR compared to fish fed with dextrin and sago flour. The postprandial plasma glucose trend in fish fed with corn starch and broken rice showed a gradual increase while sago flour and dextrin‐fed fish peaked at 2 and 3 h, respectively. Lipogenic enzyme (G6PDH) activity were more pronounced than gluconeogenic enzyme (ME) in M. nemurus irrespective of carbohydrate source and starch form. Therefore, we suggest that raw broken rice and corn starch are suitable carbohydrate sources in the M. nemurus diet.  相似文献   

11.
Five diets (D1, D2, D3, D4 and D5) containing 0, 50, 100, 150 and 200 g starch per kg diet were formulated to investigate the effects of starch level on largemouth bass, Micropterus salmoides. Fish (initial weight: 22.00 ± 0.02 g) were fed the five diets for 90 days. Results indicated that weight gain, specific growth rate and survival of fish fed higher dietary starch level (200 g/kg) were lower than those of fish fed the lower dietary starch levels (0–50 g/kg). Higher dietary starch levels (150–200 g/kg) have a negative effect on antioxidant ability (total superoxide dismutase: T‐SOD; malonyldialdehyde: MDA; total antioxidant capacity: T‐AOC; glutathione peroxidase: GSH‐Px) and liver health (cellular contents leaked, nucleus deformed, endoplasmic reticulum and golgi body disappeared) of largemouth bass. Lower dietary starch levels (0–50 g/kg) modified intestinal microbiota of largemouth bass represented by increasing the relative abundance of beneficial bacterial such as Bacilli, Lactobacillales and Bacteroidales. These results indicated that dietary starch level above 50 g/kg had a negative effect on growth performance and antioxidant status of largemouth bass. Moreover, high dietary starch levels are potentially associated with negative alterations in liver structure and function, and decrease of beneficial gut microbes.  相似文献   

12.
Diets containing deoxynivalenol (DON) were fed to rainbow trout Oncorhynchus mykiss (Walbaum) for 4 weeks followed by experimental infection (intraperitoneal) with Flavobacterium psychrophilum (4.1 × 106 colony‐forming units [CFU] mL−1). Mortality of rainbow trout fed either 6.4 mg kg−1 DON or trout pair‐fed the control diet was significantly reduced (P < 0.05) in comparison with trout fed the control diet to apparent satiation (<0.1 mg kg−1 DON). In a second experiment, trout were fed one of three experimental diets; a control diet, a diet produced with corn naturally contaminated with DON (3.3 mg kg−1 DON) or a diet containing purified DON (3.8 mg kg−1); however, these fish were not experimentally infected. The presence of DON resulted in significant reduction (P < 0.0001) in feed intake as well as weight gain after 4 weeks. Respiratory burst of head‐kidney leucocytes isolated from rainbow trout fed diets containing purified DON (3.8 mg kg−1) was significantly higher (P < 0.05) at 35 day post‐exposure compared with controls. The antimicrobial activity of DON was examined by subjecting F. psychrophilum in vitro to serial dilutions of the chemical. Complete inhibition occurred at a concentration of 75 mg L−1 DON, but no effect was observed below this concentration (0–30 mg L−1).  相似文献   

13.
The aim of this experiment was to determine the effects of dietary inclusion with mannan oligosaccharide (Bio‐Mos, Alltech, Nicholasville, KY, USA) on growth, survival, physiological and immunological conditions and gut morphology of the black tiger prawn (Penaeus monodon). Five diets supplemented with MOS at 0 g kg?1 (control diet), 1, 2, 4 and 8 g kg?1 were fed to the prawn juveniles (0.4 ± 0.06 g, total weight) for the duration of 63 days. Growth was the highest (< 0.05) when the prawns were fed the 1 g kg?1 MOS included diet. Wet tail muscle index (Tw/B), dry tail muscle index (Td/B) and tail muscle protein (Tmp) were higher (< 0.05) in the prawns fed MOS included diets MOS compared with the prawns fed the control diet. Total haemocyte counts (THCs) of the prawns fed MOS included diets were higher (< 0.05) than THCs of the prawns fed the control diet. Epithelium layer and epidermal cell density of the gut of the prawns fed 1 g kg?1 and 2 g kg?1 MOS diets were better than the prawns fed the control and other MOS diets. The results imply a positive effect of dietary supplementation of 1–2 g kg?1 MOS in the culture of black tiger prawns.  相似文献   

14.
A 17‐week feeding trial was carried out to evaluate the effects of dietary L‐carnitine level in beluga, Huso huso. A total of fish averaging 1247 ± 15.6 g (mean ± SD) were randomly distributed into 18 fibreglass tanks, and each tank holding 10 fish was then randomly assigned to one of three replicates of six diets with 50, 150, 350, 650, 950 and 1250 mg L‐carnitine kg?1 diet. At the end of 17 weeks of feeding trial, average weight gain (WG), feed efficiency (FE), protein efficiency ratio (PER) and condition factor (CF) of fish fed 350 mg kg?1 diet were significantly (P < 0.05) higher than those of fish fed 50, 150, 950 and 1250 mg kg?1 diets. WG, FE, PER and CF of beluga fed 650 mg kg?1 diet were also significantly higher than those of fish fed 50, 950 and 1250 mg kg?1 diets. Whole body and muscle protein were significantly improved by the elevation of dietary L‐carnitine level up to 350 mg kg?1. Liver superoxide dismutase and glutathione peroxidase activities of fish fed 350 and 650 mg kg?1 diets were significantly higher than those of fish fed 50, 950 and 1250 mg kg?1 diets. The dietary L‐carnitine level of 350–650 mg kg?1 diet could improve growth performance, feed utilization, protein‐sparing effects of lipid, antioxidant defence system and reproductive success. Polynomial regression of WG suggested that the optimum dietary L‐carnitine level was 480 mg kg?1 diet. Therefore, these results may indicate that the optimum dietary L‐carnitine could be higher than 350 but <650 mg kg?1 diet in beluga reared in intensive culture conditions.  相似文献   

15.
An experiment to determine the optimal protein requirement of grouper Epinephelus coioides juveniles was conducted in floating net cages (1.5 m × 1 m × 1.5 m). Six isoenergetic fishmeal–casein‐based experimental diets containing 350–600 g kg?1 crude protein (CP) were fed to triplicate groups of 20 fish (10.7 ± 0.2 g) for 56 days. Weight gain (WG) and specific growth rate (SGR) increased with increasing dietary protein level from 350 to 450 g kg?1 and then plateaued above these levels. Feed intake (FI) showed no significant difference among fish fed more than 350 g kg?1 CP. Lowest feed conversion ratio (FCR) was found for fish fed 500 g kg?1 CP but this was not significantly different from that of fish fed the 450 and 600 g kg?1 CP. Lowest protein efficiency ratio (PER) was found for fish fed 550 and 600 g kg?1 CP. Fish fed the 600 g kg?1 CP had the highest body protein and moisture contents but the lowest body lipid content. Body ash content was unaffected by protein level for fish fed >400 g kg?1 CP. Dietary protein level had no significant effect on hepatosomatic index (HSI). Fish fed the 350 g kg?1 CP had significantly lower condition factor (CF) and viscerosomatic index (VSI). Based on broken‐line regression analysis of SGR the optimal dietary protein requirement for E. coioides juveniles was determined to be close to 480 g kg?1.  相似文献   

16.
Pacific white shrimp Litopenaeus vannamei (1050 individuals with initial weight of 1.01 ± 0.001 g) were fed either control diet or one of six dietary astaxanthin (AX) concentration (25, 50, 75, 100, 125 and 150 mg kg−1) diets for 56 days in 35 tanks (30 shrimp per tank). After 56 days of culture, shrimp‐fed AX125 and AX150 diets had higher (< 0.05) weight gain, specific growth rate, total antioxidant status and lower (< 0.05) superoxide dismutase (SOD), catalase (CAT) than shrimp fed control diet. After low dissolved oxygen stress for 1 h, survival rate of shrimp fed AX75, AX100, AX125 and AX150 diets was higher (< 0.05) than that of shrimp fed control diet. Hypoxia inducible factor‐1α (HIF‐1α), cytosolic manganese superoxide dismutase (cMnSOD) and CAT mRNA expression levels of shrimp fed seven diets were significantly down‐regulated under hypoxia than under normoxia, but their expression levels were higher under hypoxia in shrimp fed AX‐supplemented diets than in shrimp fed control diet. About 70‐kDa heat‐shock protein (Hsp70) mRNA expression level of shrimp fed seven diets was significantly up‐regulated under hypoxia than under normoxia, but its expression level was lower under hypoxia in shrimp fed AX‐supplemented diets than in shrimp fed control diet.  相似文献   

17.
Raw corn starch (RCS), raw tapioca starch (RTS), raw potato starch (RPS), pre‐gelatinized corn starch (PCS), pre‐gelatinized tapioca starch (PTS) and pre‐gelatinized potato starch (PPS) were evaluated as starch sources in diets for yellowfin seabream Sparus latus in a 56‐day growth trial. Seven isonitrogenous semi‐purified diets comprising a non‐starch cellulose control diet and the six different starch sources holding 200 g kg−1 starch each were prepared and fed to triplicate groups of juvenile yellowfin seabream S. latus. Fish were fed for 8 weeks. Weight gain (WG) and specific growth rate (SGR) for fish fed RCS, RTS and RPS diets were equal, as well as for fish fed PCS, PTS and PPS diets, but values in groups fed the raw starch sources were significantly higher compared with fish fed the pre‐gelatinized starches. Feed efficiency and protein efficiency ratio in fish fed different starch source diets showed no significant differences but were significantly higher than those fed a non‐starch control diet. Protein productive value was improved by starch incorporation to diets. PCS, PTS or PPS groups showed lower feed intake compared with RCS, RTS or RPS groups, and the differences were significant between PCS, PPS and RCS, RPS groups. Whole‐body protein and ash contents and muscle compositions were not affected by different starch sources. Whole‐body and liver lipid contents, liver moisture and glycogen contents were significantly affected by starch source. Values of hepatosomatic index, intraperitoneal fat ratio, viscerosomatic index and condition factor did not vary between experimental treatments. Plasma total protein concentration for RCS, RTS or RPS fed fish was significantly higher than that for PCS, PTS or PPS fed fish, but significantly lower than that for non‐starch fed fish. Plasma cholesterol and triacylglycerol concentrations were unaffected by starch source, but were significantly higher in fish fed the non‐starch control diets. Plasma glucose concentrations in all dietary groups were relatively stable. In conclusion, raw corn, tapioca and potato starches at a 200 g kg−1 inclusion level were well utilized as energy sources by yellowfin seabream, which was evidenced by better WG and SGR. Pre‐gelatinization of the starches had no positive effect on starch utilization.  相似文献   

18.
This study was conducted to investigate the influence of dietary lipid source and n‐3 highly unsaturated fatty acids (n‐3 HUFA) level on growth, body composition and blood chemistry of juvenile fat cod. Triplicate groups of fish (13.2 ± 0.54 g) were fed the diets containing different n‐3 HUFA levels (0–30 g kg?1) adjusted by either lauric acid or different proportions of corn oil, linseed oil and squid liver oil at 100 g kg?1 of total lipid level. Survival was not affected by dietary fatty acids composition. Weight gain, feed efficiency and protein efficiency ratio (PER) of fish fed the diets containing squid liver oil were significantly (P < 0.05) higher than those fed the diets containing lauric acid, corn oil or linseed oil as the sole lipid source. Weight gain, feed efficiency and PER of fish increased with increasing dietary n‐3 HUFA level up to 12–16 g kg?1, but the values decreased in fish fed the diet containing 30 g kg?1 n‐3 HUFA. The result of second‐order polynomial regression showed that the maximum weight gain and feed efficiency could be attained at 17 g kg?1 n‐3 HUFA. Plasma protein, glucose and cholesterol contents were not affected by dietary fatty acids composition. However, plasma triglyceride content in fish fed the diet containing lauric acid as the sole lipid source was significantly (P < 0.05) lower than that of fish fed the other diets. Lipid content of fish fed the diets containing each of lauric acid or corn oil was lower than that of fish fed the diets containing linseed oil or squid liver oil only. Fatty acid composition of polar and neutral lipid fractions in the whole body of fat cod fed the diets containing various levels of n‐3 HUFA were reflected by dietary fatty acids compositions. The contents of n‐3 HUFA in polar and neutral lipids of fish increased with an increase in dietary n‐3 HUFA level. These results indicate that dietary n‐3 HUFA are essential and the diet containing 12–17 g kg?1 n‐3 HUFA is optimal for growth and efficient feed utilization of juvenile fat cod, however, excessive n‐3 HUFA supplement may impair the growth of fish.  相似文献   

19.
A feeding trial was conducted to evaluate the efficacy of replacing fish meal (FM) with blood meal (BM), poultry by‐product meal (PBM), meat and bone meal (MBM) and shrimp head meal (SHM), rapeseed meal (RM) and peanut meal (PM) on a digestible basis of crude protein and lysine and methionine in five practical diets for the Pacific white shrimp at the FM levels of 300, 250, 200, 150 and 100 g kg?1 under laboratory conditions. Each of the five experimental diets was hand‐fed to four replicate tanks of shrimp with an average weight of 0.33 ± 0.03 g to satiation at each meal. The shrimp were fed three times a day over a six‐week period. The per cent weight gain of initial body weight (WG%) was significantly lower in shrimp fed 100 g kg?1 FM diet, but the value for hepatosomatic index (HSI) and the level of blood urea nitrogen (BUN) tended to be higher in shrimp fed 100 g kg?1 FM diet than those in shrimp fed other diets. The lowest value for feeding rate (FR) occurred for shrimp fed the basal diet and was significantly lower than that in shrimp fed the FM diets at 100–150 g kg?1. Shrimp fed diets containing 200 g kg?1 or lower FM had significantly lower feed utilization than those fed the 250 g kg?1 FM diet and the basal diet. The protein efficiency ratio (PER) in the shrimp fed the basal diet was significantly higher than in the other FM diets. Decreasing the FM replacement level significantly reduced nutrient digestibility except in the cases of ash and gross energy, but it did not affect the survival, condition factor (CF), body composition, digestive enzyme activity or plasma transaminase activity. The results of the study indicate that feeding a diet formulated on a digestible basis and involving FM replacement with other protein sources at a greater replacement proportion will not produce a level of shrimp growth equal to that achieved by feeding the basal diet.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号